Imaging of Cerebral Iron as an Emerging Marker for Brain Aging, Neurodegeneration, and Cerebrovascular Diseases
Abstract
1. Introduction
2. Iron Metabolism in Central Nervous System
3. Glial Loading of Iron
3.1. Oligodendrocytes
3.2. Astrocytes
3.3. Microglia
4. Neuroimaging of Brain Iron Distribution in Normal Aging
5. Imaging Iron in Diseases and Correlation with Known Biomarkers
5.1. Parkinson’s Disease
5.2. Alzheimer’s Disease
5.3. Multiple Sclerosis
5.4. Cerebral Small Vascular Diseases
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
QSM | Quantitative susceptibility mapping |
MRI | Magnetic resonance imaging |
fMRI | Functional magnetic resonance imaging |
GRE | Gradient Echo |
AD | Alzheimer’s disease |
PD | Parkinson’s disease |
MS | Multiple sclerosis |
CSVD | Cerebral small vessel disease |
SWI | Susceptibility-weighted imaging |
CNS | Central nervous system |
holo-Tf | Ferric iron-bound transferrin |
TfR | Transferrin receptor |
BBB | Blood–brain barrier |
STEAP | Six-transmembrane epithelial antigen of prostate |
DMT | Divalent metal transporter |
FPN | Ferroportin |
NTBI | Non-transferrin-bound iron |
Tim | T-cell immunoglobulin mucin |
H-ferritin | Ferritin heavy chain |
HO | Heme oxygenase |
SN | Substantia nigra |
RN | Red nucleus |
DN | Dentate nucleus |
DA | Dopamine |
iRBD | Idiopathic rapid eye movement sleep behaviour disorder |
SNc | Substantia nigra compacta |
N1 | Nigrosome 1 |
MCI | Mild cognitive impairment |
Aβ | Beta amyloid |
PET | Positron emitting tomography |
BIOCARD | Biomarkers for Older Controls at Risk for Dementia |
AQP-4 | Aquaporin-4 |
WMH | White matter hyperintensity |
CMB | Cerebral microbleeds |
EPVS | Enlarged perivascular space |
CADASIL | Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy |
ICC | Intra-class correlation coefficient |
TE | Time of echo |
References
- Bian, C.; Wan, Y.; Koduri, S.; Hua, Y.; Keep, R.F.; Xi, G. Iron-Induced Hydrocephalus: The Role of Choroid Plexus Stromal Macrophages. Transl. Stroke Res. 2023, 14, 238–249. [Google Scholar] [CrossRef]
- Dusek, P.; Hofer, T.; Alexander, J.; Roos, P.M.; Aaseth, J.O. Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022, 12, 714. [Google Scholar] [CrossRef]
- Drayer, B.; Burger, P.; Darwin, R.; Riederer, S.; Herfkens, R.; Johnson, G.A. MRI of brain iron. AJR Am. J. Roentgenol. 1986, 147, 103–110. [Google Scholar] [CrossRef]
- Langkammer, C.; Schweser, F.; Krebs, N.; Deistung, A.; Goessler, W.; Scheurer, E.; Sommer, K.; Reishofer, G.; Yen, K.; Fazekas, F.; et al. Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 2012, 62, 1593–1599. [Google Scholar] [CrossRef]
- Ramagiri, S.; Pan, S.; DeFreitas, D.; Yang, P.H.; Raval, D.K.; Wozniak, D.F.; Esakky, P.; Strahle, J.M. Deferoxamine Prevents Neonatal Posthemorrhagic Hydrocephalus Through Choroid Plexus-Mediated Iron Clearance. Transl. Stroke Res. 2023, 14, 704–722. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.-M.; Ke, Y. Brain iron transport. Biol. Rev. 2019, 94, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
- Rouault, T.A. Iron metabolism in the CNS: Implications for neurodegenerative diseases. Nat. Rev. Neurosci. 2013, 14, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Skjørringe, T.; Burkhart, A.; Johnsen, K.B.; Moos, T. Divalent metal transporter 1 (DMT1) in the brain: Implications for a role in iron transport at the blood-brain barrier, and neuronal and glial pathology. Front. Mol. Neurosci. 2015, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Vela, D. Hepcidin, an emerging and important player in brain iron homeostasis. J. Transl. Med. 2018, 16, 25. [Google Scholar] [CrossRef]
- Duck, K.A.; Connor, J.R. Iron uptake and transport across physiological barriers. BioMetals 2016, 29, 573–591. [Google Scholar] [CrossRef]
- Vymazal, J.; Urgosík, D.; Bulte, J.W. Differentiation between hemosiderin- and ferritin-bound brain iron using nuclear magnetic resonance and magnetic resonance imaging. Cell. Mol. Biol. 2000, 46, 835–842. [Google Scholar]
- Haque, T.L.; Miki, Y.; Kanagaki, M.; Takahashi, T.; Yamamoto, A.; Konishi, J.; Nozaki, K.; Hashimoto, N.; Konishi, J. MR contrast of ferritin and hemosiderin in the brain: Comparison among gradient-echo, conventional spin-echo and fast spin-echo sequences. Eur. J. Radiol. 2003, 48, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.-M.; Li, W.; Guo, Q. Ferroportin1 in the brain. Ageing Res. Rev. 2023, 88, 101961. [Google Scholar] [CrossRef]
- Zheng, H.; Guo, X.; Kang, S.; Li, Z.; Tian, T.; Li, J.; Wang, F.; Yu, P.; Chang, S.; Chang, Y.-Z. Cdh5-mediated Fpn1 deletion exerts neuroprotective effects during the acute phase and inhibitory effects during the recovery phase of ischemic stroke. Cell Death Dis. 2023, 14, 161. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Guo, C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021, 10, 1810. [Google Scholar] [CrossRef] [PubMed]
- Jäkel, S.; Agirre, E.; Mendanha Falcão, A.; van Bruggen, D.; Lee, K.W.; Knuesel, I.; Malhotra, D.; ffrench-Constant, C.; Williams, A.; Castelo-Branco, G. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 2019, 566, 543–547. [Google Scholar] [CrossRef]
- Yeung, M.S.Y.; Djelloul, M.; Steiner, E.; Bernard, S.; Salehpour, M.; Possnert, G.; Brundin, L.; Frisén, J. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 2019, 566, 538–542. [Google Scholar] [CrossRef]
- Chiou, B.; Lucassen, E.; Sather, M.; Kallianpur, A.; Connor, J. Semaphorin4A and H-ferritin utilize Tim-1 on human oligodendrocytes: A novel neuro-immune axis. Glia 2018, 66, 1317–1330. [Google Scholar] [CrossRef]
- Todorich, B.; Zhang, X.; Connor, J.R. H-ferritin is the major source of iron for oligodendrocytes. Glia 2011, 59, 927–935. [Google Scholar] [CrossRef]
- Li, Y.; Guan, Q.; Chen, Y.; Han, H.; Liu, W.; Nie, Z. Transferrin receptor and ferritin-H are developmentally regulated in oligodendrocyte lineage cells. Neural Regen. Res. 2013, 8, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Khattar, N.; Triebswetter, C.; Kiely, M.; Ferrucci, L.; Resnick, S.M.; Spencer, R.G.; Bouhrara, M. Investigation of the association between cerebral iron content and myelin content in normative aging using quantitative magnetic resonance neuroimaging. Neuroimage 2021, 239, 118267. [Google Scholar] [CrossRef]
- Cohen, Z.; Lau, L.; Ahmed, M.; Jack, C.R.; Liu, C. Quantitative susceptibility mapping in the brain reflects spatial expression of genes involved in iron homeostasis and myelination. Hum. Brain Mapp. 2024, 45, e26688. [Google Scholar] [CrossRef]
- Price, B.R.; Norris, C.M.; Sompol, P.; Wilcock, D.M. An emerging role of astrocytes in vascular contributions to cognitive impairment and dementia (VCID). J. Neurochem. 2018, 144, 644–650. [Google Scholar] [CrossRef]
- Cheli, V.; Santiago González, D.; Wan, Q.; Denaroso, G.; Wan, R.; Rosenblum, S.; Paez, P. H-ferritin expression in astrocytes is necessary for proper oligodendrocyte development and myelination. Glia 2021, 69, 2981–2998. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Yu, P.-P.; Dong, T.; Guo, W.; Chang, S.; Zheng, B.; Ci, Y.; Wang, F.; Yu, P.; Gao, G.; et al. Astrocyte-derived hepcidin controls iron traffic at the blood-brain-barrier via regulating ferroportin 1 of microvascular endothelial cells. Cell Death Dis. 2022, 13, 667. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, T.S.; David, B.; Broekaart, D.W.M.; Schidlowski, M.; Ruffolo, G.; Korotkov, A.; van der Wel, N.N.; van Rijen, P.C.; Mühlebner, A.; van Hecke, W.; et al. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy. Acta Neuropathol. 2021, 142, 729–759. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Mendívil, C.; Luengo, E.; Trigo-Alonso, P.; García-Magro, N.; Negredo, P.; López, M.G. Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biol. 2021, 38, 101789. [Google Scholar] [CrossRef]
- Song, W.; Cressatti, M.; Zukor, H.; Liberman, A.; Galindez, C.; Schipper, H.M. Parkinsonian features in aging GFAP.HMOX1 transgenic mice overexpressing human HO-1 in the astroglial compartment. Neurobiol. Aging 2017, 58, 163–179. [Google Scholar] [CrossRef]
- Langkammer, C.; Krebs, N.; Goessler, W.; Scheurer, E.; Ebner, F.; Yen, K.; Fazekas, F.; Ropele, S. Quantitative MR Imaging of Brain Iron: A Postmortem Validation Study. Radiology 2010, 257, 455–462. [Google Scholar] [CrossRef]
- Acosta-Cabronero, J.; Betts, M.J.; Cardenas-Blanco, A.; Yang, S.; Nestor, P.J. In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan. J. Neurosci. 2016, 36, 364–374. [Google Scholar] [CrossRef]
- Haller, S.; Haacke, E.M.; Thurnher, M.M.; Barkhof, F. Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications. Radiology 2021, 299, 3–26. [Google Scholar] [CrossRef]
- Mitchell, T.; Lehéricy, S.; Chiu, S.Y.; Strafella, A.P.; Stoessl, A.J.; Vaillancourt, D.E. Emerging Neuroimaging Biomarkers Across Disease Stage in Parkinson Disease: A Review. JAMA Neurol. 2021, 78, 1262–1272. [Google Scholar] [CrossRef]
- Ciraci, S.; Gumus, K.; Doganay, S.; Dundar, M.S.; Kaya Ozcora, G.D.; Gorkem, S.B.; Per, H.; Coskun, A. Diagnosis of intracranial calcification and hemorrhage in pediatric patients: Comparison of quantitative susceptibility mapping and phase images of susceptibility-weighted imaging. Diagn. Interv. Imaging 2017, 98, 707–714. [Google Scholar] [CrossRef]
- Kang, C.; Mehta, P.; Chang, Y.S.; Bhadelia, R.A.; Rojas, R.; Wintermark, M.; Andre, J.B.; Yang, E.; Selim, M.; Thomas, A.J.; et al. Enhanced reader confidence and differentiation of calcification from cerebral microbleed diagnosis using QSM relative to SWI. Clin. Neuroradiol. 2025, 35, 303–313. [Google Scholar] [CrossRef]
- Wang, Y.; Spincemaille, P.; Liu, Z.; Dimov, A.; Deh, K.; Li, J.; Zhang, Y.; Yao, Y.; Gillen, K.M.; Wilman, A.H.; et al. Clinical quantitative susceptibility mapping (QSM)—Biometal imaging and its emerging roles in patient care. J. Magn. Reson. Imaging 2017, 46, 951–971. [Google Scholar] [CrossRef]
- Luo, Y.; Gao, K.; Zhou, Y.; Fawaz, M.; Mark Haacke, E.; Xia, S.; Liu, S. Differentiating calcifications from cerebral microbleeds using quantitative susceptibility mapping. Eur. Radiol. 2025, 35, 2043–2052. [Google Scholar] [CrossRef] [PubMed]
- Möller, H.E.; Bossoni, L.; Connor, J.R.; Crichton, R.R.; Does, M.D.; Ward, R.J.; Zecca, L.; Zucca, F.A.; Ronen, I. Iron, Myelin, and the Brain: Neuroimaging Meets Neurobiology. Trends Neurosci. 2019, 42, 384–401. [Google Scholar] [CrossRef] [PubMed]
- Madden, D.J.; Merenstein, J.L. Quantitative susceptibility mapping of brain iron in healthy aging and cognition. NeuroImage 2023, 282, 120401. [Google Scholar] [CrossRef] [PubMed]
- Filo, S.; Shaharabani, R.; Bar Hanin, D.; Adam, M.; Ben-David, E.; Schoffman, H.; Margalit, N.; Habib, N.; Shahar, T.; Mezer, A.A. Non-invasive assessment of normal and impaired iron homeostasis in the brain. Nat. Commun. 2023, 14, 5467. [Google Scholar] [CrossRef]
- Choi, J.Y.; Cho, H.; Ahn, S.J.; Lee, J.H.; Ryu, Y.H.; Lee, M.S.; Lyoo, C.H. Off-Target 18F-AV-1451 Binding in the Basal Ganglia Correlates with Age-Related Iron Accumulation. J. Nucl. Med. 2018, 59, 117–120. [Google Scholar] [CrossRef]
- Ravanfar, P.; Loi, S.M.; Syeda, W.T.; Van Rheenen, T.E.; Bush, A.I.; Desmond, P.; Cropley, V.L.; Lane, D.J.R.; Opazo, C.M.; Moffat, B.A.; et al. Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases. Front. Neurosci. 2021, 15, 618435. [Google Scholar] [CrossRef]
- Burgetova, R.; Dusek, P.; Burgetova, A.; Pudlac, A.; Vaneckova, M.; Horakova, D.; Krasensky, J.; Varga, Z.; Lambert, L. Age-related magnetic susceptibility changes in deep grey matter and cerebral cortex of normal young and middle-aged adults depicted by whole brain analysis. Quant. Imaging Med. Surg. 2021, 11, 3906–3919. [Google Scholar] [CrossRef]
- Howard, C.M.; Jain, S.; Cook, A.D.; Packard, L.E.; Mullin, H.A.; Chen, N.; Liu, C.; Song, A.W.; Madden, D.J. Cortical iron mediates age-related decline in fluid cognition. Hum. Brain Mapp. 2022, 43, 1047–1060. [Google Scholar] [CrossRef]
- Stawski, R.S.; Almeida, D.M.; Lachman, M.E.; Tun, P.A.; Rosnick, C.B. Fluid Cognitive Ability is associated with Greater Exposure and Smaller Emotional Reactions to Daily Stressors. Psychol. Aging 2010, 25, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Chang, Y.; Cho, Y.; Kwon, M.-J.; Joh, H.-K.; Lim, G.-Y.; Kwon, R.; Ahn, J.; Park, J.; Kim, K.-H.; et al. Accelerated increase in ferritin levels during menopausal transition as a marker of metabolic health. Sci. Rep. 2025, 15, 29311. [Google Scholar] [CrossRef] [PubMed]
- Qamar, K.; Saboor, M.; Qudsia, F.; Khosa, S.M.; Moinuddin; Usman, M. Malabsorption of iron as a cause of iron deficiency anemia in postmenopausal women. Pak. J. Med. Sci. 2015, 31, 304–308. [Google Scholar] [CrossRef]
- Persson, N.; Wu, J.; Zhang, Q.; Liu, T.; Shen, J.; Bao, R.; Ni, M.; Liu, T.; Wang, Y.; Spincemaille, P. Age and sex related differences in subcortical brain iron concentrations among healthy adults. Neuroimage 2015, 122, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Grubić Kezele, T.; Ćurko-Cofek, B. Age-related changes and sex-related differences in brain iron metabolism. Nutrients 2020, 12, 2601. [Google Scholar] [CrossRef]
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef]
- Du, G.; Wang, E.; Sica, C.; Chen, H.; De Jesus, S.; Lewis, M.M.; Kong, L.; Connor, J.; Mailman, R.B.; Huang, X. Dynamics of Nigral Iron Accumulation in Parkinson’s Disease: From Diagnosis to Late Stage. Mov. Disord. 2022, 37, 1654–1662. [Google Scholar] [CrossRef]
- Guan, X.; Guo, T.; Zhou, C.; Wu, J.; Zeng, Q.; Li, K.; Luo, X.; Bai, X.; Wu, H.; Gao, T.; et al. Altered brain iron depositions from aging to Parkinson’s disease and Alzheimer’s disease: A quantitative susceptibility mapping study. NeuroImage 2022, 264, 119683. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef]
- Dichtl, S.; Haschka, D.; Nairz, M.; Seifert, M.; Volani, C.; Lutz, O.; Weiss, G. Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages. Biochem. Pharmacol. 2018, 148, 193–201. [Google Scholar] [CrossRef]
- Zecca, L.; Bellei, C.; Costi, P.; Albertini, A.; Monzani, E.; Casella, L.; Gallorini, M.; Bergamaschi, L.; Moscatelli, A.; Turro, N.J.; et al. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc. Natl. Acad. Sci. USA 2008, 105, 17567–17572. [Google Scholar] [CrossRef]
- Iranzo, A.; Santamaria, J.; Tolosa, E. Idiopathic rapid eye movement sleep behaviour disorder: Diagnosis, management, and the need for neuroprotective interventions. Lancet Neurol. 2016, 15, 405–419. [Google Scholar] [CrossRef]
- Sun, J.; Lai, Z.; Ma, J.; Gao, L.; Chen, M.; Chen, J.; Fang, J.; Fan, Y.; Bao, Y.; Zhang, D.; et al. Quantitative Evaluation of Iron Content in Idiopathic Rapid Eye Movement Sleep Behavior Disorder. Mov. Disord. 2020, 35, 478–485. [Google Scholar] [CrossRef]
- Friedrich, I.; Reimann, K.; Jankuhn, S.; Kirilina, E.; Stieler, J.; Sonntag, M.; Meijer, J.; Weiskopf, N.; Reinert, T.; Arendt, T.; et al. Cell specific quantitative iron mapping on brain slices by immuno-µPIXE in healthy elderly and Parkinson’s disease. Acta Neuropathol. Commun. 2021, 9, 47. [Google Scholar] [CrossRef]
- Thomas, G.E.C.; Hannaway, N.; Zarkali, A.; Shmueli, K.; Weil, R.S. Longitudinal associations of magnetic susceptibility with clinical severity in parkinson’s disease. Mov. Disord. 2024, 39, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.E.C.; Leyland, L.A.; Schrag, A.-E.; Lees, A.J.; Acosta-Cabronero, J.; Weil, R.S. Brain iron deposition is linked with cognitive severity in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2020, 91, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Billings, J.L.; Gordon, S.L.; Rawling, T.; Doble, P.A.; Bush, A.I.; Adlard, P.A.; Finkelstein, D.I.; Hare, D.J. l-3,4-dihydroxyphenylalanine (l-DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha-synuclein mouse models of parkinson’s disease. J. Neurochem. 2019, 150, 88–106. [Google Scholar] [CrossRef]
- Scheltens, P.; Strooper, B.D.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef]
- Cogswell, P.M.; Wiste, H.J.; Senjem, M.L.; Gunter, J.L.; Weigand, S.D.; Schwarz, C.G.; Arani, A.; Therneau, T.M.; Lowe, V.J.; Knopman, D.S.; et al. Associations of quantitative susceptibility mapping with Alzheimer’s disease clinical and imaging markers. Neuroimage 2021, 224, 117433. [Google Scholar] [CrossRef]
- Kenkhuis, B.; Somarakis, A.; de Haan, L.; Dzyubachyk, O.; IJsselsteijn, M.E.; de Miranda, N.F.C.C.; Lelieveldt, B.P.F.; Dijkstra, J.; van Roon-Mom, W.M.C.; Höllt, T.; et al. Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients. Acta Neuropathol. Commun. 2021, 9, 27. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Shen, Y.; Li, H.; Rausch, W.-D.; Huang, X. Iron Dyshomeostasis and Ferroptosis: A New Alzheimer’s Disease Hypothesis? Front. Aging Neurosci. 2022, 14, 830569. [Google Scholar] [CrossRef] [PubMed]
- Meadowcroft, M.D.; Connor, J.R.; Smith, M.B.; Yang, Q.X. Magnetic Resonance Imaging and Histological Analysis of Beta-Amyloid Plaques in Both Human Alzheimer’s Disease and APP/PS1 Transgenic Mice. J. Magn. Reson. Imaging 2009, 29, 997–1007. [Google Scholar] [CrossRef]
- Chen, L.; Soldan, A.; Oishi, K.; Faria, A.; Zhu, Y.; Albert, M.; van Zijl, P.C.M.; Li, X. Quantitative Susceptibility Mapping of Brain Iron and β-Amyloid in MRI and PET Relating to Cognitive Performance in Cognitively Normal Older Adults. Radiology 2021, 298, 353–362. [Google Scholar] [CrossRef]
- Au, C.K.F.; Abrigo, J.; Liu, C.; Liu, W.; Lee, J.; Au, L.W.C.; Chan, Q.; Chen, S.; Leung, E.Y.L.; Ho, C.L.; et al. Quantitative Susceptibility Mapping of the Hippocampal Fimbria in Alzheimer’s Disease. J. Magn. Reson. Imaging 2021, 53, 1823–1832. [Google Scholar] [CrossRef]
- Bittner, S.; Oh, J.; Havrdová, E.K.; Tintoré, M.; Zipp, F. The potential of serum neurofilament as biomarker for multiple sclerosis. Brain J. Neurol. 2021, 144, 2954–2963. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R. What Is Multiple Sclerosis? JAMA 2022, 328, 2078. [Google Scholar] [CrossRef] [PubMed]
- Ziemssen, T.; Akgün, K.; Brück, W. Molecular biomarkers in multiple sclerosis. J. Neuroinflamm. 2019, 16, 272. [Google Scholar] [CrossRef]
- Langkammer, C.; Liu, T.; Khalil, M.; Enzinger, C.; Jehna, M.; Fuchs, S.; Fazekas, F.; Wang, Y.; Ropele, S. Quantitative Susceptibility Mapping in Multiple Sclerosis. Radiology 2013, 267, 551–559. [Google Scholar] [CrossRef]
- Stankiewicz, J.M.; Neema, M.; Ceccarelli, A. Iron and multiple sclerosis. Neurobiol. Aging 2014, 35 (Suppl. S2), S51–S58. [Google Scholar] [CrossRef]
- Gillen, K.M.; Mubarak, M.; Park, C.; Ponath, G.; Zhang, S.; Dimov, A.; Levine-Ritterman, M.; Toro, S.; Huang, W.; Amici, S.; et al. QSM is an imaging biomarker for chronic glial activation in multiple sclerosis lesions. Ann. Clin. Transl. Neurol. 2021, 8, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Rahmanzadeh, R.; Galbusera, R.; Lu, P.-J.; Bahn, E.; Weigel, M.; Barakovic, M.; Franz, J.; Nguyen, T.D.; Spincemaille, P.; Schiavi, S.; et al. A New Advanced MRI Biomarker for Remyelinated Lesions in Multiple Sclerosis. Ann. Neurol. 2022, 92, 486–502. [Google Scholar] [CrossRef]
- Stüber, C.; Pitt, D.; Wang, Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int. J. Mol. Sci. 2016, 17, 100. [Google Scholar] [CrossRef]
- Schoonheim, M.M.; Pinter, D.; Prouskas, S.E.; Broeders, T.A.; Pirpamer, L.; Khalil, M.; Ropele, S.; Uitdehaag, B.M.; Barkhof, F.; Enzinger, C.; et al. Disability in multiple sclerosis is related to thalamic connectivity and cortical network atrophy. Mult. Scler. 2022, 28, 61–70. [Google Scholar] [CrossRef]
- Burgetova, A.; Dusek, P.; Vaneckova, M.; Horakova, D.; Langkammer, C.; Krasensky, J.; Sobisek, L.; Matras, P.; Masek, M.; Seidl, Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. Am. J. Neuroradiol. 2017, 38, 1079–1086. [Google Scholar] [CrossRef]
- Louapre, C.; Govindarajan, S.T.; Giannì, C.; Madigan, N.; Sloane, J.A.; Treaba, C.A.; Herranz, E.; Kinkel, R.P.; Mainero, C. Heterogeneous pathological processes account for thalamic degeneration in multiple sclerosis: Insights from 7 T imaging. Mult. Scler. 2018, 24, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Zivadinov, R.; Tavazzi, E.; Bergsland, N.; Hagemeier, J.; Lin, F.; Dwyer, M.G.; Carl, E.; Kolb, C.; Hojnacki, D.; Ramasamy, D.; et al. Brain Iron at Quantitative MRI Is Associated with Disability in Multiple Sclerosis. Radiology 2018, 289, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Preziosa, P.; Barkhof, F.; Ciccarelli, O.; Cossarizza, A.; De Stefano, N.; Gasperini, C.; Geraldes, R.; Granziera, C.; Haider, L.; et al. The ageing central nervous system in multiple sclerosis: The imaging perspective. Brain 2024, 147, 3665–3680. [Google Scholar] [CrossRef]
- Magyari, M.; Sorensen, P.S. Comorbidity in multiple sclerosis. Front. Neurol. 2020, 11, 851. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Shue, F.; Bu, G.; Kanekiyo, T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer’s disease. Mol. Neurodegener. 2023, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Kan, H.; Sakurai, K.; Arai, N.; Inui, S.; Kobayashi, S.; Kato, D.; Ueki, Y.; Matsukawa, N. Iron leakage owing to blood–brain barrier disruption in small vessel disease CADASIL. Neurology 2020, 95, e1188–e1198. [Google Scholar] [CrossRef]
- Li, J.; Nguyen, T.D.; Zhang, Q.; Guo, L.; Wang, Y. Cerebral Microbleeds Are Associated With Increased Brain Iron and Cognitive Impairment in Patients With Cerebral Small Vessel Disease: A Quantitative Susceptibility Mapping Study. J. Magn. Reson. Imaging 2022, 56, 904–914. [Google Scholar] [CrossRef]
- Perosa, V.; Rotta, J.; Yakupov, R.; Kuijf, H.J.; Schreiber, F.; Oltmer, J.T.; Mattern, H.; Heinze, H.-J.; Düzel, E.; Schreiber, S. Implications of quantitative susceptibility mapping at 7 tesla MRI for microbleeds detection in cerebral small vessel disease. Front. Neurol. 2023, 14, 1112312. [Google Scholar] [CrossRef]
- Gao, Y.; Liang, C.; Zhang, Q.; Zhuang, H.; Sui, C.; Zhang, N.; Feng, M.; Xin, H.; Guo, L.; Wang, Y. Brain iron deposition and cognitive decline in patients with cerebral small vessel disease: A quantitative susceptibility mapping study. Alzheimer’s Res. Ther. 2025, 17, 17. [Google Scholar] [CrossRef]
- Farr, A.C.; Xiong, M.P. Challenges and opportunities of deferoxamine delivery for treatment of alzheimer’s disease, parkinson’s disease, and intracerebral hemorrhage. Mol. Pharm. 2021, 18, 593–609. [Google Scholar] [CrossRef]
- Negida, A.; Hassan, N.M.; Aboeldahab, H.; Zain, Y.E.; Negida, Y.; Cadri, S.; Cadri, N.; Cloud, L.J.; Barrett, M.J.; Berman, B. Efficacy of the iron-chelating agent, deferiprone, in patients with parkinson’s disease: A systematic review and meta-analysis. CNS Neurosci. Ther. 2024, 30, e14607. [Google Scholar] [CrossRef] [PubMed]
- Devos, D.; Labreuche, J.; Rascol, O.; Corvol, J.-C.; Duhamel, A.; Guyon Delannoy, P.; Poewe, W.; Compta, Y.; Pavese, N.; Růžička, E.; et al. Trial of deferiprone in parkinson’s disease. N. Engl. J. Med. 2022, 387, 2045–2055. [Google Scholar] [CrossRef]
- Ayton, S.; Barton, D.; Brew, B.; Brodtmann, A.; Clarnette, R.; Desmond, P.; Devos, D.; Ellis, K.A.; Fazlollahi, A.; Fradette, C.; et al. Deferiprone in alzheimer disease: A randomized clinical trial. JAMA Neurol. 2025, 82, 11–18. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Li, Q.; Sun, H.; Wang, H. Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes. Adv. Sci. 2023, 10, e2300325. [Google Scholar] [CrossRef]
- Langkammer, C.; Schweser, F.; Shmueli, K.; Kames, C.; Li, X.; Guo, L.; Milovic, C.; Kim, J.; Wei, H.; Bredies, K.; et al. Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge. Magn. Reson. Med. 2018, 79, 1661–1673. [Google Scholar] [CrossRef]
- QSM Challenge 2.0 Organization Committee; Bilgic, B.; Langkammer, C.; Marques, J.P.; Meineke, J.; Milovic, C.; Schweser, F. QSM reconstruction challenge 2.0: Design and report of results. Magn. Reson. Med. 2021, 86, 1241–1255. [Google Scholar] [CrossRef]
- Rua, C.; Clarke, W.T.; Driver, I.D.; Mougin, O.; Morgan, A.T.; Clare, S.; Francis, S.; Muir, K.W.; Wise, R.G.; Carpenter, T.A.; et al. Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: Results from the UK7T study. NeuroImage 2020, 223, 117358. [Google Scholar] [CrossRef] [PubMed]
- Lancione, M.; Bosco, P.; Costagli, M.; Nigri, A.; Aquino, D.; Carne, I.; Ferraro, S.; Giulietti, G.; Napolitano, A.; Palesi, F.; et al. Multi-centre and multi-vendor reproducibility of a standardized protocol for quantitative susceptibility mapping of the human brain at 3T. Phys. Medica 2022, 103, 37–45. [Google Scholar] [CrossRef]
- Nigri, A.; Ferraro, S.; Gandini Wheeler-Kingshott, C.A.M.; Tosetti, M.; Redolfi, A.; Forloni, G.; D’Angelo, E.; Aquino, D.; Biagi, L.; Bosco, P.; et al. Quantitative MRI harmonization to maximize clinical impact: The RIN–neuroimaging network. Front. Neurol. 2022, 13, 855125. [Google Scholar] [CrossRef]
- QSM Consensus Organization Committee; Bilgic, B.; Costagli, M.; Chan, K.-S.; Duyn, J.; Langkammer, C.; Lee, J.; Li, X.; Liu, C.; Marques, J.P.; et al. Recommended implementation of quantitative susceptibility mapping for clinical research in the brain: A consensus of the ISMRM electro-magnetic tissue properties study group. Magn. Reson. Med. 2024, 91, 1834–1862. [Google Scholar] [CrossRef]
- Lancione, M.; Donatelli, G.; Cecchi, P.; Cosottini, M.; Tosetti, M.; Costagli, M. Echo-time dependency of quantitative susceptibility mapping reproducibility at different magnetic field strengths. NeuroImage 2019, 197, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Bordin, V.; Pirastru, A.; Bergsland, N.; Cazzoli, M.; Baselli, G.; Baglio, F. Optimal echo times for quantitative susceptibility mapping: A test-retest study on basal ganglia and subcortical brain nuclei. NeuroImage 2023, 278, 120272. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Spincemaille, P.; de Rochefort, L.; Kressler, B.; Wang, Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): A method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn. Reson. Med. 2009, 61, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Soret, M.; Bacharach, S.L.; Buvat, I. Partial-volume effect in PET tumor imaging. J. Nucl. Med. 2007, 48, 932–945. [Google Scholar] [CrossRef] [PubMed]
- Berg, R.C.; Preibisch, C.; Thomas, D.L.; Shmueli, K.; Biondetti, E. Investigating the effect of flow compensation and quantitative susceptibility mapping method on the accuracy of venous susceptibility measurement. NeuroImage 2021, 240, 118399. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Iron Uptake | Iron Export | Physiological Relevance | Pathological Relevance |
---|---|---|---|---|
Neurons | TfR1-mediated holo-Tf uptake; DMT1-mediated NTBI transport | FPN1-mediated | Neurotransmitter synthesis, oxygen transport, energy metabolism | Iron overload → Oxidative stress, excitotoxicity, neuronal death |
Oligodendrocytes | H-ferritin via Tim-1 receptor; Progenitors express TfRs | FPN1-mediated | Myelination, axonal support | Iron dysregulation → Hypomyelination, demyelination (e.g., MS); Degenerated oligodendrocytes → Released iron can deposit |
Astrocytes | TfR1/DMT1 uptake; End foot uptake from BBB endothelium | FPN1-mediated | Neurovascular unit maintenance, myelination support, metabolic buffering | Iron overload → Neurovascular dysfunction, neuroelectrophysiological tangles; Iron deficiency → Impaired myelin repair |
Microglia | TfR1/DMT1 uptake | FPN1-mediated | Immune defense, phagocytosis, synaptic remodeling, injury repair | Overexpression of HO-1 in aging → Iron overload → Neurotoxicity, chronic inflammation |
Condition | Key QSM Findings | Progressive Mapping | [Multimodal] Biomarker Concordance | Key Uncertainties |
---|---|---|---|---|
Normal Aging | Iron accumulation in deep gray matter (e.g., SN, RN, DN, striatum) and cortical regions (motor, prefrontal, insula, visual cortices) | ↑Iron in men > women after sex hormone reduction | [QSM + gene expression mapping] Concordance: QSM correlates with ferritin, transferrin, FPN1, DMT1 expression. | Whether iron shifts reflect normal aging or early neurodegeneration remains uncertain |
Parkinson’s Disease (PD) | Iron accumulation in SN, N1; extended to RN, DN, other basal ganglia structures, hippocampus, insula, orbitofrontal cortex | ↑Iron in SN: PD > iRBD > healthy | [QSM + DA transporter imaging] Concordance: Elevated SN iron parallels nigrostriatal dopaminergic dysfunction. | Unsolved directionality of iron and α-synuclein aggregation |
Alzheimer’s Disease (AD) | Iron accumulation in pallidum, caudate, putamen, hippocampus (fimbria) | ↑Iron: AD > MCI > healthy | [QSM + Aβ PET imaging] Partial concordance: Elevated iron in basal ganglia and hippocampus matches PET Aβ. Hippocampal iron predicts cognition independent of PET Aβ. | Unsolved directionality of iron and Aβ deposition |
Multiple Sclerosis (MS) | Confounded susceptibility in deep gray matter | Hyperintensity in chronic inactive plaques; Rim of chronic active plaques; Hypointensity in remyelination | Uncertain concordance: Iron likely concordant with activated microglia in the cores of lesion. | Uncertain relative contribution of iron vs. demyelination |
Cerebral Small Vessel Disease (CSVD) | Higher susceptibility in putamen, thalamus, hippocampus; CADASIL shows iron in putamen, caudate, and temporal pole | ↑Iron as CSVD progresses | [QSM + monogenetic mapping] Concordance: Elevated iron in symptomatic NOTCH3 carrier, correlates with greater BBB disruption and cognitive decline. | Unsolved directionality of iron and BBB damage |
Brain Region | Normal Aging | PD | AD | MS | CSVD |
---|---|---|---|---|---|
Red nucleus (RN) | Increase | Increase | Increase | Increase | |
Dentate nucleus (DN) | Increase | Increase | Increase | Increase | |
Basal ganglia | Robust general accumulation as ages | Robust accumulation in SN | Robust accumulation in caudate, putamen, pallidum | Increase | Increase |
Centrum semiovale | Increase | ||||
Hippocampus | Increase in advanced PD | Increase | Increase | ||
Thalamus | Inconsistent findings | Increase | |||
Cortex | Increase in prefrontal, motor, insula, visual cortices | Increase in orbitofrontal cortex and insula | Increase in frontal cortex | Increase in temporal pole |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.-H.; Zhu, Y.-C. Imaging of Cerebral Iron as an Emerging Marker for Brain Aging, Neurodegeneration, and Cerebrovascular Diseases. Brain Sci. 2025, 15, 944. https://doi.org/10.3390/brainsci15090944
Zhou C-H, Zhu Y-C. Imaging of Cerebral Iron as an Emerging Marker for Brain Aging, Neurodegeneration, and Cerebrovascular Diseases. Brain Sciences. 2025; 15(9):944. https://doi.org/10.3390/brainsci15090944
Chicago/Turabian StyleZhou, Chi-Heng, and Yi-Cheng Zhu. 2025. "Imaging of Cerebral Iron as an Emerging Marker for Brain Aging, Neurodegeneration, and Cerebrovascular Diseases" Brain Sciences 15, no. 9: 944. https://doi.org/10.3390/brainsci15090944
APA StyleZhou, C.-H., & Zhu, Y.-C. (2025). Imaging of Cerebral Iron as an Emerging Marker for Brain Aging, Neurodegeneration, and Cerebrovascular Diseases. Brain Sciences, 15(9), 944. https://doi.org/10.3390/brainsci15090944