Shared Disease Mechanisms in Neurodevelopmental Disorders: A Cellular and Molecular Biology Perspective
Abstract
1. Introduction
2. Ion Channel Dysregulation
2.1. Voltage-Gated Calcium Channels
2.2. Voltage-Gated Sodium Channels
2.3. Potassium Channels
2.3.1. Two-Pore Potassium Channels
2.3.2. Kv7 Voltage-Gated Potassium Channels
2.3.3. Sodium-Activated Potassium Channels
2.3.4. HCN Channels
3. Cell Signaling Cascades and Other Molecular Pathway Dysfunction
3.1. ANKRD17
3.2. PHACTR1
3.3. CNTNAP2
3.4. DENND5A
3.5. ALDH7A1
3.6. RELN
3.7. PCDH19
3.8. CDKL5
3.9. TSC1/TSC2
3.10. TANC2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lukens, J.R.; Eyo, U.B. Microglia and Neurodevelopmental Disorders. Annu. Rev. Neurosci. 2022, 45, 425–445. [Google Scholar] [CrossRef]
- Morris-Rosendahl, D.J.; Crocq, M.-A. Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef]
- Global Research on Developmental Disabilities Collaborators. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Glob. Health 2018, 6, e1100–e1121. [Google Scholar] [CrossRef]
- Olson, L.; Bishop, S.; Thurm, A. Differential Diagnosis of Autism and Other Neurodevelopmental Disorders. Pediatr. Clin. N. Am. 2024, 71, 157–177. [Google Scholar] [CrossRef]
- Willsey, A.J.; Sanders, S.J.; Li, M.; Dong, S.; Tebbenkamp, A.T.; Muhle, R.A.; Reilly, S.K.; Lin, L.; Fertuzinhos, S.; Miller, J.A.; et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell 2013, 155, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- GBD Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Public Health 2025, 10, e203–e227. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Study 2021 Autism Spectrum Collaborators. The global epidemiology and health burden of the autism spectrum: Findings from the Global Burden of Disease Study 2021. Lancet Psychiatry 2025, 12, 111–121. [Google Scholar] [CrossRef]
- Specchio, N.; Di Micco, V.; Aronica, E.; Auvin, S.; Balestrini, S.; Brunklaus, A.; Gardella, E.; Scheper, M.; Taglialatela, M.; Trivisano, M.; et al. The epilepsy–autism phenotype associated with developmental and epileptic encephalopathies: New mechanism-based therapeutic options. Epilepsia 2025, 66, 970–987. [Google Scholar] [CrossRef]
- Hebbar, M.; Mefford, H.C. Recent advances in epilepsy genomics and genetic testing. F1000Research 2020, 9, 185. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Liao, J. Deciphering the concepts behind ‘Epileptic encephalopathy’ and ‘Developmental and epileptic encephalopathy’. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 2020, 24, 11–14. [Google Scholar] [CrossRef]
- Myers, K.A. Genetic Epilepsy Syndromes. Contin. Lifelong Learn. Neurol. 2022, 28, 339. [Google Scholar] [CrossRef]
- Dirkx, N.; Miceli, F.; Taglialatela, M.; Weckhuysen, S. The Role of Kv7.2 in Neurodevelopment: Insights and Gaps in Our Understanding. Front. Physiol. 2020, 11, 570588. [Google Scholar] [CrossRef] [PubMed]
- Pisani, F.; Spagnoli, C.; Falsaperla, R.; Nagarajan, L.; Ramantani, G. Seizures in the neonate: A review of etiologies and outcomes. Seizure 2021, 85, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Beniczky, S.; Trinka, E.; Wirrell, E.; Abdulla, F.; Al Baradie, R.; Vanegas, M.A.; Auvin, S.; Singh, M.B.; Blumenfeld, H.; Fressola, A.B.; et al. Updated classification of epileptic seizures: Position paper of the International League Against Epilepsy. Epilepsia 2025, 66, 1804–1823. [Google Scholar] [CrossRef]
- Ben-Menachem, E.; Schmitz, B.; Kälviäinen, R.; Thomas, R.H.; Klein, P. The burden of chronic drug-refractory focal onset epilepsy: Can it be prevented? Epilepsy Behav. EB 2023, 148, 109435. [Google Scholar] [CrossRef]
- Pressler, R.M.; Cilio, M.R.; Mizrahi, E.M.; Moshé, S.L.; Nunes, M.L.; Plouin, P.; Vanhatalo, S.; Yozawitz, E.; de Vries, L.S.; Vinayan, K.P.; et al. The ILAE classification of seizures and the epilepsies: Modification for seizures in the neonate. Position paper by the ILAE Task Force on Neonatal Seizures. Epilepsia 2021, 62, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Litman, A.; Sauerwald, N.; Snyder, L.G.; Foss-Feig, J.; Park, C.Y.; Hao, Y.; Dinstein, I.; Theesfeld, C.L.; Troyanskaya, O.G. Decomposition of phenotypic heterogeneity in autism reveals underlying genetic programs. Nat. Genet. 2025, 57, 1611–1619. [Google Scholar] [CrossRef]
- Hakami, T. Neuropharmacology of Antiseizure Drugs. Neuropsychopharmacol. Rep. 2021, 41, 336–351. [Google Scholar] [CrossRef]
- Smith, R.S.; Walsh, C.A. Ion Channel Functions in Early Brain Development. Trends Neurosci. 2020, 43, 103–114. [Google Scholar] [CrossRef]
- Bortolami, A.; Sesti, F. Ion channels in neurodevelopment: Lessons from the Integrin-KCNB1 channel complex. Neural Regen. Res. 2023, 18, 2365–2369. [Google Scholar] [CrossRef]
- Arjun McKinney, A.; Petrova, R.; Panagiotakos, G. Calcium and activity-dependent signaling in the developing cerebral cortex. Development 2022, 149, dev198853. [Google Scholar] [CrossRef]
- Schwab, A.; Nechyporuk-Zloy, V.; Fabian, A.; Stock, C. Cells move when ions and water flow. Pflüg Arch. Eur. J. Physiol. 2006, 453, 421–432. [Google Scholar] [CrossRef]
- Pollock, N.S.; Atkinson-Leadbeater, K.; Johnston, J.; Larouche, M.; Wildering, W.C.; McFarlane, S. Voltage-gated potassium channels regulate the response of retinal growth cones to axon extension and guidance cues. Eur. J. Neurosci. 2005, 22, 569–578. [Google Scholar] [CrossRef]
- Kessi, M.; Chen, B.; Peng, J.; Yan, F.; Yang, L.; Yin, F. Calcium channelopathies and intellectual disability: A systematic review. Orphanet J. Rare Dis. 2021, 16, 219. [Google Scholar] [CrossRef] [PubMed]
- Bauer, R.; Timothy, K.W.; Golden, A. Update on the Molecular Genetics of Timothy Syndrome. Front. Pediatr. 2021, 9, 668546. [Google Scholar] [CrossRef]
- Kessi, M.; Chen, B.; Pang, N.; Yang, L.; Peng, J.; He, F.; Yin, F. The genotype–phenotype correlations of the CACNA1A-related neurodevelopmental disorders: A small case series and literature reviews. Front. Mol. Neurosci. 2023, 16, 1222321. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D. Precision Therapeutics in Lennox–Gastaut Syndrome: Targeting Molecular Pathophysiology in a Developmental and Epileptic Encephalopathy. Children 2025, 12, 481. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Raju, P.K.; D’AVanzo, N.; Lachance, M.; Pepin, J.; Dubeau, F.; Mitchell, W.G.; Bello-Espinosa, L.E.; Pierson, T.M.; Minassian, B.A.; et al. Both gain-of-function and loss-of-function de novo CACNA 1A mutations cause severe developmental epileptic encephalopathies in the spectrum of Lennox-Gastaut syndrome. Epilepsia 2019, 60, 1881–1894. [Google Scholar] [CrossRef]
- Di Micco, V.; Affronte, L.; Khinchi, M.S.; Rønde, G.; Miranda, M.J.; Hammer, T.B.; Specchio, N.; Beniczky, S.; Olofsson, K.; Møller, R.S.; et al. Seizure and movement disorder in CACNA1E developmental and epileptic encephalopathy: Two sides of the same coin or same side of two different coins? Epileptic Disord. 2024, 26, 520–526. [Google Scholar] [CrossRef]
- Brunklaus, A.; Lal, D. Sodium channel epilepsies and neurodevelopmental disorders: From disease mechanisms to clinical application. Dev. Med. Child. Neurol. 2020, 62, 784–792. [Google Scholar] [CrossRef]
- Ding, J.; Li, X.; Tian, H.; Wang, L.; Guo, B.; Wang, Y.; Li, W.; Wang, F.; Sun, T. SCN1A Mutation—Beyond Dravet Syndrome: A Systematic Review and Narrative Synthesis. Front. Neurol. 2021, 12, 743726. [Google Scholar] [CrossRef]
- Smith, R.S.; Kenny, C.J.; Ganesh, V.; Jang, A.; Borges-Monroy, R.; Partlow, J.N.; Hill, R.S.; Shin, T.; Chen, A.Y.; Doan, R.N.; et al. Sodium Channel SCN3A (NaV1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development. Neuron 2018, 99, 905–913.e7. [Google Scholar] [CrossRef] [PubMed]
- Menezes, L.F.S.; Sabiá Júnior, E.F.; Tibery, D.V.; Carneiro, L.D.A.; Schwartz, E.F. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front. Pharmacol. 2020, 11, 1276. [Google Scholar] [CrossRef]
- Mangano, G.D.; Fontana, A.; Antona, V.; Salpietro, V.; Mangano, G.R.; Giuffrè, M.; Nardello, R. Commonalities and distinctions between two neurodevelopmental disorder subtypes associated with SCN2A and SCN8A variants and literature review. Mol. Genet. Genomic Med. 2022, 10, e1911. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Yang, Y.; Duan, J.; Niu, X.; Chen, Y.; Wang, D.; Zhang, J.; Chen, J.; Yang, X.; Li, J.; et al. SCN2A-Related Epilepsy: The Phenotypic Spectrum, Treatment and Prognosis. Front. Mol. Neurosci. 2022, 15, 809951. [Google Scholar] [CrossRef] [PubMed]
- Hammer, M.F.; Xia, M.; Schreiber, J.M. SCN8A-Related Epilepsy and/or Neurodevelopmental Disorders. In GeneReviews®; Adam, M.P., Bick, S., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Kahlig, K.M.; Scott, L.; Hatch, R.J.; Griffin, A.; Botella, G.M.; Hughes, Z.A.; Wittmann, M. The novel persistent sodium current inhibitor PRAX-562 has potent anticonvulsant activity with improved protective index relative to standard of care sodium channel blockers. Epilepsia 2022, 63, 697–708. [Google Scholar] [CrossRef]
- Mirsadeghi, S.; Shahbazi, E.; Hemmesi, K.; Nemati, S.; Baharvand, H.; Mirnajafi-Zadeh, J.; Kiani, S. Development of membrane ion channels during neural differentiation from human embryonic stem cells. Biochem. Biophys. Res. Commun. 2017, 491, 166–172. [Google Scholar] [CrossRef]
- Pérez-García, M.T.; Cidad, P.; López-López, J.R. The secret life of ion channels: Kv1.3 potassium channels and proliferation. Am. J. Physiol. Cell Physiol. 2018, 314, C27–C42. [Google Scholar] [CrossRef]
- Kearney, J.A. KCNA2-Related Epileptic Encephalopathy. Pediatr. Neurol. Briefs 2015, 29, 27. [Google Scholar] [CrossRef]
- Corbett, M.A.; Bellows, S.T.; Li, M.; Carroll, R.; Micallef, S.; Carvill, G.L.; Myers, C.T.; Howell, K.B.; Maljevic, S.; Lerche, H.; et al. Dominant KCNA2 mutation causes episodic ataxia and pharmacoresponsive epilepsy. Neurology 2016, 87, 1975–1984. [Google Scholar] [CrossRef]
- Syrbe, S.; Hedrich, U.B.; Riesch, E.; Djémié, T.; Müller, S.; Møller, R.S.; Maher, B.; Hernandez-Hernandez, L.; Synofzik, M.; Caglayan, H.S.; et al. De novo loss- or gain-of-function mutations in KCNA2 cause epileptic encephalopathy. Nat. Genet. 2015, 47, 393–399. [Google Scholar] [CrossRef]
- De Kovel, C.G.F.; Syrbe, S.; Brilstra, E.H.; Verbeek, N.; Kerr, B.; Dubbs, H.; Bayat, A.; Desai, S.; Naidu, S.; Srivastava, S.; et al. Neurodevelopmental Disorders Caused by De Novo Variants in KCNB1 Genotypes and Phenotypes. JAMA Neurol. 2017, 74, 1228. [Google Scholar] [CrossRef] [PubMed]
- Bar, C.; Breuillard, D.; Kuchenbuch, M.; Jennesson, M.; Le Guyader, G.; Isnard, H.; Rolland, A.; Doummar, D.; Fluss, J.; Afenjar, A.; et al. Adaptive behavior and psychiatric comorbidities in KCNB1 encephalopathy. Epilepsy Behav. 2022, 126, 108471. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wei, L.; Zhou, X.; Lu, Z.; Francis, K.; Hu, X.; Liu, Y.; Xiong, W.; Zhang, X.; Banik, N.L.; et al. Formation of Kv2.1-FAK complex as a mechanism of FAK activation, cell polarization and enhanced motility. J. Cell. Physiol. 2008, 217, 544–557. [Google Scholar] [CrossRef] [PubMed]
- Bortolami, A.; Yu, W.; Forzisi, E.; Ercan, K.; Kadakia, R.; Murugan, M.; Fedele, D.; Estevez, I.; Boison, D.; Rasin, M.-R.; et al. Integrin-KCNB1 potassium channel complexes regulate neocortical neuronal development and are implicated in epilepsy. Cell Death Differ. 2023, 30, 687–701. [Google Scholar] [CrossRef]
- Bortolami, A.; Kathera-Ibarra, E.F.; Balatsky, A.; Dubey, M.; Amin, R.; Venkateswaran, S.; Dutto, S.; Seth, I.; Ashor, A.; Nwandiko, A.; et al. Abnormal cytoskeletal remodeling but normal neuronal excitability in a mouse model of the recurrent developmental and epileptic encephalopathy-susceptibility KCNB1-p.R312H variant. Commun. Biol. 2024, 7, 1713. [Google Scholar] [CrossRef]
- Telezhkin, V.; Straccia, M.; Yarova, P.; Pardo, M.; Yung, S.; Vinh, N.-N.; Hancock, J.M.; Barriga, G.G.-D.; Brown, D.A.; Rosser, A.E.; et al. Kv7 channels are upregulated during striatal neuron development and promote maturation of human iPSC-derived neurons. Pflüg Arch. Eur. J. Physiol. 2018, 470, 1359–1376. [Google Scholar] [CrossRef]
- Clatot, J.; Ginn, N.; Costain, G.; Goldberg, E.M. A KCNC1-related neurological disorder due to gain of Kv3.1 function. Ann. Clin. Transl. Neurol. 2023, 10, 111–117. [Google Scholar] [CrossRef]
- Yasuda, T.; Cuny, H.; Adams, D.J. Kv 3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation. J. Physiol. 2013, 591, 2579–2591. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, L.; Liao, P.; Jiang, R. Contribution of Neuronal and Glial Two-Pore-Domain Potassium Channels in Health and Neurological Disorders. Neural Plast. 2021, 2021, 8643129. [Google Scholar] [CrossRef]
- Aller, M.I.; Wisden, W. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice. Neuroscience 2008, 151, 1154–1172. [Google Scholar] [CrossRef]
- Bando, Y.; Hirano, T.; Tagawa, Y. Dysfunction of KCNK Potassium Channels Impairs Neuronal Migration in the Developing Mouse Cerebral Cortex. Cereb. Cortex 2014, 24, 1017–1029. [Google Scholar] [CrossRef]
- Cousin, M.A.; Veale, E.L.; Dsouza, N.R.; Tripathi, S.; Holden, R.G.; Arelin, M.; Beek, G.; Bekheirnia, M.R.; Beygo, J.; Bhambhani, V.; et al. Gain and loss of TASK3 channel function and its regulation by novel variation cause KCNK9 imprinting syndrome. Genome Med. 2022, 14, 62. [Google Scholar] [CrossRef]
- Lauritzen, I.; Chemin, J.; Honoré, E.; Jodar, M.; Guy, N.; Lazdunski, M.; Patel, A.J. Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep. 2005, 6, 642–648. [Google Scholar] [CrossRef]
- Le Guen, Y.; Philippe, C.; Riviere, D.; Lemaitre, H.; Grigis, A.; Fischer, C.; Dehaene-Lambertz, G.; Mangin, J.-F.; Frouin, V. eQTL of KCNK2 regionally influences the brain sulcal widening: Evidence from 15,597 UK Biobank participants with neuroimaging data. Brain Struct. Funct. 2019, 224, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Bittner, S.; Ruck, T.; Schuhmann, M.K.; Herrmann, A.M.; Maati, H.M.O.; Bobak, N.; Göbel, K.; Langhauser, F.; Stegner, D.; Ehling, P.; et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat. Med. 2013, 19, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Bittner, S.; Ruck, T.; Fernández-Orth, J.; Meuth, S.G. TREK-King the Blood–Brain-Barrier. J. Neuroimmune Pharmacol. 2014, 9, 293–301. [Google Scholar] [CrossRef]
- Greene, D.L.; Hoshi, N. Modulation of Kv7 channels and excitability in the brain. Cell. Mol. Life Sci. 2017, 74, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Maljevic, S.; Lerche, H. Potassium channel genes and benign familial neonatal epilepsy. Prog. Brain Res. 2014, 213, 17–53. [Google Scholar]
- Turner, T.J.; Zourray, C.; Schorge, S.; Lignani, G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J. Neurochem. 2021, 157, 229–262. [Google Scholar] [CrossRef]
- Pisano, T.; Numis, A.L.; Heavin, S.B.; Weckhuysen, S.; Angriman, M.; Suls, A.; Podesta, B.; Thibert, R.L.; Shapiro, K.A.; Guerrini, R.; et al. Early and effective treatment of KCNQ 2 encephalopathy. Epilepsia 2015, 56, 685–691. [Google Scholar] [CrossRef]
- Shellhaas, R.A.; Wusthoff, C.J.; Tsuchida, T.N.; Glass, H.C.; Chu, C.J.; Massey, S.L.; Soul, J.S.; Wiwattanadittakun, N.; Abend, N.S.; Cilio, M.R.; et al. Profile of neonatal epilepsies: Characteristics of a prospective US cohort. Neurology 2017, 89, 893–899. [Google Scholar] [CrossRef]
- Miceli, F.; Soldovieri, M.V.; Ambrosino, P.; Barrese, V.; Migliore, M.; Cilio, M.R.; Taglialatela, M. Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of Kv 7.2 potassium channel subunits. Proc. Natl. Acad. Sci. USA 2013, 110, 4386–4391. [Google Scholar] [CrossRef]
- Milh, M.; Boutry-Kryza, N.; Sutera-Sardo, J.; Mignot, C.; Auvin, S.; Lacoste, C.; Villeneuve, N.; Roubertie, A.; Heron, B.; Carneiro, M.; et al. Similar early characteristics but variable neurological outcome of patients with a de novo mutation of KCNQ2. Orphanet J. Rare Dis. 2013, 8, 80. [Google Scholar] [CrossRef]
- Millichap, J.J.; Park, K.L.; Tsuchida, T.; Ben-Zeev, B.; Carmant, L.; Flamini, R.; Joshi, N.; Levisohn, P.M.; Marsh, E.; Nangia, S.; et al. KCNQ2 encephalopathy: Features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol. Genet. 2016, 2, e96. [Google Scholar] [CrossRef] [PubMed]
- Millichap, J.J.; Miceli, F.; De Maria, M.; Keator, C.; Joshi, N.; Tran, B.; Soldovieri, M.V.; Ambrosino, P.; Shashi, V.; Mikati, M.A.; et al. Infantile spasms and encephalopathy without preceding neonatal seizures caused by KCNQ2 R198Q, a gain-of-function variant. Epilepsia 2017, 58, e10–e15. [Google Scholar] [CrossRef] [PubMed]
- El Kosseifi, C.; Cornet, M.-C.; Cilio, M.R. Neonatal Developmental and Epileptic Encephalopathies. Semin. Pediatr. Neurol. 2019, 32, 100770. [Google Scholar] [CrossRef]
- Jiang, Y.-H.; Yuen, R.K.; Jin, X.; Wang, M.; Chen, N.; Wu, X.; Ju, J.; Mei, J.; Shi, Y.; He, M.; et al. Detection of Clinically Relevant Genetic Variants in Autism Spectrum Disorder by Whole-Genome Sequencing. Am. J. Hum. Genet. 2013, 93, 249–263. [Google Scholar] [CrossRef]
- Long, S.; Zhou, H.; Li, S.; Wang, T.; Ma, Y.; Li, C.; Zhou, Y.; Zhou, S.; Wu, B.; Wang, Y. The Clinical and Genetic Features of Co-occurring Epilepsy and Autism Spectrum Disorder in Chinese Children. Front. Neurol. 2019, 10, 505. [Google Scholar] [CrossRef]
- Bruno, L.P.; Doddato, G.; Valentino, F.; Baldassarri, M.; Tita, R.; Fallerini, C.; Bruttini, M.; Rizzo, C.L.; Mencarelli, M.A.; Mari, F.; et al. New Candidates for Autism/Intellectual Disability Identified by Whole-Exome Sequencing. Int. J. Mol. Sci. 2021, 22, 13439. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Iannotti, C.A.; Dargis, P.; Christian, E.P.; Aiyar, J. Differential Expression of KCNQ2 Splice Variants: Implications to M Current Function during Neuronal Development. J. Neurosci. 2001, 21, 1096–1103. [Google Scholar] [CrossRef]
- Zhou, N.; Huang, S.; Li, L.; Huang, D.; Yan, Y.; Du, X.; Zhang, H. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells. Neuroscience 2016, 333, 356–367. [Google Scholar] [CrossRef]
- Cole, B.A.; Clapcote, S.J.; Muench, S.P.; Lippiat, J.D. Targeting KNa1.1 channels in KCNT1-associated epilepsy. Trends Pharmacol. Sci. 2021, 42, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Cioclu, M.C.; Mosca, I.; Ambrosino, P.; Puzo, D.; Bayat, A.; Wortmann, S.B.; Koch, J.; Strehlow, V.; Shirai, K.; Matsumoto, N.; et al. KCNT2—Related Disorders: Phenotypes, Functional, and Pharmacological Properties. Ann. Neurol. 2023, 94, 332–349. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.E.; Kaczmarek, L.K. Emerging role of the KCNT1 Slack channel in intellectual disability. Front. Cell. Neurosci. 2014, 8, 209. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, S.; Knaus, H.; Schwarzer, C. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain. J. Comp. Neurol. 2016, 524, 2093–2116. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Gan, L.; Kaczmarek, L.K. Localization of the Slack potassium channel in the rat central nervous system. J. Comp. Neurol. 2002, 454, 241–254. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Von Hehn, C.A.A.; Mei, X.; Kaczmarek, L.K. Localization of the Na+—activated K+ channel Slick in the rat central nervous system. J. Comp. Neurol. 2005, 484, 80–92. [Google Scholar] [CrossRef]
- Kaczmarek, L.K. Slack, Slick and Sodium-Activated Potassium Channels. ISRN Neurosci. 2013, 2013, 354262. [Google Scholar] [CrossRef]
- Oeschger, F.M.; Wang, W.-Z.; Lee, S.; García-Moreno, F.; Goffinet, A.M.; Arbonés, M.L.; Rakic, S.; Molnár, Z. Gene Expression Analysis of the Embryonic Subplate. Cereb. Cortex 2012, 22, 1343–1359. [Google Scholar] [CrossRef]
- Barcia, G.; Fleming, M.R.; Deligniere, A.; Gazula, V.-R.; Brown, M.R.; Langouet, M.; Chen, H.; Kronengold, J.; Abhyankar, A.; Cilio, R.; et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 2012, 44, 1255–1259. [Google Scholar] [CrossRef]
- Heron, S.E.; Smith, K.R.; Bahlo, M.; Nobili, L.; Kahana, E.; Licchetta, L.; Oliver, K.L.; Mazarib, A.; Afawi, Z.; Korczyn, A.; et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 2012, 44, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Cornet, M.-C.; Sands, T.T.; Cilio, M.R. Neonatal epilepsies: Clinical management. Semin. Fetal Neonatal Med. 2018, 23, 204–212. [Google Scholar] [CrossRef]
- Shore, A.N.; Li, K.; Safari, M.; Qunies, A.M.; Spitznagel, B.D.; Weaver, C.D.; Emmitte, K.; Frankel, W.; Weston, M.C. Heterozygous expression of a Kcnt1 gain-of-function variant has differential effects on somatostatin- and parvalbumin-expressing cortical GABAergic neurons. eLife 2024, 13, RP92915. [Google Scholar] [CrossRef]
- Brown, M.R.; Kronengold, J.; Gazula, V.-R.; Chen, Y.; Strumbos, J.G.; Sigworth, F.J.; Navaratnam, D.; Kaczmarek, L.K. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat. Neurosci. 2010, 13, 819–821. [Google Scholar] [CrossRef]
- Zhang, Y.; Brown, M.R.; Hyland, C.; Chen, Y.; Kronengold, J.; Fleming, M.R.; Kohn, A.B.; Moroz, L.L.; Kaczmarek, L.K. Regulation of Neuronal Excitability by Interaction of Fragile X Mental Retardation Protein with Slack Potassium Channels. J. Neurosci. 2012, 32, 15318–15327. [Google Scholar] [CrossRef]
- Richter, J.D.; Zhao, X. The molecular biology of FMRP: New insights into fragile X syndrome. Nat. Rev. Neurosci. 2021, 22, 209–222. [Google Scholar] [CrossRef]
- Garber, K.B.; Visootsak, J.; Warren, S.T. Fragile X syndrome. Eur. J. Hum. Genet. 2008, 16, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Momin, A.; Cadiou, H.; Mason, A.; McNaughton, P.A. Role of the hyperpolarization-activated current Ih in somatosensory neurons. J. Physiol. 2008, 586, 5911–5929. [Google Scholar] [CrossRef] [PubMed]
- Bleakley, L.E.; Reid, C.A. HCN1 epilepsy: From genetics and mechanisms to precision therapies. J. Neurochem. 2024, 168, 3891–3910. [Google Scholar] [CrossRef]
- Jackson, H.A.; Marshall, C.R.; Accili, E.A. Evolution and structural diversification of hyperpolarization-activated cyclic nucleotide-gated channel genes. Physiol. Genom. 2007, 29, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Stöllberger, C.; Finsterer, J. Cardiorespiratory findings in sudden unexplained/unexpected death in epilepsy (SUDEP). Epilepsy Res. 2004, 59, 51–60. [Google Scholar] [CrossRef]
- Tu, E.; Waterhouse, L.; Duflou, J.; Bagnall, R.D.; Semsarian, C. Genetic analysis of hyperpolarization-activated cyclic nucleotide-gated cation channels in sudden unexpected death in epilepsy cases. Brain Pathol. 2011, 21, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Bender, R.A.; Baram, T.Z. Hyperpolarization activated cyclic-nucleotide gated (HCN) channels in developing neuronal networks. Prog. Neurobiol. 2008, 86, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Schlusche, A.K.; Vay, S.U.; Kleinenkuhnen, N.; Sandke, S.; Campos-Martín, R.; Florio, M.; Huttner, W.; Tresch, A.; Roeper, J.; Rueger, M.A.; et al. Developmental HCN channelopathy results in decreased neural progenitor proliferation and microcephaly in mice. Proc. Natl. Acad. Sci. USA 2021, 118, e2009393118. [Google Scholar] [CrossRef]
- Omelyanenko, A.; Sekyrova, P.; Andäng, M. ZD7288, a blocker of the HCN channel family, increases doubling time of mouse embryonic stem cells and modulates differentiation outcomes in a context-dependent manner. SpringerPlus 2016, 5, 41. [Google Scholar] [CrossRef]
- Lau, Y.-T.; Wong, C.-K.; Luo, J.; Leung, L.-H.; Tsang, P.-F.; Bian, Z.-X.; Tsang, S.-Y. Effects of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers on the proliferation and cell cycle progression of embryonic stem cells. Pflüg Arch. Eur. J. Physiol. 2011, 461, 191–202. [Google Scholar] [CrossRef]
- Zhong, L.-Y.; Fan, X.-R.; Shi, Z.-J.; Fan, Z.-C.; Luo, J.; Lin, N.; Liu, Y.-C.; Wu, L.; Zeng, X.-R.; Cao, J.-M.; et al. Hyperpolarization-Activated Cyclic Nucleotide-Gated Ion (HCN) Channels Regulate PC12 Cell Differentiation Toward Sympathetic Neuron. Front. Cell. Neurosci. 2019, 13, 415. [Google Scholar] [CrossRef]
- Pai, V.P.; Levin, M. HCN2 channel-induced rescue of brain, eye, heart and gut teratogenesis caused by nicotine, ethanol and aberrant notch signalling. Wound Repair. Regen. 2022, 30, 681–706. [Google Scholar] [CrossRef]
- Pai, V.P.; Pietak, A.; Willocq, V.; Ye, B.; Shi, N.-Q.; Levin, M. HCN2 Rescues brain defects by enforcing endogenous voltage pre-patterns. Nat. Commun. 2018, 9, 998. [Google Scholar] [CrossRef]
- Pai, V.P.; Cervera, J.; Mafe, S.; Willocq, V.; Lederer, E.K.; Levin, M. HCN2 Channel-Induced Rescue of Brain Teratogenesis via Local and Long-Range Bioelectric Repair. Front. Cell Neurosci. 2020, 14, 136. [Google Scholar] [CrossRef]
- Nordström, T.; Andersson, L.C.; Åkerman, K.E.O. Role of hyperpolarization-activated cyclic nucleotide-gated channel HCN2 in embryonic neural stem cell proliferation and differentiation. Neurochem. Int. 2022, 159, 105387. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Liu, F.; He, H.; He, F.; Mao, L.; Wang, X.; Yin, F.; Peng, J. Novel HCN1 Mutations Associated with Epilepsy and Impacts on Neuronal Excitability. Front. Mol. Neurosci. 2022, 15, 870182. [Google Scholar] [CrossRef]
- Marini, C.; Porro, A.; Rastetter, A.; Dalle, C.; Rivolta, I.; Bauer, D.; Oegema, R.; Nava, C.; Parrini, E.; Mei, D.; et al. HCN1 mutation spectrum: From neonatal epileptic encephalopathy to benign generalized epilepsy and beyond. Brain 2018, 141, 3160–3178. [Google Scholar] [CrossRef]
- Zhao, K.; Li, Y.; Yang, X.; Zhou, L. The Impact of Altered HCN1 Expression on Brain Function and Its Relationship with Epileptogenesis. Curr. Neuropharmacol. 2023, 21, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Swire, M.; Assinck, P.; McNaughton, P.A.; Lyons, D.A.; ffrench-Constant, C.; Livesey, M.R. Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length. J. Neurosci. 2021, 41, 7954–7964. [Google Scholar] [CrossRef]
- Houdayer, C.; Phillips, A.M.; Chabbert, M.; Bourreau, J.; Maroofian, R.; Houlden, H.; Richards, K.; Saadi, N.W.; Dad’Ová, E.; Van Bogaert, P.; et al. HCN2-Associated Neurodevelopmental Disorders: Data from Patients and Xenopus Cell Models. Ann. Neurol. 2025, 98, 573–589. [Google Scholar] [CrossRef]
- Zhao, P.; Xiong, H.; Kuang, G.; Sun, C.; Zhang, X.; Huang, Y.; Luo, S.; Zhang, L.; Jiang, J.; He, X. Analysis of epilepsy-associated variants in HCN3-Functional implications and clinical observations. Epilepsia Open 2024, 9, 2294–2305. [Google Scholar] [CrossRef] [PubMed]
- Becker, F.; Reid, C.A.; Hallmann, K.; Tae, H.; Phillips, A.M.; Teodorescu, G.; Weber, Y.G.; Kleefuss-Lie, A.; Elger, C.; Perez-Reyes, E.; et al. Functional variants in HCN 4 and CACNA 1H may contribute to genetic generalized epilepsy. Epilepsia Open 2017, 2, 334–342. [Google Scholar] [CrossRef]
- Campostrini, G.; DiFrancesco, J.C.; Castellotti, B.; Milanesi, R.; Gnecchi-Ruscone, T.; Bonzanni, M.; Bucchi, A.; Baruscotti, M.; Ferrarese, C.; Franceschetti, S.; et al. A Loss-of-Function HCN4 Mutation Associated with Familial Benign Myoclonic Epilepsy in Infancy Causes Increased Neuronal Excitability. Front. Mol. Neurosci. 2018, 11, 269. [Google Scholar] [CrossRef]
- Pai, V.P.; Willocq, V.; Pitcairn, E.J.; Lemire, J.M.; Paré, J.-F.; Shi, N.-Q.; McLaughlin, K.A.; Levin, M. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a Nodal- and Lefty asymmetric gene expression-independent manner. Biol. Open 2017, 6, 1445–1457. [Google Scholar] [CrossRef]
- Hsieh, L.S.; Wen, J.H.; Nguyen, L.H.; Zhang, L.; Getz, S.A.; Torres-Reveron, J.; Wang, Y.; Spencer, D.D.; Bordey, A. Ectopic HCN4 expression drives mTOR-dependent epilepsy in mice. Sci. Transl. Med. 2020, 12, eabc1492. [Google Scholar] [CrossRef] [PubMed]
- Surges, R.; Brewster, A.L.; Bender, R.A.; Beck, H.; Feuerstein, T.J.; Baram, T.Z. Regulated expression of HCN channels and cAMP levels shape the properties of the h current in developing rat hippocampus. Eur. J. Neurosci. 2006, 24, 94–104. [Google Scholar] [CrossRef]
- Barkovich, A.J.; Kuzniecky, R.I.; Jackson, G.D.; Guerrini, R.; Dobyns, W.B. A developmental and genetic classification for malformations of cortical development. Neurology 2005, 65, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Barkovich, A.J.; Guerrini, R.; Kuzniecky, R.I.; Jackson, G.D.; Dobyns, W.B. A developmental and genetic classification for malformations of cortical development: Update 2012. Brain J. Neurol. 2012, 135, 1348–1369. [Google Scholar] [CrossRef] [PubMed]
- Desikan, R.S.; Barkovich, A.J. Malformations of cortical development. Ann. Neurol. 2016, 80, 797–810. [Google Scholar] [CrossRef]
- Kuzniecky, R. Epilepsy and malformations of cortical development: New developments. Curr. Opin. Neurol. 2015, 28, 151–157. [Google Scholar] [CrossRef]
- Severino, M.; Geraldo, A.F.; Utz, N.; Tortora, D.; Pogledic, I.; Klonowski, W.; Triulzi, F.; Arrigoni, F.; Mankad, K.; Leventer, R.J.; et al. Definitions and classification of malformations of cortical development: Practical guidelines. Brain J. Neurol. 2020, 143, 2874–2894. [Google Scholar] [CrossRef]
- Russ, J.B.; Agarwal, S.; Venkatesan, C.; Scelsa, B.; Vollmer, B.; Tarui, T.; Pardo, A.C.; E Lemmon, M.; Mulkey, S.B.; Hart, A.R.; et al. Fetal malformations of cortical development: Review and clinical guidance. Brain J. Neurol. 2025, 148, 1888–1903. [Google Scholar] [CrossRef]
- Brock, S.; Cools, F.; Jansen, A.C. Neuropathology of genetically defined malformations of cortical development—A systematic literature review. Neuropathol. Appl. Neurobiol. 2021, 47, 585–602. [Google Scholar] [CrossRef]
- Jamuar, S.S.; Walsh, C.A. Genomic Variants and Variations in Malformations of Cortical Development. Pediatr. Clin. N. Am. 2015, 62, 571–585. [Google Scholar] [CrossRef]
- Chopra, M.; McEntagart, M.; Clayton-Smith, J.; Platzer, K.; Shukla, A.; Girisha, K.M.; Kaur, A.; Kaur, P.; Pfundt, R.; Veenstra-Knol, H.; et al. Heterozygous ANKRD17 loss-of-function variants cause a syndrome with intellectual disability, speech delay, and dysmorphism. Am. J. Hum. Genet. 2021, 108, 1138–1150. [Google Scholar] [CrossRef]
- Sveden, A.; Gordon, C.T.; Amiel, J.; Chopra, M. ANKRD17-Related Neurodevelopmental Syndrome. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Li, J.; Mahajan, A.; Tsai, M.-D. Ankyrin repeat: A unique motif mediating protein-protein interactions. Biochemistry 2006, 45, 15168–15178. [Google Scholar] [CrossRef] [PubMed]
- Sidor, C.M.; Brain, R.; Thompson, B.J. Mask proteins are cofactors of Yorkie/YAP in the Hippo pathway. Curr. Biol. CB 2013, 23, 223–228. [Google Scholar] [CrossRef]
- Sansores-Garcia, L.; Atkins, M.; Moya, I.M.; Shahmoradgoli, M.; Tao, C.; Mills, G.B.; Halder, G. Mask is required for the activity of the Hippo pathway effector Yki/YAP. Curr. Biol. CB 2013, 23, 229–235. [Google Scholar] [CrossRef]
- Sidor, C.; Borreguero-Munoz, N.; Fletcher, G.C.; Elbediwy, A.; Guillermin, O.; Thompson, B.J. Mask family proteins ANKHD1 and ANKRD17 regulate YAP nuclear import and stability. eLife 2019, 8, e48601. [Google Scholar] [CrossRef]
- Huang, J.; Wu, S.; Barrera, J.; Matthews, K.; Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 2005, 122, 421–434. [Google Scholar] [CrossRef]
- Keng, V.W.; Su, S.; Chui, E.S.T.; To, J.C.; Zhang, Y.-J.; Li, X.-X. ANKRD17 induces pro-survival signaling pathways that enhance cellular invasion and migration during hepatocellular carcinoma tumorigenesis. iScience 2025, 28, 112463. [Google Scholar] [CrossRef]
- Deng, M.; Li, F.; Ballif, B.A.; Li, S.; Chen, X.; Guo, L.; Ye, X. Identification and functional analysis of a novel cyclin e/cdk2 substrate ankrd17. J. Biol. Chem. 2009, 284, 7875–7888. [Google Scholar] [CrossRef] [PubMed]
- Menning, M.; Kufer, T.A. A role for the Ankyrin repeat containing protein Ankrd17 in Nod1- and Nod2-mediated inflammatory responses. FEBS Lett. 2013, 587, 2137–2142. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tong, X.; Li, G.; Li, J.; Deng, M.; Ye, X. Ankrd17 positively regulates RIG-I-like receptor (RLR)-mediated immune signaling. Eur. J. Immunol. 2012, 42, 1304–1315. [Google Scholar] [CrossRef]
- Hamada, N.; Ogaya, S.; Nakashima, M.; Nishijo, T.; Sugawara, Y.; Iwamoto, I.; Ito, H.; Maki, Y.; Shirai, K.; Baba, S.; et al. De novo PHACTR1 mutations in West syndrome and their pathophysiological effects. Brain J. Neurol. 2018, 141, 3098–3114. [Google Scholar] [CrossRef] [PubMed]
- Kiando, S.R.; Tucker, N.R.; Castro-Vega, L.-J.; Katz, A.; D’Escamard, V.; Tréard, C.; Fraher, D.; Albuisson, J.; Kadian-Dodov, D.; Ye, Z.; et al. PHACTR1 Is a Genetic Susceptibility Locus for Fibromuscular Dysplasia Supporting Its Complex Genetic Pattern of Inheritance. PLoS Genet. 2016, 12, e1006367. [Google Scholar] [CrossRef]
- Allen, P.B.; Greenfield, A.T.; Svenningsson, P.; Haspeslagh, D.C.; Greengard, P. Phactrs 1–4: A family of protein phosphatase 1 and actin regulatory proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 7187–7192. [Google Scholar] [CrossRef]
- Wiezlak, M.; Diring, J.; Abella, J.; Mouilleron, S.; Way, M.; McDonald, N.Q.; Treisman, R. G-actin regulates the shuttling and PP1 binding of the RPEL protein Phactr1 to control actomyosin assembly. J. Cell Sci. 2012, 125, 5860–5872. [Google Scholar] [CrossRef]
- Jarray, R.; Allain, B.; Borriello, L.; Biard, D.; Loukaci, A.; Larghero, J.; Hadj-Slimane, R.; Garbay, C.; Lepelletier, Y.; Raynaud, F. Depletion of the novel protein PHACTR-1 from human endothelial cells abolishes tube formation and induces cell death receptor apoptosis. Biochimie 2011, 93, 1668–1675. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Mizuno, M.; Noguchi, K.; Morishita, R.; Iwamoto, I.; Hara, A.; Nagata, K.-I. Expression analyses of Phactr1 (phosphatase and actin regulator 1) during mouse brain development. Neurosci. Res. 2018, 128, 50–57. [Google Scholar] [CrossRef]
- Zang, L.; Song, Y.; Tian, Y.; Hu, N. PHACTR1 promotes the mobility of papillary thyroid carcinoma cells by inducing F-actin formation. Heliyon 2023, 9, e20461. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Zhang, L.; Xu, Z.; Chen, H.; Ju, S.; Ding, J.; Guo, Y.; Tian, H. Phosphatase Actin Regulator-1 (PHACTR-1) Knockdown Suppresses Cell Proliferation and Migration and Promotes Cell Apoptosis in the bEnd.3 Mouse Brain Capillary Endothelial Cell Line. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 1291–1300. [Google Scholar] [CrossRef]
- Fedoryshchak, R.O.; Přechová, M.; Butler, A.M.; Lee, R.; O’REilly, N.; Flynn, H.R.; Snijders, A.P.; Eder, N.; Ultanir, S.; Mouilleron, S.; et al. Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme. eLife 2020, 9, e61509. [Google Scholar] [CrossRef]
- Fils-Aimé, N.; Dai, M.; Guo, J.; El-Mousawi, M.; Kahramangil, B.; Neel, J.-C.; Lebrun, J.-J. MicroRNA-584 and the protein phosphatase and actin regulator 1 (PHACTR1), a new signaling route through which transforming growth factor-β Mediates the migration and actin dynamics of breast cancer cells. J. Biol. Chem. 2013, 288, 11807–11823. [Google Scholar] [CrossRef]
- Allain, B.; Jarray, R.; Borriello, L.; Leforban, B.; Dufour, S.; Liu, W.-Q.; Pamonsinlapatham, P.; Bianco, S.; Larghero, J.; Hadj-Slimane, R.; et al. Neuropilin-1 regulates a new VEGF-induced gene, Phactr-1, which controls tubulogenesis and modulates lamellipodial dynamics in human endothelial cells. Cell Signal 2012, 24, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Strauss, K.A.; Puffenberger, E.G.; Huentelman, M.J.; Gottlieb, S.; Dobrin, S.E.; Parod, J.M.; Stephan, D.A.; Morton, D.H. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N. Engl. J. Med. 2006, 354, 1370–1377. [Google Scholar] [CrossRef]
- Peñagarikano, O.; Abrahams, B.S.; Herman, E.I.; Winden, K.D.; Gdalyahu, A.; Dong, H.; Sonnenblick, L.I.; Gruver, R.; Almajano, J.; Bragin, A.; et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011, 147, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Peñagarikano, O.; Lázaro, M.T.; Lu, X.-H.; Gordon, A.; Dong, H.; Lam, H.A.; Peles, E.; Maidment, N.T.; Murphy, N.P.; Yang, X.W.; et al. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci. Transl. Med. 2015, 7, 271ra8. [Google Scholar] [CrossRef]
- Poot, M. Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders. Mol. Syndromol. 2015, 6, 7–22. [Google Scholar] [CrossRef]
- Vogt, D.; A Cho, K.K.; Shelton, S.M.; Paul, A.; Huang, Z.J.; Sohal, V.S.; Rubenstein, J.L.R. Mouse Cntnap2 and Human CNTNAP2 ASD Alleles Cell Autonomously Regulate PV+ Cortical Interneurons. Cereb. Cortex 1991, 2018(28), 3868–3879. [Google Scholar] [CrossRef]
- Sampath, S.; Bhat, S.; Gupta, S.; O’connor, A.; West, A.B.; Arking, D.E.; Chakravarti, A. Defining the contribution of CNTNAP2 to autism susceptibility. PLoS ONE 2013, 8, e77906. [Google Scholar] [CrossRef]
- Mittal, R.; Kumar, A.; Ladda, R.; Mainali, G.; Aliu, E. Pitt Hopkins-Like Syndrome 1 with Novel CNTNAP2 Mutation in Siblings. Child. Neurol. Open 2021, 8, 2329048X211055330. [Google Scholar] [CrossRef] [PubMed]
- Zweier, C.; de Jong, E.K.; Zweier, M.; Orrico, A.; Ousager, L.B.; Collins, A.L.; Bijlsma, E.K.; Oortveld, M.A.; Ekici, A.B.; Reis, A.; et al. CNTNAP2 and NRXN1 Are Mutated in Autosomal-Recessive Pitt-Hopkins-like Mental Retardation and Determine the Level of a Common Synaptic Protein in Drosophila. Am. J. Hum. Genet. 2009, 85, 655–666. [Google Scholar] [CrossRef]
- Horresh, I.; Poliak, S.; Grant, S.; Bredt, D.; Rasband, M.N.; Peles, E. Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 14213–14222. [Google Scholar] [CrossRef]
- Poliak, S.; Salomon, D.; Elhanany, H.; Sabanay, H.; Kiernan, B.; Pevny, L.; Stewart, C.L.; Xu, X.; Chiu, S.-Y.; Shrager, P.; et al. Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J. Cell Biol. 2003, 162, 1149–1160. [Google Scholar] [CrossRef]
- Poot, M. Intragenic CNTNAP2 Deletions: A Bridge Too Far? Mol. Syndromol. 2017, 8, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cai, F.; Lu, R.; Xing, X.; Xu, L.; Wu, K.; Gong, Z.; Zhang, Q.; Zhang, Y.; Xing, M.; et al. CNTNAP2 intracellular domain (CICD) generated by γ-secretase cleavage improves autism-related behaviors. Signal Transduct. Target. Ther. 2023, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xing, M.; Bao, Z.; Xu, L.; Bai, Y.; Chen, W.; Pan, W.; Cai, F.; Wang, Q.; Guo, S.; et al. Contactin-associated protein-like 2 (CNTNAP2) mutations impair the essential α-secretase cleavages, leading to autism-like phenotypes. Signal Transduct. Target. Ther. 2024, 9, 51. [Google Scholar] [CrossRef]
- St George-Hyslop, F.; Haneklaus, M.; Kivisild, T.; Livesey, F.J. Loss of CNTNAP2 Alters Human Cortical Excitatory Neuron Differentiation and Neural Network Development. Biol. Psychiatry 2023, 94, 780–791. [Google Scholar] [CrossRef]
- Jang, W.E.; Park, J.H.; Park, G.; Bang, G.; Na, C.H.; Kim, J.Y.; Kim, K.-Y.; Kim, K.P.; Shin, C.Y.; An, J.-Y.; et al. Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol. Psychiatry 2023, 28, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Martín-De-Saavedra, M.D.; Dos Santos, M.; Culotta, L.; Varea, O.; Spielman, B.P.; Parnell, E.; Forrest, M.P.; Gao, R.; Yoon, S.; McCoig, E.; et al. Shed CNTNAP2 ectodomain is detectable in CSF and regulates Ca2+ homeostasis and network synchrony via PMCA2/ATP2B2. Neuron 2022, 110, 627–643.e9. [Google Scholar] [CrossRef]
- Gao, R.; Zaccard, C.R.; Shapiro, L.P.; Dionisio, L.E.; Martin-De-Saavedra, M.D.; Piguel, N.H.; Pratt, C.P.; Horan, K.E.; Penzes, P. The CNTNAP2-CASK complex modulates GluA1 subcellular distribution in interneurons. Neurosci. Lett. 2019, 701, 92–99. [Google Scholar] [CrossRef]
- Gao, R.; Pratt, C.P.; Yoon, S.; Martin-de-Saavedra, M.D.; Forrest, M.P.; Penzes, P. CNTNAP2 is targeted to endosomes by the polarity protein PAR3. Eur. J. Neurosci. 2020, 51, 1074–1086. [Google Scholar] [CrossRef]
- Knoop, M.; Possovre, M.-L.; Jacquens, A.; Charlet, A.; Baud, O.; Darbon, P. The Role of Oxytocin in Abnormal Brain Development: Effect on Glial Cells and Neuroinflammation. Cells 2022, 11, 3899. [Google Scholar] [CrossRef]
- Cifuentes-Diaz, C.; Canali, G.; Garcia, M.; Druart, M.; Manett, T.; Savariradjane, M.; Guillaume, C.; Le Magueresse, C.; Goutebroze, L. Differential impacts of Cntnap2 heterozygosity and Cntnap2 null homozygosity on axon and myelinated fiber development in mouse. Front. Neurosci. 2023, 17, 1100121. [Google Scholar] [CrossRef]
- Chalkiadaki, K.; Statoulla, E.; Zafeiri, M.; Voudouri, G.; Amvrosiadis, T.; Typou, A.; Theodoridou, N.; Moschovas, D.; Avgeropoulos, A.; Samiotaki, M.; et al. GABA/Glutamate Neuron Differentiation Imbalance and Increased AKT/mTOR Signaling in CNTNAP2-/- Cerebral Organoids. Biol. Psychiatry Glob. Open Sci. 2025, 5, 100413. [Google Scholar] [CrossRef] [PubMed]
- Banks, E.; Francis, V.; Lin, S.-J.; Kharfallah, F.; Fonov, V.; Lévesque, M.; Han, C.; Kulasekaran, G.; Tuznik, M.; Bayati, A.; et al. Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy. Nat. Commun. 2024, 15, 7239. [Google Scholar] [CrossRef] [PubMed]
- Miserey-Lenkei, S.; Waharte, F.; Boulet, A.; Cuif, M.; Tenza, D.; El Marjou, A.; Raposo, G.; Salamero, J.; Héliot, L.; Goud, B.; et al. Rab6-interacting protein 1 links Rab6 and Rab11 function. Traffic Cph. Den. 2007, 8, 1385–1403. [Google Scholar] [CrossRef]
- Han, C.; Alkhater, R.; Froukh, T.; Minassian, A.G.; Galati, M.; Liu, R.H.; Fotouhi, M.; Sommerfeld, J.; Alfrook, A.J.; Marshall, C.; et al. Epileptic Encephalopathy Caused by Mutations in the Guanine Nucleotide Exchange Factor DENND5A. Am. J. Hum. Genet. 2016, 99, 1359–1367. [Google Scholar] [CrossRef]
- Miserey-Lenkei, S.; Couëdel-Courteille, A.; Del Nery, E.; Bardin, S.; Piel, M.; Racine, V.; Sibarita, J.; Perez, F.; Bornens, M.; Goud, B. A role for the Rab6A’ GTPase in the inactivation of the Mad2-spindle checkpoint. EMBO J. 2006, 25, 278–289. [Google Scholar] [CrossRef]
- Kim, S.; Lehtinen, M.K.; Sessa, A.; Zappaterra, M.W.; Cho, S.-H.; Gonzalez, D.; Boggan, B.; Austin, C.A.; Wijnholds, J.; Gambello, M.J.; et al. The apical complex couples cell fate and cell survival to cerebral cortical development. Neuron 2010, 66, 69–84. [Google Scholar] [CrossRef]
- Chi, W.; Kiskinis, E. Integrative analysis of epilepsy-associated genes reveals expression-phenotype correlations. Sci. Rep. 2024, 14, 3587. [Google Scholar] [CrossRef]
- Coughlin, C.R.; Swanson, M.A.; Spector, E.; Meeks, N.J.L.; Kronquist, K.E.; Aslamy, M.; Wempe, M.F.; van Karnebeek, C.D.M.; Gospe, S.M.; Aziz, V.G.; et al. The genotypic spectrum of ALDH7A1 mutations resulting in pyridoxine dependent epilepsy: A common epileptic encephalopathy. J. Inherit. Metab. Dis. 2019, 42, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Gospe, S.M. Pyridoxine-Dependent Epilepsy—ALDH7A1. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Pena, I.A.; MacKenzie, A.; Van Karnebeek, C.D.M. Current knowledge for pyridoxine-dependent epilepsy: A 2016 update. Expert Rev. Endocrinol. Metab. 2017, 12, 5–20. [Google Scholar] [CrossRef]
- Hassel, B.; Rogne, A.G.; Hope, S. Intellectual Disability Associated with Pyridoxine-Responsive Epilepsies: The Need to Protect Cognitive Development. Front. Psychiatry 2019, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Bok, L.A.; Halbertsma, F.J.; Houterman, S.; A Wevers, R.; Vreeswijk, C.; Jakobs, C.; Struys, E.; van der Hoeven, J.H.; A Sival, D.; A Willemsen, M. Long-term outcome in pyridoxine-dependent epilepsy. Dev. Med. Child. Neurol. 2012, 54, 849–854. [Google Scholar] [CrossRef]
- Tseng, L.A.; Abdenur, J.E.; Andrews, A.; Aziz, V.G.; Bok, L.A.; Boyer, M.; Buhas, D.; Hartmann, H.; Footitt, E.J.; Grønborg, S.; et al. Timing of therapy and neurodevelopmental outcomes in 18 families with pyridoxine-dependent epilepsy. Mol. Genet. Metab. 2022, 135, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, C.R.; Tseng, L.A.; Abdenur, J.E.; Ashmore, C.; Boemer, F.; Bok, L.A.; Boyer, M.; Buhas, D.; Clayton, P.T.; Das, A.; et al. Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to α-aminoadipic semialdehyde dehydrogenase deficiency. J. Inherit. Metab. Dis. 2021, 44, 178–192. [Google Scholar] [CrossRef]
- Yang, J.-S.; Hsu, J.-W.; Park, S.-Y.; Lee, S.Y.; Li, J.; Bai, M.; Alves, C.; Tseng, W.; Michelet, X.; Ho, I.-C.; et al. ALDH7A1 inhibits the intracellular transport pathways during hypoxia and starvation to promote cellular energy homeostasis. Nat. Commun. 2019, 10, 4068. [Google Scholar] [CrossRef]
- Yang, J.-S.; Morris, A.J.; Kamizaki, K.; Chen, J.; Stark, J.; Oldham, W.M.; Nakamura, T.; Mishima, E.; Loscalzo, J.; Minami, Y.; et al. ALDH7A1 protects against ferroptosis by generating membrane NADH and regulating FSP1. Cell 2025, 188, 2569–2585.e20. [Google Scholar] [CrossRef]
- Yan, J.; Wu, J.; Xu, M.; Wang, M.; Guo, W. Disrupted de novo pyrimidine biosynthesis impairs adult hippocampal neurogenesis and cognition in pyridoxine-dependent epilepsy. Sci. Adv. 2024, 10, eadl2764. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-L.; Wong, J.W.Y.; Wong, C.-P.; Chan, M.K.L.; Fong, W.-P. Human antiquitin: Structural and functional studies. Chem. Biol. Interact. 2011, 191, 165–170. [Google Scholar] [CrossRef]
- Jansen, L.A.; Hevner, R.F.; Roden, W.H.; Hahn, S.H.; Jung, S.; Gospe, S.M. Glial localization of antiquitin: Implications for pyridoxine-dependent epilepsy. Ann. Neurol. 2014, 75, 22–32. [Google Scholar] [CrossRef]
- Wu, J.; Qin, D.; Liang, Z.; Liu, Q.; Wang, M.; Guo, Y.; Guo, W. Dysregulation of astrocyte-derived matrix gla protein impairs dendritic spine development in pyridoxine-dependent epilepsy. Mol. Ther. J. Am. Soc. Gene Ther. 2025, 33, 1785–1802. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.; Ejaz, E.; Ariza, J.; Noctor, S.C.; Martínez-Cerdeño, V. RELN-expressing neuron density in layer I of the superior temporal lobe is similar in human brains with autism and in age-matched controls. Neurosci. Lett. 2014, 579, 163–167. [Google Scholar] [CrossRef]
- Chen, N.; Bao, Y.; Xue, Y.; Sun, Y.; Hu, D.; Meng, S.; Lu, L.; Shi, J. Meta-analyses of RELN variants in neuropsychiatric disorders. Behav. Brain Res. 2017, 332, 110–119. [Google Scholar] [CrossRef]
- Ha, S.; Tripathi, P.P.; Mihalas, A.B.; Hevner, R.F.; Beier, D.R. C-Terminal Region Truncation of RELN Disrupts an Interaction with VLDLR, Causing Abnormal Development of the Cerebral Cortex and Hippocampus. J. Neurosci. Off. J. Soc. Neurosci. 2017, 37, 960–971. [Google Scholar] [CrossRef] [PubMed]
- Arioka, Y.; Shishido, E.; Kubo, H.; Kushima, I.; Yoshimi, A.; Kimura, H.; Ishizuka, K.; Aleksic, B.; Maeda, T.; Ishikawa, M.; et al. Single-cell trajectory analysis of human homogenous neurons carrying a rare RELN variant. Transl. Psychiatry 2018, 8, 129. [Google Scholar] [CrossRef]
- Schulze, M.; Violonchi, C.; Swoboda, S.; Welz, T.; Kerkhoff, E.; Hoja, S.; Brüggemann, S.; Simbürger, J.; Reinders, J.; Riemenschneider, M.J. RELN signaling modulates glioblastoma growth and substrate-dependent migration. Brain Pathol. 2018, 28, 695–709. [Google Scholar] [CrossRef]
- Dazzo, E.; Nobile, C. Epilepsy-causing Reelin mutations result in impaired secretion and intracellular degradation of mutant proteins. Hum. Mol. Genet. 2022, 31, 665–673. [Google Scholar] [CrossRef]
- Di Donato, N.; Guerrini, R.; Billington, C.J.; Barkovich, A.J.; Dinkel, P.; Freri, E.; Heide, M.; Gershon, E.S.; Gertler, T.S.; Hopkin, R.J.; et al. Monoallelic and biallelic mutations in RELN underlie a graded series of neurodevelopmental disorders. Brain J. Neurol. 2022, 145, 3274–3287. [Google Scholar] [CrossRef]
- Li, Z.; Wang, F.; He, Z.; Guo, Q.; Zhang, J.; Liu, S. RELN gene-related drug-resistant epilepsy with periventricular nodular heterotopia treated with radiofrequency thermocoagulation: A case report. Front. Neurol. 2024, 15, 1366776. [Google Scholar] [CrossRef]
- Riva, M.; Ferreira, S.; Hayashi, K.; Saillour, Y.; Medvedeva, V.P.; Honda, T.; Hayashi, K.; Altersitz, C.; Albadri, S.; Rosello, M.; et al. De novo monoallelic Reelin missense variants cause dominant neuronal migration disorders via a dominant-negative mechanism. J. Clin. Investig. 2024, 134, e153097. [Google Scholar] [CrossRef] [PubMed]
- Jossin, Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020, 10, 964. [Google Scholar] [CrossRef]
- Nullmeier, S.; Panther, P.; Dobrowolny, H.; Frotscher, M.; Zhao, S.; Schwegler, H.; Wolf, R. Region-specific alteration of GABAergic markers in the brain of heterozygous reeler mice. Eur. J. Neurosci. 2011, 33, 689–698. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Gotthardt, M.; Hiesberger, T.; Shelton, J.; Stockinger, W.; Nimpf, J.; E Hammer, R.; A Richardson, J.; Herz, J. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 1999, 97, 689–701. [Google Scholar] [CrossRef]
- Olson, E.C.; Kim, S.; Walsh, C.A. Impaired neuronal positioning and dendritogenesis in the neocortex after cell-autonomous Dab1 suppression. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 1767–1775. [Google Scholar] [CrossRef]
- Dulabon, L.; Olson, E.C.; Taglienti, M.G.; Eisenhuth, S.; McGrath, B.; A Walsh, C.; A Kreidberg, J.; Anton, E. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 2000, 27, 33–44. [Google Scholar] [CrossRef]
- Cooper, J.A. A mechanism for inside-out lamination in the neocortex. Trends Neurosci. 2008, 31, 113–119. [Google Scholar] [CrossRef]
- Arnaud, L.; Ballif, B.A.; Cooper, J.A. Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol. Cell Biol. 2003, 23, 9293–9302. [Google Scholar] [CrossRef]
- Feng, L.; Allen, N.S.; Simo, S.; Cooper, J.A. Cullin 5 regulates Dab1 protein levels and neuron positioning during cortical development. Genes Dev. 2007, 21, 2717–2730. [Google Scholar] [CrossRef] [PubMed]
- Koie, M.; Okumura, K.; Hisanaga, A.; Kamei, T.; Sasaki, K.; Deng, M.; Baba, A.; Kohno, T.; Hattori, M. Cleavage within Reelin repeat 3 regulates the duration and range of the signaling activity of Reelin protein. J. Biol. Chem. 2014, 289, 12922–12930. [Google Scholar] [CrossRef] [PubMed]
- Kohno, S.; Kohno, T.; Nakano, Y.; Suzuki, K.; Ishii, M.; Tagami, H.; Baba, A.; Hattori, M. Mechanism and significance of specific proteolytic cleavage of Reelin. Biochem. Biophys. Res. Commun. 2009, 380, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Hibi, T.; Hattori, M. The N-terminal fragment of Reelin is generated after endocytosis and released through the pathway regulated by Rab11. FEBS Lett. 2009, 583, 1299–1303. [Google Scholar] [CrossRef]
- Sajukumar, K.; Yadav, P.; Lee, G.H. Dab1 expression level controls Reelin-induced PI3K-Akt activation in early GABAergic neurons. Biochem. Biophys. Res. Commun. 2025, 751, 151444. [Google Scholar] [CrossRef] [PubMed]
- Kwon, I.-S.; Cho, S.-K.; Kim, M.-J.; Tsai, M.-J.; Mitsuda, N.; Suh-Kim, H.; Lee, Y.-D. Expression of Disabled 1 suppresses astroglial differentiation in neural stem cells. Mol. Cell Neurosci. 2009, 40, 50–61. [Google Scholar] [CrossRef]
- Calvo-Jiménez, E.; Stam, K.; Jossi, A.; Jossin, Y. GRASPs link Reelin to the Golgi during neocortical development to control neuronal migration and dendritogenesis. Commun. Biol. 2025, 8, 572. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Renfro, A.; Quattrocchi, C.C.; Sheldon, M.; D’Arcangelo, G. Reelin promotes hippocampal dendrite development through the VLDLR/ApoER2-Dab1 pathway. Neuron 2004, 41, 71–84. [Google Scholar] [CrossRef]
- Rogers, J.T.; Rusiana, I.; Trotter, J.; Zhao, L.; Donaldson, E.; Pak, D.T.; Babus, L.W.; Peters, M.; Banko, J.L.; Chavis, P.; et al. Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn. Mem. 2011, 18, 558–564. [Google Scholar] [CrossRef]
- Samanta, D. PCDH19-Related Epilepsy Syndrome: A Comprehensive Clinical Review. Pediatr. Neurol. 2020, 105, 3–9. [Google Scholar] [CrossRef]
- Pancho, A.; Mitsogiannis, M.D.; Aerts, T.; Vecchia, M.D.; Ebert, L.K.; Geenen, L.; Noterdaeme, L.; Vanlaer, R.; Stulens, A.; Hulpiau, P.; et al. Modifying PCDH19 levels affects cortical interneuron migration. Front. Neurosci. 2022, 16, 887478. [Google Scholar] [CrossRef]
- van Harssel, J.J.T.; Weckhuysen, S.; van Kempen, M.J.A.; Hardies, K.; Verbeek, N.E.; de Kovel, C.G.F.; Gunning, W.B.; van Daalen, E.; de Jonge, M.V.; Jansen, A.C.; et al. Clinical and genetic aspects of PCDH19-related epilepsy syndromes and the possible role of PCDH19 mutations in males with autism spectrum disorders. Neurogenetics 2013, 14, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Gecz, J.; Thomas, P.Q. Disentangling the paradox of the PCDH19 clustering epilepsy, a disorder of cellular mosaics. Curr. Opin. Genet. Dev. 2020, 65, 169–175. [Google Scholar] [CrossRef]
- Depienne, C.; LeGuern, E. PCDH19-related infantile epileptic encephalopathy: An unusual X-linked inheritance disorder. Hum. Mutat. 2012, 33, 627–634. [Google Scholar] [CrossRef]
- Moncayo, J.A.; Vargas, M.N.; Castillo, I.; Granda, P.V.; Duque, A.M.; Argudo, J.M.; Matcheswalla, S.; Dominguez, G.E.L.; Monteros, G.; Andrade, A.F.; et al. Adjuvant Treatment for Protocadherin 19 (PCDH19) Syndrome. Cureus 2022, 14, e27154. [Google Scholar] [CrossRef]
- Compagnucci, C.; Petrini, S.; Higuraschi, N.; Trivisano, M.; Specchio, N.; Hirose, S.; Bertini, E.; Terracciano, A. Characterizing PCDH19 in human induced pluripotent stem cells (iPSCs) and iPSC-derived developing neurons: Emerging role of a protein involved in controlling polarity during neurogenesis. Oncotarget 2015, 6, 26804–26813. [Google Scholar] [CrossRef]
- Leonard, H.; Downs, J.; Benke, T.A.; Swanson, L.; Olson, H.; Demarest, S. CDKL5 deficiency disorder: Clinical features, diagnosis, and management. Lancet Neurol. 2022, 21, 563–576. [Google Scholar] [CrossRef]
- Benke, T.A.; Demarest, S.; Angione, K.; Downs, J.; Leonard, H.; Saldaris, J.; Marsh, E.D.; Olson, H.; Haviland, I. CDKL5 Deficiency Disorder. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Sampedro-Castañeda, M.; Baltussen, L.L.; Lopes, A.T.; Qiu, Y.; Sirvio, L.; Mihaylov, S.R.; Claxton, S.; Richardson, J.C.; Lignani, G.; Ultanir, S.K. Epilepsy-linked kinase CDKL5 phosphorylates voltage-gated calcium channel Cav2.3, altering inactivation kinetics and neuronal excitability. Nat. Commun. 2023, 14, 7830. [Google Scholar] [CrossRef]
- Van Bergen, N.J.; Massey, S.; Quigley, A.; Rollo, B.; Harris, A.R.; Kapsa, R.M.; Christodoulou, J. CDKL5 deficiency disorder: Molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem. Soc. Trans. 2022, 50, 1207–1224. [Google Scholar] [CrossRef]
- Fuchs, C.; Medici, G.; Trazzi, S.; Gennaccaro, L.; Galvani, G.; Berteotti, C.; Ren, E.; Loi, M.; Ciani, E. CDKL5 deficiency predisposes neurons to cell death through the deregulation of SMAD3 signaling. Brain Pathol. 2019, 29, 658–674. [Google Scholar] [CrossRef]
- Hong, W.; Haviland, I.; Pestana-Knight, E.; Weisenberg, J.L.; Demarest, S.; Marsh, E.D.; Olson, H.E. CDKL5 Deficiency Disorder-Related Epilepsy: A Review of Current and Emerging Treatment. CNS Drugs 2022, 36, 591–604. [Google Scholar] [CrossRef]
- Voronin, G.; Narasimhan, J.; Gittens, J.; Sheedy, J.; Lipari, P.; Peters, M.; DeMarco, S.; Cao, L.; Varganov, Y.; Kim, M.J.; et al. Preclinical studies of gene replacement therapy for CDKL5 deficiency disorder. Mol. Ther. J. Am. Soc. Gene Ther. 2024, 32, 3331–3345. [Google Scholar] [CrossRef]
- Zhu, Y.-C.; Xiong, Z.-Q. Molecular and Synaptic Bases of CDKL5 Disorder. Dev. Neurobiol. 2019, 79, 8–19. [Google Scholar] [CrossRef]
- Barbiero, I.; De Rosa, R.; Kilstrup-Nielsen, C. Microtubules: A Key to Understand and Correct Neuronal Defects in CDKL5 Deficiency Disorder? Int. J. Mol. Sci. 2019, 20, 4075. [Google Scholar] [CrossRef]
- Zhu, Z.-A.; Li, Y.-Y.; Xu, J.; Xue, H.; Feng, X.; Zhu, Y.-C.; Xiong, Z.-Q. CDKL5 deficiency in adult glutamatergic neurons alters synaptic activity and causes spontaneous seizures via TrkB signaling. Cell Rep. 2023, 42, 113202. [Google Scholar] [CrossRef]
- Khanam, T.; Muñoz, I.; Weiland, F.; Carroll, T.; Morgan, M.; Borsos, B.N.; Pantazi, V.; Slean, M.; Novak, M.; Toth, R.; et al. CDKL5 kinase controls transcription-coupled responses to DNA damage. EMBO J. 2021, 40, e108271. [Google Scholar] [CrossRef]
- Katayama, S.; Sueyoshi, N.; Inazu, T.; Kameshita, I. Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible Cellular Signalling Targets and Involvement in CDKL5 Deficiency Disorder. Neural Plast. 2020, 2020, 6970190. [Google Scholar] [CrossRef]
- Specchio, N.; Di Micco, V.; Scheper, M.; Aronica, E.; Curatolo, P. Mechanistic strategies for secondary prevention of developmental and epileptic encephalopathy in children with tuberous sclerosis complex. eBioMedicine 2025, 116, 105740. [Google Scholar] [CrossRef]
- Ritter, L.M.; Annear, N.M.P.; Baple, E.L.; Ben-Chaabane, L.Y.; Bodi, I.; Brosson, L.; Cadwgan, J.E.; Coslett, B.; Crosby, A.H.; Davies, D.M.; et al. mTOR pathway diseases: Challenges and opportunities from bench to bedside and the mTOR node. Orphanet J. Rare Dis. 2025, 20, 256. [Google Scholar] [CrossRef]
- Lim, K.-C.; Crino, P.B. Focal malformations of cortical development: New vistas for molecular pathogenesis. Neuroscience 2013, 252, 262–276. [Google Scholar] [CrossRef]
- Crino, P.B.; Nathanson, K.L.; Henske, E.P. The tuberous sclerosis complex. N. Engl. J. Med. 2006, 355, 1345–1356. [Google Scholar] [CrossRef]
- Rosner, M.; Hengstschläger, M. Tuberin Binds p27 and Negatively Regulates Its Interaction with the SCF Component Skp2. J. Biol. Chem. 2004, 279, 48707–48715. [Google Scholar] [CrossRef]
- Lamb, R.F.; Roy, C.; Diefenbach, T.J.; Vinters, H.V.; Johnson, M.W.; Jay, D.G.; Hall, A. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat. Cell Biol. 2000, 2, 281–287. [Google Scholar] [CrossRef]
- Astrinidis, A.; Cash, T.P.; Hunter, D.S.; Walker, C.L.; Chernoff, J.; Henske, E.P. Tuberin, the tuberous sclerosis complex 2 tumor suppressor gene product, regulates Rho activation, cell adhesion and migration. Oncogene 2002, 21, 8470–8476. [Google Scholar] [CrossRef]
- Orlova, K.A.; Crino, P.B. The tuberous sclerosis complex. Ann. N. Y. Acad. Sci. 2010, 1184, 87–105. [Google Scholar] [CrossRef]
- Crino, P.B. Evolving neurobiology of tuberous sclerosis complex. Acta Neuropathol. 2013, 125, 317–332. [Google Scholar] [CrossRef]
- Crino, P.B.; Henske, E.P. New developments in the neurobiology of the tuberous sclerosis complex. Neurology 1999, 53, 1384. [Google Scholar] [CrossRef]
- Parenti, I.; Rabaneda, L.G.; Schoen, H.; Novarino, G. Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci. 2020, 43, 608–621. [Google Scholar] [CrossRef]
- Mukherjee, S.; Wolan, M.J.; Scott, M.K.; Riley, V.A.; Sokolov, A.M.; Feliciano, D.M. A bitopic mTORC inhibitor reverses phenotypes in a tuberous sclerosis complex model. Sci. Rep. 2025, 15, 20367. [Google Scholar] [CrossRef]
- Boff, M.O.; Xavier, F.A.C.; Diz, F.M.; Gonçalves, J.B.; Ferreira, L.M.; Zambeli, J.; Pazzin, D.B.; Previato, T.T.R.; Erwig, H.S.; Gonçalves, J.I.B.; et al. mTORopathies in Epilepsy and Neurodevelopmental Disorders: The Future of Therapeutics and the Role of Gene Editing. Cells 2025, 14, 662. [Google Scholar] [CrossRef]
- Miyata, H.; Chiang, A.C.Y.; Vinters, H.V. Insulin signaling pathways in cortical dysplasia and TSC-tubers: Tissue microarray analysis. Ann. Neurol. 2004, 56, 510–519. [Google Scholar] [CrossRef]
- Baybis, M.; Yu, J.; Lee, A.; Golden, J.A.; Weiner, H.; McKhann, G.; Aronica, E.; Crino, P.B. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann. Neurol. 2004, 56, 478–487. [Google Scholar] [CrossRef]
- Kenerson, H.L.; Aicher, L.D.; True, L.D.; Yeung, R.S. Activated mammalian target of rapamycin pathway in the pathogenesis of tuberous sclerosis complex renal tumors. Cancer Res. 2002, 62, 5645–5650. [Google Scholar]
- Moon, U.Y.; Park, J.Y.; Park, R.; Cho, J.Y.; Hughes, L.J.; McKenna, J.; Goetzl, L.; Cho, S.-H.; Crino, P.B.; Gambello, M.J.; et al. Impaired Reelin-Dab1 Signaling Contributes to Neuronal Migration Deficits of Tuberous Sclerosis Complex. Cell Rep. 2015, 12, 965–978. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Di Nardo, A.; Kramvis, I.; Meikle, L.; Kwiatkowski, D.J.; Sahin, M.; He, X. Tuberous sclerosis complex proteins control axon formation. Genes Dev. 2008, 22, 2485–2495. [Google Scholar] [CrossRef]
- White, R.; Hua, Y.; Scheithauer, B.; Lynch, D.R.; Henske, E.P.; Crino, P.B. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann. Neurol. 2001, 49, 67–78. [Google Scholar] [CrossRef]
- Tsai, P.T.; Hull, C.; Chu, Y.; Greene-Colozzi, E.; Sadowski, A.R.; Leech, J.M.; Steinberg, J.; Crawley, J.N.; Regehr, W.G.; Sahin, M. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 2012, 488, 647–651. [Google Scholar] [CrossRef]
- Tsai, P.T.; Rudolph, S.; Guo, C.; Ellegood, J.; Gibson, J.M.; Schaeffer, S.M.; Mogavero, J.; Lerch, J.P.; Regehr, W.; Sahin, M. Sensitive Periods for Cerebellar-Mediated Autistic-like Behaviors. Cell Rep. 2018, 25, 357–367.e4. [Google Scholar] [CrossRef]
- Kosillo, P.; Doig, N.M.; Ahmed, K.M.; Agopyan-Miu, A.H.; Wong, C.D.; Conyers, L.; Threlfell, S.; Magill, P.J.; Bateup, H.S. Tsc1-mTORC1 signaling controls striatal dopamine release and cognitive flexibility. Nat. Commun. 2019, 10, 5426. [Google Scholar] [CrossRef]
- Han, S.; Nam, J.; Li, Y.; Kim, S.; Cho, S.-H.; Cho, Y.S.; Choi, S.-Y.; Choi, J.; Han, K.; Kim, Y.; et al. Regulation of Dendritic Spines, Spatial Memory, and Embryonic Development by the TANC Family of PSD-95-Interacting Proteins. J. Neurosci. 2010, 30, 15102–15112. [Google Scholar] [CrossRef]
- Gasparini, A.; Tosatto, S.C.E.; Murgia, A.; Leonardi, E. Dynamic scaffolds for neuronal signaling: In silico analysis of the TANC protein family. Sci. Rep. 2017, 7, 6829. [Google Scholar] [CrossRef]
- Alhuzimi, E.; Leal, L.G.; Sternberg, M.J.E.; David, A. Properties of human genes guided by their enrichment in rare and common variants. Hum. Mutat. 2018, 39, 365–370. [Google Scholar] [CrossRef]
- Guo, H.; Bettella, E.; Marcogliese, P.C.; Zhao, R.; Andrews, J.C.; Nowakowski, T.J.; Gillentine, M.A.; Hoekzema, K.; Wang, T.; Wu, H.; et al. Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nat. Commun. 2019, 10, 4679. [Google Scholar] [CrossRef]
- Tassano, E.; Accogli, A.; Ronchetto, P.; Tortora, D.; Tavella, E.; Gimelli, G.; Mancardi, M.; Malacarne, M.; Coviello, D. 17q23.3 de novo microdeletion involving only TANC2 gene: A new case. Eur. J. Med. Genet. 2020, 63, 104094. [Google Scholar] [CrossRef]
- Tian, Y.; Shi, Z.; Hou, C.; Li, W.; Wang, X.; Zhu, H.; Li, X.; Chen, W.-X. Truncating mutation in TANC2 in a Chinese boy associated with Lennox-Gastaut syndrome: A case report. BMC Pediatr. 2021, 21, 546. [Google Scholar] [CrossRef]
- Garrett, L.; Da Silva-Buttkus, P.; Rathkolb, B.; Gerlini, R.; Becker, L.; Sanz-Moreno, A.; Seisenberger, C.; Zimprich, A.; Aguilar-Pimentel, A.; Amarie, O.V.; et al. Post-synaptic scaffold protein TANC2 in psychiatric and somatic disease risk. Dis. Model. Mech. 2022, 15, dmm049205. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, W.; Jiang, M.; Ren, R.; Liu, L.; Li, Y.; Liu, W.; Wang, P.; Gu, Y.; Chen, L.; et al. De novo TANC2 variants caused developmental and epileptic encephalopathy and epilepsy. Epilepsia 2025, 66, 2365–2378. [Google Scholar] [CrossRef]
- Garrett, L.; Trümbach, D.; Lee, D.; Mandillo, S.; Samaco, R.; Flenniken, A.M.; Stewart, M.; Aguilar-Pimental, J.A.; Amarie, O.V.; Becker, L.; et al. Co-expression of prepulse inhibition and Schizophrenia genes in the mouse and human brain. Neurosci. Appl. 2024, 3, 104075. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Feingold, E.; Moreno-Uribe, L.; Wehby, G.; Valencia-Ramirez, L.C.; Restrepo Muñeton, C.P.; Padilla, C.; Deleyiannis, F.; Christensen, K.; Poletta , F.A.; et al. Genome-wide association study of multiethnic nonsyndromic orofacial cleft families identifies novel loci specific to family and phenotypic subtypes. Genet. Epidemiol. 2022, 46, 182–198. [Google Scholar] [CrossRef]
- Leslie, E.J.; Carlson, J.C.; Shaffer, J.R.; Feingold, E.; Wehby, G.; Laurie, C.A.; Jain, D.; Laurie, C.C.; Doheny, K.F.; McHenry, T.; et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13. Hum. Mol. Genet. 2016, 25, ddw104. [Google Scholar] [CrossRef]
- Wessel, K.; Suleiman, J.; Khalaf, T.E.; Kishore, S.; Rolfs, A.; El-Hattab, A.W. 17q23.2q23.3 de novo duplication in association with speech and language disorder, learning difficulties, incoordination, motor skill impairment, and behavioral disturbances: A case report. BMC Med. Genet. 2017, 18, 119. [Google Scholar] [CrossRef]
- Chu, M.; Xu, D.; Xie, J.; Zhang, X.; Wang, M.; Li, J.; Ma, Y.; Li, X.; Wang, J.; Jia, T. Clinical and genetic analysis of two children with TANC2 gene variants and a literature review. Zhonghua Yi Xue Yi Chuan Xue Za Zhi Chin. J. Med. Genet. 2024, 41, 1195–1200. [Google Scholar] [CrossRef]
- Mahmood, S.F.; Gruel, N.; Chapeaublanc, E.; Lescure, A.; Jones, T.; Reyal, F.; Vincent-Salomon, A.; Raynal, V.; Pierron, G.; Perez, F.; et al. A siRNA screen identifies RAD21, EIF3H, CHRAC1 and TANC2 as driver genes within the 8q23, 8q24.3 and 17q23 amplicons in breast cancer with effects on cell growth, survival and transformation. Carcinogenesis 2014, 35, 670–682. [Google Scholar] [CrossRef]
- Nali, L.H.; Olival, G.S.; Sousa, F.T.G.; de Oliveira, A.C.S.; Montenegro, H.; da Silva, I.T.; Dias-Neto, E.; Naya, H.; Spangenberg, L.; Penalva-De-Oliveira, A.C.; et al. Whole transcriptome analysis of multiple Sclerosis patients reveals active inflammatory profile in relapsing patients and downregulation of neurological repair pathways in secondary progressive cases. Mult. Scler. Relat. Disord. 2020, 44, 102243. [Google Scholar] [CrossRef]
- Huang, K.; Wu, H.; Xu, X.; Wu, L.; Li, Q.; Han, L. Identification of TGF-β-related genes in cardiac hypertrophy and heart failure based on single cell RNA sequencing. Aging 2023, 15, 7187–7218. [Google Scholar] [CrossRef]
- Lee, V.; Moore, N.S.; Doyle, J.; Hicks, D.; Oh, P.; Bodofsky, S.; Hossain, S.; Patel, A.A.; Aneja, S.; Homer, R.; et al. Prediction of Lymph Node Metastasis in Non–Small Cell Lung Carcinoma Using Primary Tumor Somatic Mutation Data. JCO Clin. Cancer Inform. 2025, 9, e2400303. [Google Scholar] [CrossRef]
- Bai, Z.B.; Stamova, B.; Xu, H.; Ander, B.P.; Wang, J.B.; Jickling, G.C.; Zhan, X.; Liu, D.; Han, G.B.; Jin, L.-W.; et al. Distinctive RNA Expression Profiles in Blood Associated with Alzheimer Disease After Accounting for White Matter Hyperintensities. Alzheimer Dis. Assoc. Disord. 2014, 28, 226–233. [Google Scholar] [CrossRef]
- Al-Sanabra, O.; AL-Eitan, L.; Alasmar, M.; Bani Khalid, I. Investigating the Role of Gene Polymorphisms in Hypertension: Evidence from the Jordanian Population. Vasc. Health Risk Manag. 2025, 21, 705–717. [Google Scholar] [CrossRef]
- Blatch, G.L.; Lässle, M. The tetratricopeptide repeat: A structural motif mediating protein-protein interactions. BioEssays News Rev. Mol. Cell. Dev. Biol. 1999, 21, 932–939. [Google Scholar] [CrossRef]
- Zeytuni, N.; Zarivach, R. Structural and Functional Discussion of the Tetra-Trico-Peptide Repeat, a Protein Interaction Module. Structure 2012, 20, 397–405. [Google Scholar] [CrossRef]
- Truebestein, L.; Leonard, T.A. Coiled-coils: The long and short of it. BioEssays 2016, 38, 903–916. [Google Scholar] [CrossRef]
- Suzuki, T.; Li, W.; Zhang, J.; Tian, Q.; Sakagami, H.; Usada, N.; Kondo, H.; Fujii, T.; Endo, S. A novel scaffold protein, TANC, possibly a rat homolog of Drosophila rolling pebbles (rols), forms a multiprotein complex with various postsynaptic density proteins. Eur. J. Neurosci. 2005, 21, 339–350. [Google Scholar] [CrossRef]
- Menon, S.D.; Chia, W. Drosophila Rolling pebbles. Dev. Cell 2001, 1, 691–703. [Google Scholar] [CrossRef]
- Rau, A.; Buttgereit, D.; Holz, A.; Fetter, R.; Doberstein, S.K.; Paululat, A.; Staudt, N.; Skeath, J.; Michelson, A.M.; Renkawitz-Pohl, R. rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development 2001, 128, 5061–5073. [Google Scholar] [CrossRef]
- Bulchand, S.; Menon, S.D.; George, S.E.; Chia, W. The Intracellular Domain of Dumbfounded Affects Myoblast Fusion Efficiency and Interacts with Rolling Pebbles and Loner. PLoS ONE 2010, 5, e9374. [Google Scholar] [CrossRef]
- Kreisköther, N.; Reichert, N.; Buttgereit, D.; Hertenstein, A.; Fischbach, K.-F.; Renkawitz-Pohl, R. Drosophila rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, alpha-Actinin and Zormin in the terminal Z-discs. J. Muscle Res. Cell Motil. 2006, 27, 93–106. [Google Scholar] [CrossRef]
- Chen, E.H.; Olson, E.N. Antisocial, an Intracellular Adaptor Protein, Is Required for Myoblast Fusion in Drosophila. Dev. Cell 2001, 1, 705–715. [Google Scholar] [CrossRef]
- Tamura, S.; Morikawa, Y.; Hisaoka, T.; Ueno, H.; Kitamura, T.; Senba, E. Expression of mKirre, a mammalian homolog of Drosophila kirre, in the developing and adult mouse brain. Neuroscience 2005, 133, 615–624. [Google Scholar] [CrossRef]
- Gerke, P.; Benzing, T.; Höhne, M.; Kispert, A.; Frotscher, M.; Walz, G.; Kretz, O. Neuronal expression and interaction with the synaptic protein CASK suggest a role for Neph1 and Neph2 in synaptogenesis. J. Comp. Neurol. 2006, 498, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, K.; Luo, Y.; Buchan, T.; Beachem, M.A.; Guzauskas, G.F.; Ladd, S.; Bratcher, S.J.; Schroer, R.J.; Balsamo, J.; DuPont, B.R.; et al. Alterations in CDH15 and KIRREL3 in Patients with Mild to Severe Intellectual Disability. Am. J. Hum. Genet. 2008, 83, 703–713. [Google Scholar] [CrossRef]
- Martin, E.A.; Muralidhar, S.; Wang, Z.; Cervantes, D.C.; Basu, R.; Taylor, M.R.; Hunter, J.; Cutforth, T.; A Wilke, S.; Ghosh, A.; et al. The intellectual disability gene Kirrel3 regulates target-specific mossy fiber synapse development in the hippocampus. eLife 2015, 4, e09395. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Annunziato, S.; Lu, B.; Sun, T.; Evrova, O.; Planas-Paz, L.; Orsini, V.; Terracciano, L.M.; Charlat, O.; Loureiro, Z.Y.; et al. Cell adhesion molecule KIRREL1 is a feedback regulator of Hippo signaling recruiting SAV1 to cell-cell contact sites. Nat. Commun. 2022, 13, 930. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Sowell, S.M.; Luo, Y.; Chaubey, A.; Cameron, R.S.; Kim, H.-G.; Srivastava, A.K. Autism and Intellectual Disability-Associated KIRREL3 Interacts with Neuronal Proteins MAP1B and MYO16 with Potential Roles in Neurodevelopment. PLoS ONE 2015, 10, e0123106. [Google Scholar] [CrossRef]
- Querzani, A.; Sirchia, F.; Rustioni, G.; Rossi, A.; Orsini, A.; Marseglia, G.L.; Savasta, S.; Chiapparini, L.; Foiadelli, T. KIRREL3-related disorders: A case report confirming the radiological features and expanding the clinical spectrum to a less severe phenotype. Ital. J. Pediatr. 2023, 49, 99. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.R.; Martin, E.A.; Sinnen, B.; Trilokekar, R.; Ranza, E.; Antonarakis, S.E.; Williams, M.E. Kirrel3-Mediated Synapse Formation Is Attenuated by Disease-Associated Missense Variants. J. Neurosci. 2020, 40, 5376–5388. [Google Scholar] [CrossRef] [PubMed]
- Michaelson, J.J.; Shi, Y.; Gujral, M.; Zheng, H.; Malhotra, D.; Jin, X.; Jian, M.; Liu, G.; Greer, D.; Bhandari, A.; et al. Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation. Cell 2012, 151, 1431–1442. [Google Scholar] [CrossRef]
- Guerin, A.; Stavropoulos, D.J.; Diab, Y.; Chénier, S.; Christensen, H.; Kahr, W.H.; Babul-Hirji, R.; Chitayat, D. Interstitial deletion of 11q-implicating the KIRREL3 gene in the neurocognitive delay associated with Jacobsen syndrome. Am. J. Med. Genet. A 2012, 158, 2551–2556. [Google Scholar] [CrossRef]
- Pourhaghighi, R.; Ash, P.E.; Phanse, S.; Goebels, F.; Hu, L.Z.; Chen, S.; Zhang, Y.; Wierbowski, S.D.; Boudeau, S.; Moutaoufik, M.T.; et al. BraInMap Elucidates the Macromolecular Connectivity Landscape of Mammalian Brain. Cell Syst. 2020, 10, 333–350.e14. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Liu, H.; Zhong, D.; Li, Z.; Li, J.; Xiao, K.; Liu, W. Tanc1/2 TPR domain interacts with Myo18a C-terminus and undergoes liquid-liquid phase separation. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2024, 1871, 119650. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; He, F.; Chen, C.; Wu, L.-W.; Yang, L.-F.; Ma, Y.-P.; Zhang, W.; Shi, Z.-Q.; Chen, C.; et al. Novel West syndrome candidate genes in a Chinese cohort. CNS Neurosci. Ther. 2018, 24, 1196–1206. [Google Scholar] [CrossRef]
- Tan, I.; Yong, J.; Dong, J.M.; Lim, L.; Leung, T. A Tripartite Complex Containing MRCK Modulates Lamellar Actomyosin Retrograde Flow. Cell 2008, 135, 123–136. [Google Scholar] [CrossRef]
- Buschman, M.D.; Field, S.J. MYO18A: An unusual myosin. Adv. Biol. Regul. 2018, 67, 84–92. [Google Scholar] [CrossRef]
- Hsu, R.-M.; Tsai, M.-H.; Hsieh, Y.-J.; Lyu, P.-C.; Yu, J.-S. Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol. Biol. Cell 2010, 21, 287–301. [Google Scholar] [CrossRef]
- Hsu, R.-M.; Hsieh, Y.-J.; Yang, T.-H.; Chiang, Y.-C.; Kan, C.-Y.; Lin, Y.-T.; Chen, J.-T.; Yu, J.-S. Binding of the extreme carboxyl-terminus of PAK-interacting exchange factor β (βPIX) to myosin 18A (MYO18A) is required for epithelial cell migration. Biochim. Biophys. Acta 2014, 1843, 2513–2527. [Google Scholar] [CrossRef]
- Makowska, K.A.; Hughes, R.E.; White, K.J.; Wells, C.M.; Peckham, M. Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells. Cell Rep. 2015, 13, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.J.; Barzik, M.; Fujiwara, I.; Remmert, K.; Wang, Y.; Petralia, R.S.; Friedman, T.B.; Hammer, J.A. Myosin 18Aα targets the guanine nucleotide exchange factor β-Pix to the dendritic spines of cerebellar Purkinje neurons and promotes spine maturation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2021, 35, e21092. [Google Scholar] [CrossRef]
- Stucchi, R.; Plucińska, G.; Hummel, J.J.; Zahavi, E.E.; Juan, I.G.S.; Klykov, O.; Scheltema, R.A.; Altelaar, A.M.; Hoogenraad, C.C. Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites. Cell Rep. 2018, 24, 685–700. [Google Scholar] [CrossRef]
- Rosen, N.E.; Lord, C.; Volkmar, F.R. The Diagnosis of Autism: From Kanner to DSM-III to DSM-5 and Beyond. J. Autism Dev. Disord. 2021, 51, 4253–4270. [Google Scholar] [CrossRef]
- Durkin, M.S.; Maenner, M.J.; Baio, J.; Christensen, D.; Daniels, J.; Fitzgerald, R.; Imm, P.; Lee, L.-C.; Schieve, L.A.; Braun, K.V.N.; et al. Autism Spectrum Disorder Among US Children (2002–2010): Socioeconomic, Racial, and Ethnic Disparities. Am. J. Public. Health 2017, 107, 1818–1826. [Google Scholar] [CrossRef]
- Canitano, R.; Palumbi, R.; Scandurra, V. Autism with Epilepsy: A Neuropsychopharmacology Update. Genes 2022, 13, 1821. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wells, A.B.; O’Brien, D.R.; Nehorai, A.; Dougherty, J.D. Cell type-specific expression analysis to identify putative cellular mechanisms for neurogenetic disorders. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 1420–1431. [Google Scholar] [CrossRef]
- Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 2017, 542, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Fields, M.C.; Marsh, C.; Eka, O.; Johnson, E.A.; Marcuse, L.V.; Kwon, C.-S.; Young, J.J.; LaVega-Talbott, M.; Kurukumbi, M.; Von Allmen, G.; et al. Responsive Neurostimulation for People with Drug-Resistant Epilepsy and Autism Spectrum Disorder. J. Clin. Neurophysiol. 2024, 41, 64–71. [Google Scholar] [CrossRef]
- Meng, L.; Han, Z.; Yang, X.; Luo, H.; Hong, S.; Hu, Y.; Guo, Y.; Ma, J.; Xie, L.; Jiang, L. Expansion of the Epilepsy Genotype-Phenotype Spectrum: Genetic and Clinical Characterization of 288 Children with Epilepsy in China. Seizure Eur. J. Epilepsy 2025, 131, 113–120. [Google Scholar] [CrossRef] [PubMed]

| Gene | Named CNS Syndrome | DEE? | Features |
|---|---|---|---|
| CACNA1A | * | Yes | ASD, DD, ID, hypotonia, ataxia, epilepsy |
| CACNA1C | * | ASD, DD, hypotonia, seizures | |
| CACNA1E | * | Yes | ASD, DD, macrocephaly, epilepsy |
| SCN1A | Dravet Syndrome | Yes | epilepsy, ASD, ID, cognative decline |
| SCN2A | SCN2A-related nonspecific severe intellectual disability | Yes | epilepsy, DD, ID, ASD, ADHD, microcephaly, hypotonia, white matter defects |
| SCN3A | SCN3A-related focal epilepsy | Yes | epilepsy, ID, polymicrogyria |
| SCN8A | * | Yes | epilepsy, DD, ID, hypotonia, ataxia |
| KCNQ2 | KCNQ2-related epileptic encephalopathy, KCNQ2-related benign neonatal epilepsy | Yes | epilepsy, infantile spasms, ID, DD, ASD |
| KCNQ3 | * | ID, DD, seizure | |
| KCNA1 | * | ataxia | |
| KCNA2 | KCNA2-related epileptic encephalopathy | Yes | DD, ID |
| KCNT1 | KCNT1-related epilepsy | Yes | epilepsy, ID, psychiatric conditions |
| KCNT2 | * | Yes | developmental defects, ID |
| KCNB1 | * | Yes | epilepsy, DD, ASD |
| KCNC1 | * | myoclonic epilepsy, IDD, DD | |
| KCNK3 | * | cortical heterotopia | |
| KCNK9 | Birk-Barel Syndrome | speech and motor delay, ID, behavoral abnormalities | |
| KCNK2 | * | cortical heterotopia | |
| KCNK10 | * | cortical heterotopia | |
| HCN1 | atypical Rett syndrome | Yes | ID, DD, microcephaly, movement dysfunction, epilepsy |
| HCN2 | * | Yes | ID, DD, epilepsy |
| HCN4 | * | epilepsy, cortical malformations | |
| ANKRD17 | Chopra-Ameil-Gordon Syndrome | DD, ID, speech delay, ASD, ADHD, epilepsy | |
| ALDH7A1 | * | ID, DD, epilepsy | |
| DENND5A | * | Yes | epilepsy, DD, ID, speech defecits, hypotonia, brain malformations |
| CDKL5 | * | Yes | ASD, DD, ADHD, ID, imparied vision, sleep disturbances |
| CNTNAP2 | Pitt-hopkins like syndrome, CDFE | ID, DD, epilepsy, ASD, ADHD, cortical malformations | |
| PHACTR1 | West syndrome | Yes | infantile spasms, developmental regression, ID, ASD, lissencephaly |
| RELN | * | ASD, ID, schizophrenia, bipolar disorder, depression, Alzheimers disease, lissencephaly | |
| PCDH19 | * | Yes | ASD, ID, ADHD, DD, psychiatric features, epilepsy |
| TANC2 | Tanc2-related disorder | ASD, epilepsy, ID, DD, microcephaly, schizophrenia | |
| TSC1/2 | Tuberous Sclerosis Complex | ASD, ID, epilepsy, TAND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pattie, E.A.; Iffland, P.H., II. Shared Disease Mechanisms in Neurodevelopmental Disorders: A Cellular and Molecular Biology Perspective. Brain Sci. 2026, 16, 54. https://doi.org/10.3390/brainsci16010054
Pattie EA, Iffland PH II. Shared Disease Mechanisms in Neurodevelopmental Disorders: A Cellular and Molecular Biology Perspective. Brain Sciences. 2026; 16(1):54. https://doi.org/10.3390/brainsci16010054
Chicago/Turabian StylePattie, Elizabeth A., and Philip H. Iffland, II. 2026. "Shared Disease Mechanisms in Neurodevelopmental Disorders: A Cellular and Molecular Biology Perspective" Brain Sciences 16, no. 1: 54. https://doi.org/10.3390/brainsci16010054
APA StylePattie, E. A., & Iffland, P. H., II. (2026). Shared Disease Mechanisms in Neurodevelopmental Disorders: A Cellular and Molecular Biology Perspective. Brain Sciences, 16(1), 54. https://doi.org/10.3390/brainsci16010054

