HIITing Anxiety and Depression in Parkinson’s Disease and Multiple Sclerosis—A Study Protocol of a Transdiagnostic Randomized Controlled Trial (HersenFIT)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.2.1. Safety Monitoring and Withdrawal
2.2.2. Sample Size
2.3. Outcome Assessment
2.3.1. Primary Outcome
2.3.2. Additional Outcomes: Non-Motor Symptoms
2.3.3. Additional Outcomes: Motor Symptoms
2.3.4. Additional Outcomes: Neuroplasticity and Neurodegeneration
2.3.5. Additional Outcomes
2.4. Intervention
2.5. Statistical Analysis
3. Expected Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Trial registry
Abbreviations
PD | Parkinson’s disease |
MS | Multiple sclerosis |
CAT | Continuous aerobic training |
HIIT | High-intensity interval training |
MA | Movement advice |
EDSS | Expanded disability status scale |
HADS | Hospital anxiety and depression scale |
MoCA | Montreal cognitive assessment |
HADS-D | Hospital anxiety and depression scale, depression subscale |
HADS-A | Hospital anxiety and depression scale, anxiety subscale |
HPA axis | Hypothalamic–pituitary–adrenal axis |
VAS | Visual analog scale |
CIS20r | Checklist individual strength—20r |
ISI | Insomnia severity index |
10MWT | 10 m walk test |
TUG | Timed up and go test |
9HPT | Nine-hole peg test |
MPRAGE | Magnetization-prepared rapid gradient echo |
FLAIR | Fluid-attenuated inversion recovery |
NM | Neuromelanin |
DWI | Diffusion-weighted imaging |
BDNF | Brain-derived neurotrophic factor |
NfL | Neurofilament light |
NEADL | Nottingham extended activities of daily living scale |
SF-36 | Short-form health survey |
PASIPD | Physical activity scale for individuals with physical disabilities |
METS | Metabolic equivalents |
CPET | Cardiopulmonary exercise test |
SD | Standard deviation |
IQR | Interquartile range |
LMM | Linear mixed model |
SMD | Standardized mean difference |
95%CI | 95% confidence interval |
VEGF | Vascular endothelial growth factor |
IGF-1 | Insulin-like growth factor |
IL-15 | Interleukin 15 |
References
- Hirsch, E.C.; Hunot, S. Neuroinflammation in Parkinson’s disease: A target for neuroprotection? Lancet Neurol. 2009, 8, 382–397. [Google Scholar] [CrossRef]
- Mey, G.M.; Mahajan, K.R.; DeSilva, T.M. Neurodegeneration in multiple sclerosis. WIREs Mech. Dis. 2023, 15, e1583. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- Comber, L.; Galvin, R.; Coote, S. Gait deficits in people with multiple sclerosis: A systematic review and meta-analysis. Gait Posture 2017, 51, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Beiske, A.G.; Svensson, E.; Sandanger, I.; Czujko, B.; Pedersen, E.D.; Aarseth, J.H.; Myhr, K.M. Depression and anxiety amongst multiple sclerosis patients. Eur. J. Neurol. 2008, 15, 239–245. [Google Scholar] [CrossRef]
- Braley, T.J.; Chervin, R.D. Fatigue in multiple sclerosis: Mechanisms, evaluation, and treatment. Sleep 2010, 33, 1061–1067. [Google Scholar] [CrossRef]
- Langdon, D.W. Cognition in multiple sclerosis. Curr. Opin. Neurol. 2011, 24, 244–249. [Google Scholar] [CrossRef]
- Pfeiffer, R.F. Non-motor symptoms in Parkinson’s disease. Park. Relat. Disord. 2016, 22 (Suppl. S1), S119–S122. [Google Scholar] [CrossRef]
- Boeschoten, R.E.; Braamse, A.M.J.; Beekman, A.T.F.; Cuijpers, P.; van Oppen, P.; Dekker, J.; Uitdehaag, B.M.J. Prevalence of depression and anxiety in Multiple Sclerosis: A systematic review and meta-analysis. J. Neurol. Sci. 2017, 372, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Broen, M.P.; Narayen, N.E.; Kuijf, M.L.; Dissanayaka, N.N.; Leentjens, A.F. Prevalence of anxiety in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2016, 31, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, J.S.; Ehrt, U.; Weber, W.E.; Aarsland, D.; Leentjens, A.F. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov. Disord. 2008, 23, 183–189, quiz 313. [Google Scholar] [CrossRef] [PubMed]
- Pontone, G.M.; Bakker, C.C.; Chen, S.; Mari, Z.; Marsh, L.; Rabins, P.V.; Williams, J.R.; Bassett, S.S. The longitudinal impact of depression on disability in Parkinson disease. Int. J. Geriatr. Psychiatry 2016, 31, 458–465. [Google Scholar] [CrossRef]
- Hussain, M.; Kumar, P.; Khan, S.; Gordon, D.K.; Khan, S. Similarities Between Depression and Neurodegenerative Diseases: Pathophysiology, Challenges in Diagnosis and Treatment Options. Cureus 2020, 12, e11613. [Google Scholar] [CrossRef]
- Alvaro, P.K.; Roberts, R.M.; Harris, J.K. A Systematic Review Assessing Bidirectionality between Sleep Disturbances, Anxiety, and Depression. Sleep 2013, 36, 1059–1068. [Google Scholar] [CrossRef]
- Dauwan, M.; Begemann, M.J.H.; Slot, M.I.E.; Lee, E.H.M.; Scheltens, P.; Sommer, I.E.C. Physical exercise improves quality of life, depressive symptoms, and cognition across chronic brain disorders: A transdiagnostic systematic review and meta-analysis of randomized controlled trials. J. Neurol. 2021, 268, 1222–1246. [Google Scholar] [CrossRef]
- Husain, M. Transdiagnostic neurology: Neuropsychiatric symptoms in neurodegenerative diseases. Brain 2017, 140, 1535–1536. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Fiest, K.M.; Walker, J.R.; Bernstein, C.N.; Graff, L.A.; Zarychanski, R.; Abou-Setta, A.M.; Patten, S.B.; Sareen, J.; Bolton, J.M.; Marriott, J.J.; et al. Systematic review and meta-analysis of interventions for depression and anxiety in persons with multiple sclerosis. Mult. Scler. Relat. Disord. 2016, 5, 12–26. [Google Scholar] [CrossRef]
- Pontone, G.M.; Mills, K.A. Optimal Treatment of Depression and Anxiety in Parkinson’s Disease. Am. J. Geriatr. Psychiatry 2021, 29, 530–540. [Google Scholar] [CrossRef]
- Ryan, M.; Eatmon, C.V.; Slevin, J.T. Drug treatment strategies for depression in Parkinson disease. Expert Opin. Pharmacother. 2019, 20, 1351–1363. [Google Scholar] [CrossRef]
- Costa, V.; Prati, J.M.; de Oliveira Barreto Suassuna, A.; Souza Silva Brito, T.; Frigo da Rocha, T.; Gianlorenco, A.C. Physical Exercise for Treating the Anxiety and Depression Symptoms of Parkinson’s Disease: Systematic Review and Meta-Analysis. J. Geriatr. Psychiatry Neurol. 2024, 37, 415–435. [Google Scholar] [CrossRef] [PubMed]
- Motl, R.W.; Sandroff, B.M.; Kwakkel, G.; Dalgas, U.; Feinstein, A.; Heesen, C.; Feys, P.; Thompson, A.J. Exercise in patients with multiple sclerosis. Lancet Neurol. 2017, 16, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Silic, P.; Motl, R.W.; Duffecy, J. Multiple sclerosis and anxiety: Is there an untapped opportunity for exercise? Mult. Scler. Relat. Disord. 2023, 73, 104698. [Google Scholar] [CrossRef] [PubMed]
- Strohle, A. Physical activity, exercise, depression and anxiety disorders. J. Neural. Transm. 2009, 116, 777–784. [Google Scholar] [CrossRef]
- Mak, M.K.; Wong-Yu, I.S.; Shen, X.; Chung, C.L. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat. Rev. Neurol. 2017, 13, 689–703. [Google Scholar] [CrossRef]
- Johansson, M.E.; Cameron, I.G.M.; Van der Kolk, N.M.; de Vries, N.M.; Klimars, E.; Toni, I.; Bloem, B.R.; Helmich, R.C. Aerobic Exercise Alters Brain Function and Structure in Parkinson’s Disease: A Randomized Controlled Trial. Ann. Neurol. 2022, 91, 203–216. [Google Scholar] [CrossRef]
- Stellmann, J.P.; Maarouf, A.; Schulz, K.H.; Baquet, L.; Pottgen, J.; Patra, S.; Penner, I.K.; Gellissen, S.; Ketels, G.; Besson, P.; et al. Aerobic Exercise Induces Functional and Structural Reorganization of CNS Networks in Multiple Sclerosis: A Randomized Controlled Trial. Front. Hum. Neurosci. 2020, 14, 255. [Google Scholar] [CrossRef]
- Karlsen, T.; Aamot, I.L.; Haykowsky, M.; Rognmo, O. High Intensity Interval Training for Maximizing Health Outcomes. Prog. Cardiovasc. Dis. 2017, 60, 67–77. [Google Scholar] [CrossRef]
- Atakan, M.M.; Li, Y.; Kosar, S.N.; Turnagol, H.H.; Yan, X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int. J. Environ. Res. Public Health 2021, 18, 7201. [Google Scholar] [CrossRef]
- Foster, C.; Casado, A.; Bok, D.; Hofmann, P.; Bakken, M.; Tjelta, A.; Manso, J.; Boullosa, D.; de Koning, J. History and perspectives on interval training in sport, health, and disease. Appl. Physiol. Nutr. Metab. 2025, 50, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Gallo, P.M. High-intensity interval training for neurodegenerative conditions: Indications and recommendations for exercise programming. ACSM’s Health Fit. J. 2021, 25, 18–27. [Google Scholar] [CrossRef]
- Campbell, E.; Coulter, E.H.; Paul, L. High intensity interval training for people with multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2018, 24, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Harpham, C.; Gunn, H.; Marsden, J.; Connolly, L. The feasibility, safety, physiological and clinical effects of high-intensity interval training for people with Parkinson’s: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2023, 35, 497–523. [Google Scholar] [CrossRef] [PubMed]
- Youssef, H.; Gonul, M.N.; Sobeeh, M.G.; Akar, K.; Feys, P.; Cuypers, K.; Vural, A. Is High-Intensity Interval Training More Effective Than Moderate Continuous Training in Rehabilitation of Multiple Sclerosis: A Comprehensive Systematic Review and Meta-analysis. Arch. Phys. Med. Rehabil. 2024, 105, 1545–1558. [Google Scholar] [CrossRef]
- Martland, R.; Mondelli, V.; Gaughran, F.; Stubbs, B. Can high-intensity interval training improve physical and mental health outcomes? A meta-review of 33 systematic reviews across the lifespan. J. Sports Sci. 2020, 38, 430–469. [Google Scholar] [CrossRef]
- Plag, J.; Schmidt-Hellinger, P.; Klippstein, T.; Mumm, J.L.M.; Wolfarth, B.; Petzold, M.B.; Strohle, A. Working out the worries: A randomized controlled trial of high intensity interval training in generalized anxiety disorder. J. Anxiety Disord. 2020, 76, 102311. [Google Scholar] [CrossRef]
- Gaia, J.W.P.; Schuch, F.B.; Ferreira, R.W.; Souza, E.L.; Ferreira, V.M.S.; Pires, D.A. Effects of high-intensity interval training on depressive and anxiety symptoms in healthy individuals: A systematic review and meta-analysis of randomized clinical trials. Scand. J. Med. Sci. Sports 2024, 34, e14618. [Google Scholar] [CrossRef]
- Zare, N.; Bishop, D.J.; Levinger, I.; Febbraio, M.A.; Broatch, J.R. Exercise intensity matters: A review on evaluating the effects of aerobic exercise intensity on muscle-derived neuroprotective myokines. Alzheimers Dement. 2025, 11, e70056. [Google Scholar] [CrossRef]
- Zhang, X.; Zong, B.; Zhao, W.; Li, L. Effects of Mind-Body Exercise on Brain Structure and Function: A Systematic Review on MRI Studies. Brain Sci. 2021, 11, 205. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Ye, B.; Zheng, Y.; Xiong, Z.; Xia, R.; Qiu, P.; Tao, J.; Chen, L. The effects of exercise on the structure of cognitive related brain regions: A meta-analysis of functional neuroimaging data. Int. J. Neurosci. 2019, 129, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, C.; Chen, A. A systematic review and meta-analysis of the effects of physical exercise on white matter integrity and cognitive function in older adults. Geroscience 2024, 46, 2641–2651. [Google Scholar] [CrossRef]
- Bray, N.W.; Pieruccini-Faria, F.; Bartha, R.; Doherty, T.J.; Nagamatsu, L.S.; Montero-Odasso, M. The effect of physical exercise on functional brain network connectivity in older adults with and without cognitive impairment. A systematic review. Mech. Ageing Dev. 2021, 196, 111493. [Google Scholar] [CrossRef]
- Walsh, J.J.; Tschakovsky, M.E. Exercise and circulating BDNF: Mechanisms of release and implications for the design of exercise interventions. Appl. Physiol. Nutr. Metab. 2018, 43, 1095–1104. [Google Scholar] [CrossRef]
- Gomez-Pinilla, F.; Ying, Z.; Roy, R.R.; Molteni, R.; Edgerton, V.R. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J. Neurophysiol. 2002, 88, 2187–2195. [Google Scholar] [CrossRef]
- Martinowich, K.; Manji, H.; Lu, B. New insights into BDNF function in depression and anxiety. Nat. Neurosci. 2007, 10, 1089–1093. [Google Scholar] [CrossRef]
- Ruiz-Gonzalez, D.; Hernandez-Martinez, A.; Valenzuela, P.L.; Morales, J.S.; Soriano-Maldonado, A. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: A systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 2021, 128, 394–405. [Google Scholar] [CrossRef]
- Kaagman, D.G.M.; van Wegen, E.E.H.; Cignetti, N.; Rothermel, E.; Vanbellingen, T.; Hirsch, M.A. Effects and Mechanisms of Exercise on Brain-Derived Neurotrophic Factor (BDNF) Levels and Clinical Outcomes in People with Parkinson’s Disease: A Systematic Review and Meta-Analysis. Brain Sci. 2024, 14, 194. [Google Scholar] [CrossRef]
- Shobeiri, P.; Karimi, A.; Momtazmanesh, S.; Teixeira, A.L.; Teunissen, C.E.; van Wegen, E.E.H.; Hirsch, M.A.; Yekaninejad, M.S.; Rezaei, N. Exercise-induced increase in blood-based brain-derived neurotrophic factor (BDNF) in people with multiple sclerosis: A systematic review and meta-analysis of exercise intervention trials. PLoS ONE 2022, 17, e0264557. [Google Scholar] [CrossRef]
- Gomes, E.S.A.; Van den Heuvel, O.A.; Rietberg, M.B.; De Groot, V.; Hirsch, M.A.; Van de Berg, W.D.J.; Jaspers, R.T.; Vriend, C.; Vanbellingen, T.; Van Wegen, E.E.H. (HIIT-The Track) High-Intensity Interval Training for People with Parkinson’s Disease: Individual Response Patterns of (Non-)Motor Symptoms and Blood-Based Biomarkers-A Crossover Single-Case Experimental Design. Brain Sci. 2023, 13, 849. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Choi, S.; Kang, N.; Park, K.; Shin, H.; Lee, H.; Lee, H.; Jun, J.S.; Jeon, B.; Byun, K. Effects of high-intensity interval training and moderate-intensity continuous training on non-motor symptoms in patients with Parkinson’s disease: A randomised pilot trial. J. Neurol. Neurosurg. Psychiatry 2024, 95, 886–888. [Google Scholar] [CrossRef] [PubMed]
- Ellis, T.; Boudreau, J.K.; DeAngelis, T.R.; Brown, L.E.; Cavanaugh, J.T.; Earhart, G.M.; Ford, M.P.; Foreman, K.B.; Dibble, L.E. Barriers to exercise in people with Parkinson disease. Phys. Ther. 2013, 93, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Tolosa, E.; Garrido, A.; Scholz, S.W.; Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021, 20, 385–397. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sorensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef]
- Goetz, C.G.; Poewe, W.; Rascol, O.; Sampaio, C.; Stebbins, G.T.; Counsell, C.; Giladi, N.; Holloway, R.G.; Moore, C.G.; Wenning, G.K.; et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: Status and recommendations. Mov. Disord. 2004, 19, 1020–1028. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef]
- Bjelland, I.; Dahl, A.A.; Haug, T.T.; Neckelmann, D. The validity of the Hospital Anxiety and Depression Scale. An updated literature review. J. Psychosom. Res. 2002, 52, 69–77. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef]
- Thompson, P.D.; Arena, R.; Riebe, D.; Pescatello, L.S. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription. Curr. Sports Med. Rep. 2013, 12, 215–217. [Google Scholar] [CrossRef]
- Bille, K.; Figueiras, D.; Schamasch, P.; Kappenberger, L.; Brenner, J.I.; Meijboom, F.J.; Meijboom, E.J. Sudden cardiac death in athletes: The Lausanne Recommendations. Eur. J. Prev. Cardiol. 2006, 13, 859–875. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Nieuwboer, A.; Kwakkel, G.; Rochester, L.; Jones, D.; van Wegen, E.; Willems, A.M.; Chavret, F.; Hetherington, V.; Baker, K.; Lim, I. Cueing training in the home improves gait-related mobility in Parkinson’s disease: The RESCUE trial. J. Neurol. Neurosurg. Psychiatry 2007, 78, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Wewers, M.E.; Lowe, N.K. A critical review of visual analogue scales in the measurement of clinical phenomena. Res. Nurs. Health 1990, 13, 227–236. [Google Scholar] [CrossRef]
- Smith, A. Symbol digit modalities test. In The Clinical Neuropsychologist; Western Psychological Services: Los Angeles, CA, USA, 1973. [Google Scholar]
- Golden, C.; Freshwater, S.M.; Golden, Z. Stroop Color and Word Test; APA: Washington, DC, USA, 1978. [Google Scholar]
- Bowie, C.R.; Harvey, P.D. Administration and interpretation of the Trail Making Test. Nat. Protoc. 2006, 1, 2277–2281. [Google Scholar] [CrossRef]
- Worm-Smeitink, M.; Gielissen, M.; Bloot, L.; van Laarhoven, H.W.M.; van Engelen, B.G.M.; van Riel, P.; Bleijenberg, G.; Nikolaus, S.; Knoop, H. The assessment of fatigue: Psychometric qualities and norms for the Checklist individual strength. J. Psychosom. Res. 2017, 98, 40–46. [Google Scholar] [CrossRef]
- Morin, C.M.; Belleville, G.; Bélanger, L.; Ivers, H. The Insomnia Severity Index: Psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 2011, 34, 601–608. [Google Scholar] [CrossRef]
- Peters, D.M.; Fritz, S.L.; Krotish, D.E. Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. J. Geriatr. Phys. Ther. 2013, 36, 24–30. [Google Scholar] [CrossRef]
- Herman, T.; Giladi, N.; Hausdorff, J.M. Properties of the ‘timed up and go’test: More than meets the eye. Gerontology 2011, 57, 203–210. [Google Scholar] [CrossRef]
- Feys, P.; Lamers, I.; Francis, G.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R.; Consortium, M.S.O.A. The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult. Scler. J. 2017, 23, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Autry, A.E.; Monteggia, L.M. Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 2012, 64, 238–258. [Google Scholar] [CrossRef] [PubMed]
- Zuccato, C.; Cattaneo, E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat. Rev. Neurol. 2009, 5, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef]
- Kuhle, J.; Barro, C.; Disanto, G.; Mathias, A.; Soneson, C.; Bonnier, G.; Yaldizli, O.; Regeniter, A.; Derfuss, T.; Canales, M.; et al. Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity. Mult. Scler. 2016, 22, 1550–1559. [Google Scholar] [CrossRef]
- das Nair, R.B.; Moreton, B.J.; Lincoln, N.B. Rasch analysis of the Nottingham extended activities of daily living scale. J. Rehabil. Med. 2011, 43, 944–950. [Google Scholar] [CrossRef]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Washburn, R.A.; Zhu, W.; McAuley, E.; Frogley, M.; Figoni, S.F. The physical activity scale for individuals with physical disabilities: Development and evaluation. Arch. Phys. Med. Rehabil. 2002, 83, 193–200. [Google Scholar] [CrossRef]
- Huang, G.; Wang, R.; Chen, P.; Huang, S.C.; Donnelly, J.E.; Mehlferber, J.P. Dose-response relationship of cardiorespiratory fitness adaptation to controlled endurance training in sedentary older adults. Eur. J. Prev. Cardiol. 2016, 23, 518–529. [Google Scholar] [CrossRef]
- Gezondheidsraad. Beweegrichtlijnen 2017—Samenvatting. Available online: https://www.gezondheidsraad.nl/documenten/adviezen/2017/08/22/beweegrichtlijnen-2017 (accessed on 26 May 2025).
- Paluch, A.E.; Bajpai, S.; Bassett, D.R.; Carnethon, M.R.; Ekelund, U.; Evenson, K.R.; Galuska, D.A.; Jefferis, B.J.; Kraus, W.E.; Lee, I.M.; et al. Daily steps and all-cause mortality: A meta-analysis of 15 international cohorts. Lancet Public Health 2022, 7, e219–e228. [Google Scholar] [CrossRef]
- Diechmann, M.D.; Campbell, E.; Coulter, E.; Paul, L.; Dalgas, U.; Hvid, L.G. Effects of Exercise Training on Neurotrophic Factors and Subsequent Neuroprotection in Persons with Multiple Sclerosis-A Systematic Review and Meta-Analysis. Brain Sci. 2021, 11, 1499. [Google Scholar] [CrossRef]
- Hirsch, M.A.; Iyer, S.S.; Sanjak, M. Exercise-induced neuroplasticity in human Parkinson’s disease: What is the evidence telling us? Parkinsonism Relat. Disord. 2016, 22 (Suppl. S1), S78–S81. [Google Scholar] [CrossRef] [PubMed]
- Wegner, M.; Helmich, I.; Machado, S.; Nardi, A.E.; Arias-Carrion, O.; Budde, H. Effects of exercise on anxiety and depression disorders: Review of meta- analyses and neurobiological mechanisms. CNS Neurol. Disord. Drug Targets 2014, 13, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Dalgas, U.; Stenager, E.; Sloth, M.; Stenager, E. The effect of exercise on depressive symptoms in multiple sclerosis based on a meta-analysis and critical review of the literature. Eur. J. Neurol. 2015, 22, 443–e34. [Google Scholar] [CrossRef] [PubMed]
- Gascoyne, C.; Karahalios, A.; Demaneuf, T.; Marck, C. Effect of Exercise Interventions on Anxiety in People with Multiple Sclerosis: A Systematic Review and Meta-analysis. Int. J. MS Care 2020, 22, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Borrega-Mouquinho, Y.; Sanchez-Gomez, J.; Fuentes-Garcia, J.P.; Collado-Mateo, D.; Villafaina, S. Effects of High-Intensity Interval Training and Moderate-Intensity Training on Stress, Depression, Anxiety, and Resilience in Healthy Adults During Coronavirus Disease 2019 Confinement: A Randomized Controlled Trial. Front. Psychol. 2021, 12, 643069. [Google Scholar] [CrossRef]
- Gu, T.; Hao, P.; Chen, P.; Wu, Y. A Systematic Review and Meta-Analysis of the Effectiveness of High-Intensity Interval Training in People with Cardiovascular Disease at Improving Depression and Anxiety. Evid. Based Complement. Alternat. Med. 2022, 2022, 8322484. [Google Scholar] [CrossRef]
- Dalgleish, T.; Black, M.; Johnston, D.; Bevan, A. Transdiagnostic approaches to mental health problems: Current status and future directions. J. Consult. Clin. Psychol. 2020, 88, 179–195. [Google Scholar] [CrossRef]
- Munoz, A.; Correa, C.L.; Lopez-Lopez, A.; Costa-Besada, M.A.; Diaz-Ruiz, C.; Labandeira-Garcia, J.L. Physical Exercise Improves Aging-Related Changes in Angiotensin, IGF-1, SIRT1, SIRT3, and VEGF in the Substantia Nigra. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1594–1601. [Google Scholar] [CrossRef]
- Najafi, P.; Hadizadeh, M.; Cheong, J.P.G.; Mohafez, H.; Abdullah, S. Cytokine Profile in Patients with Multiple Sclerosis Following Exercise: A Systematic Review of Randomized Clinical Trials. Int. J. Environ. Res. Public Health 2022, 19, 8151. [Google Scholar] [CrossRef]
- Williams, N. The Borg rating of perceived exertion (RPE) scale. Occup. Med. 2017, 67, 404–405. [Google Scholar] [CrossRef]
Study Phase | Baseline | Intervention | Follow-Up | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Week | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
Socio-demographic and disease | Socio-demographics | * | |||||||||||||||
Disease characteristics | * | ||||||||||||||||
Pharmacotherapy | * | ||||||||||||||||
characteristics | MDS-UPDRS a OR EDSS b | * | * | * | * | ||||||||||||
PDQ-8 a OR MSIS b | * | * | * | * | |||||||||||||
Primary outcome | HADS | * | * | * | * | ||||||||||||
Non-motor symptoms | VAS mood | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |
SDMT | * | * | * | * | |||||||||||||
SCWT | * | * | * | * | |||||||||||||
TMT | * | * | * | * | |||||||||||||
VAS ability to concentrate | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |
CIS-20r | * | * | * | * | |||||||||||||
VAS fatigue | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |
ISI | * | * | * | * | |||||||||||||
VAS sleep | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | |
Motor symptoms | 10MWT | * | * | * | * | ||||||||||||
TUG | * | * | * | * | |||||||||||||
NHPT | * | * | * | * | |||||||||||||
Neuroplasticity and neurodegeneration | Plasma and serum c—BDNF and NfL | * | * | * | * | * | * | * | * | * | * | * | * | * | * | ||
Brain MRI | * | * | |||||||||||||||
Additional outcomes | QoL—SF-36 | * | * | * | * | ||||||||||||
Participation—NEADI | * | * | * | * | |||||||||||||
CPET | * | ||||||||||||||||
PA-PASIPD | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gravesteijn, A.S.; Rietberg, M.B.; de Groot, V.; Hirsch, M.A.; Vanbellingen, T.; Jaspers, R.T.; Vriend, C.; van de Berg, W.D.J.; van den Heuvel, O.A.; van Wegen, E.E.H.; et al. HIITing Anxiety and Depression in Parkinson’s Disease and Multiple Sclerosis—A Study Protocol of a Transdiagnostic Randomized Controlled Trial (HersenFIT). Brain Sci. 2025, 15, 945. https://doi.org/10.3390/brainsci15090945
Gravesteijn AS, Rietberg MB, de Groot V, Hirsch MA, Vanbellingen T, Jaspers RT, Vriend C, van de Berg WDJ, van den Heuvel OA, van Wegen EEH, et al. HIITing Anxiety and Depression in Parkinson’s Disease and Multiple Sclerosis—A Study Protocol of a Transdiagnostic Randomized Controlled Trial (HersenFIT). Brain Sciences. 2025; 15(9):945. https://doi.org/10.3390/brainsci15090945
Chicago/Turabian StyleGravesteijn, Arianne S., Marc B. Rietberg, Vincent de Groot, Mark A. Hirsch, Tim Vanbellingen, Richard T. Jaspers, Chris Vriend, Wilma D. J. van de Berg, Odile A. van den Heuvel, Erwin E. H. van Wegen, and et al. 2025. "HIITing Anxiety and Depression in Parkinson’s Disease and Multiple Sclerosis—A Study Protocol of a Transdiagnostic Randomized Controlled Trial (HersenFIT)" Brain Sciences 15, no. 9: 945. https://doi.org/10.3390/brainsci15090945
APA StyleGravesteijn, A. S., Rietberg, M. B., de Groot, V., Hirsch, M. A., Vanbellingen, T., Jaspers, R. T., Vriend, C., van de Berg, W. D. J., van den Heuvel, O. A., van Wegen, E. E. H., & on behalf of the HersenFIT Consortium. (2025). HIITing Anxiety and Depression in Parkinson’s Disease and Multiple Sclerosis—A Study Protocol of a Transdiagnostic Randomized Controlled Trial (HersenFIT). Brain Sciences, 15(9), 945. https://doi.org/10.3390/brainsci15090945