Optimizing Gait Outcomes in Parkinson’s Disease: The Effects of Musical Groove and Familiarity
Abstract
1. Introduction
2. Method
2.1. Participants
2.2. Procedures
2.2.1. Clinical Evaluation and Demographics
2.2.2. Baseline Gait Measurements
2.2.3. Stimulus Selection
2.2.4. Cued Gait Trials
2.2.5. Beat Alignment Test (BAT)
2.2.6. Data Analysis
3. Results
3.1. Spatial Gait Parameters
3.1.1. Step Length
3.1.2. Stride Width
3.2. Temporal Gait Parameters
3.2.1. Cadence
3.2.2. Stride Velocity
3.2.3. Double-Limb Support Time (DLST)
3.3. Variability Gait Parameters
4. Discussion
4.1. Groove Alters Gait in PD
4.2. Music- and Metronome-Based Auditory Cueing
4.3. Synchronizing Enhances Auditory Cueing Outcomes in PD
4.4. Beat Perception and Dual-Tasking
4.5. Accelerated Auditory Cues Do Not Increase Step Length
4.6. Familiarity Did Not Significantly Affect Gait Measures
4.7. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schapira, A.H.V. Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol. Sci. 2009, 30, 41–47. [Google Scholar] [CrossRef]
- Bugalho, P.; Alves, L.; Miguel, R. Gait dysfunction in Parkinson’s disease and normal pressure hydrocephalus: A comparative study. J. Neural Transm. 2013, 120, 1201–1207. [Google Scholar] [CrossRef]
- Ebersbach, G.; Moreau, C.; Gandor, F.; Defebvre, L.; Devos, D. Clinical syndromes: Parkinsonian gait. Mov. Disord. 2013, 28, 1552–1559. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Cudkowicz, M.E.; Firtion, R.; Wei, J.Y.; Goldberger, A.L. Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov. Disord. 1998, 13, 428–437. [Google Scholar] [CrossRef]
- Švehlík, M.; Zwick, E.B.; Steinwender, G.; Linhart, W.E.; Schwingenschuh, P.; Katschnig, P.; Ott, E.; Enzinger, C. Gait analysis in patients with Parkinson’s disease off dopaminergic therapy. Arch. Phys. Med. Rehabil. 2009, 90, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, J.D.; Giladi, N.; Balash, Y.; Bartels, A.L.; Gurevich, T.; Hausdorff, J.M. Gait dynamics in Parkinson’s disease: Relationship to Parkinsonian features, falls and response to levodopa. J. Neurol. Sci. 2003, 212, 47–53. [Google Scholar] [CrossRef]
- Marr, J. The experience of living with Parkinson’s disease. J. Neurosci. Nurs. 1991, 23, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Schrag, A.; Jahanshahi, M.; Quinn, N. How does Parkinson’s disease affect quality of life? A comparison with quality of life in the general population. Mov. Disord. 2000, 15, 1112–1118. [Google Scholar] [CrossRef]
- Soundy, A.; Roskell, C.; Stubbs, B. The experience of Parkinson’s disease: A systematic review and meta-ethnography. Sci. World J. 2014, 2014, 613592. [Google Scholar] [CrossRef]
- Fahn, S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Arch. Neurol. 1999, 56, 529–535. [Google Scholar] [CrossRef]
- Hung, A.Y.; Schwarzschild, M.A. Treatment of Parkinson’s disease: What’s in the non-dopaminergic pipeline? Neurotherapeutics 2014, 11, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Deane, K.H.O.; Ellis-Hill, C.; Dekker, K.; Davies, P.; Clarke, C.E. A Delphi survey of best practice occupational therapy for Parkinson’s disease in the United Kingdom. Br. J. Occup. Ther. 2003, 66, 247–254. [Google Scholar] [CrossRef]
- Tomlinson, C.L.; Patel, S.; Meek, C.; Herd, C.P.; Clarke, C.E.; Stowe, R.; Shah, L.; Sackley, C.M.; Deane, K.H.O.; Wheatley, K.; et al. Physiotherapy versus placebo or no intervention in Parkinson’s disease. Cochrane Database Syst. Rev. 2012, 8, CD002817. [Google Scholar] [CrossRef]
- Aragon, A.; Kings, J. Occupational Therapy for People with Parkinson’s. 2018. Retrieved from London, UK. Available online: www.rcot.co.uk (accessed on 17 May 2024).
- Keus, S.H.J.; Bloem, B.R.; Hendriks, E.J.M.; Bredero-Cohen, A.B.; Munneke, M. Evidence-based analysis of physical therapy in Parkinson’s disease with recommendations for practice and research. Mov. Disord. 2007, 22, 451–460. [Google Scholar] [CrossRef]
- Sturkenboom, I.; Thijssen, M.; Gons-van Elsacker, J.; Jansen, I.; Maasdam, A.; Schulten, M.; Vijver-Visser, D.; Steultjens, E.; Bloem, B.; Munneke, M. Guidelines for Occupational Therapy in Parkinson’s Disease Rehabilitation; Retrieved from Nijmegen; ParkinsonNet: Nijmegen, The Netherlands; Miami, FL, USA, 2008. [Google Scholar]
- Thaut, M.; Hoemberg, V. Handbook of Neurologic Music Therapy, 1st ed.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Ghai, S.; Ghai, I.; Schmitz, G.; Effenberg, A.O. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 506. [Google Scholar] [CrossRef]
- Brown, L.A.; de Bruin, N.; Doan, J.B.; Suchowersky, O.; Hu, B. Obstacle crossing among people with Parkinson disease is influenced by concurrent music. J. Rehabil. Res. Dev. 2010, 47, 225–231. [Google Scholar] [CrossRef]
- de Bruin, N.; Doan, J.B.; Turnbull, G.; Suchowersky, O.; Bonfield, S.; Hu, B.; Brown, L.A. Walking with music is a safe and viable tool for gait training in Parkinson’s disease: The effect of a 13-week feasibility study on single and dual task walking. Park. Dis. 2010, 2010, 483530. [Google Scholar] [CrossRef]
- McIntosh, G.C.; Brown, S.H.; Rice, R.R.; Thaut, M.H. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1997, 62, 22–26. [Google Scholar] [CrossRef]
- Nieuwboer, A.; Kwakkel, G.; Rochester, L.; Jones, D.; van Wegen, E.; Willems, A.M.; Chavret, F.; Hetherington, V.; Baker, K.; Lim, I. Cueing training in the home improves gait-related mobility in Parkinson’s disease: The RESCUE trial. J. Neurol. Neurosurg. Psychiatry 2007, 78, 134–140. [Google Scholar] [CrossRef]
- Rochester, L.; Hetherington, V.; Jones, D.; Nieuwboer, A.; Willems, A.M.; Kwakkel, G.; Van Wegen, E. The effect of external rhythmic cues (auditory and visual) on walking during a functional task in homes of people with Parkinson’s disease. Arch. Phys. Med. Rehabil. 2005, 86, 999–1006. [Google Scholar] [CrossRef]
- Thaut, M.H.; McIntosh, G.C.; Rice, R.R.; Miller, R.A.; Rathbun, J.; Brault, J.M. Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Mov. Disord. 1996, 11, 193–200. [Google Scholar] [CrossRef]
- Lim, I.; van Wegen, E.; de Goede, C.; Deutekom, M.; Nieuwboer, A.; Willems, A.; Jones, D.; Rochester, L.; Kwakkel, G. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: A systematic review. Clin. Rehabil. 2005, 19, 695–713. [Google Scholar] [CrossRef]
- Spaulding, S.J.; Barber, B.; Colby, M.; Cormack, B.; Mick, T.; Jenkins, M.E. Cueing and gait improvement among people with Parkinson’s disease: A meta-analysis. Arch. Phys. Med. Rehabil. 2013, 94, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Rocha, P.A.; Porfírio, G.M.; Ferraz, H.B.; Trevisani, V.F. Effects of external cues on gait parameters of Parkinson’s disease patients: A systematic review. Clin. Neurol. Neurosurg. 2014, 124, 127–134. [Google Scholar] [CrossRef]
- Forte, R.; Tocci, N.; De Vito, G. The impact of exercise intervention with rhythmic auditory stimulation to improve gait and mobility in Parkinson disease: An umbrella review. Brain Sci. 2021, 11, 685. [Google Scholar] [CrossRef]
- Ye, X.; Li, L.; He, R.; Jia, Y.; Poon, W. Rhythmic auditory stimulation promotes gait recovery in Parkinson’s patients: A systematic review and meta-analysis. Front. Neurol. 2022, 13, 940419. [Google Scholar] [CrossRef]
- Harrison, E.C.; Earhart, G.M. The effect of auditory cues on gait variability in people with Parkinson’s disease and older adults: A systematic review. Neurodegener. Dis. Manag. 2023, 13, 113–128. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, N.; Kempster, C.; Doucette, A.; Doan, J.B.; Hu, B.; Brown, L.A. The effects of music salience on the gait performance of young adults. J. Music Ther. 2015, 52, 394–419. [Google Scholar] [CrossRef] [PubMed]
- Leow, L.A.; Rinchon, C.; Grahn, J.A. Familiarity with music increases walking speed in rhythmic auditory cuing. Ann. N. Y. Acad. Sci. 2015, 1337, 53–61. [Google Scholar] [CrossRef]
- Leow, L.A.; Parrott, T.; Grahn, J.A. Individual differences in beat perception affect gait responses to low- and high-groove music. Front. Hum. Neurosci. 2014, 8, 811. [Google Scholar] [CrossRef]
- Dalla Bella, S.; Benoit, C.E.; Farrugia, N.; Keller, P.E.; Obrig, H.; Mainka, S.; Kotz, S.A. Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci. Rep. 2017, 7, 42005. [Google Scholar] [CrossRef]
- Dalla Bella, S.; Dotov, D.; Bardy, B.; Cochen de Cock, V. Individualization of music-based rhythmic auditory cueing in Parkinson’s disease. Ann. N. Y. Acad. Sci. 2018, 1423, 308–317. [Google Scholar] [CrossRef]
- Leow, L.A.; Waclawik, K.; Grahn, J.A. The role of attention and intention in synchronization to music: Effects on gait. Exp. Brain Res. 2018, 236, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.S.; Ready, E.A.; Grahn, J.A. Musical enjoyment does not enhance walking speed in healthy adults during music-based auditory cueing. Gait Posture 2021, 89, 132–138. [Google Scholar] [CrossRef]
- Ready, E.A.; McGarry, L.M.; Rinchon, C.; Holmes, J.D.; Grahn, J.A. Beat perception ability and instructions to synchronize influence gait when walking to music-based auditory cues. Gait Posture 2019, 68, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Ready, E.A.; Holmes, J.D.; Grahn, J.A. Gait in younger and older adults during rhythmic auditory stimulation is influenced by groove, familiarity, beat perception, and synchronization demands. Hum. Mov. Sci. 2022, 84, 102972. [Google Scholar] [CrossRef] [PubMed]
- Madison, G. Experiencing groove induced by music: Consistency and phenomenology. Music Percept. 2006, 24, 201–208. [Google Scholar] [CrossRef]
- Leow, L.A.; Watson, S.; Prete, D.; Waclawik, K.; Grahn, J.A. How groove in music affects gait. Exp. Brain Res. 2021, 239, 2419–2433. [Google Scholar] [CrossRef]
- Park, K.S.; Hass, C.J.; Janelle, C.M. Familiarity with music influences stride amplitude and variability during rhythmically-cued walking in individuals with Parkinson’s disease. Gait Posture 2021, 87, 101–109. [Google Scholar] [CrossRef]
- Cochen De Cock, V.; Dotov, D.G.; Ihalainen, P.; Bégel, V.; Galtier, F.; Lebrun, C.; Picot, M.C.; Driss, V.; Landragin, N.; Geny, C.; et al. Rhythmic abilities and musical training in Parkinson’s disease: Do they help? npj Park. Dis. 2018, 4, 8. [Google Scholar] [CrossRef]
- Patterson, K.K.; Wong, J.S.; Knorr, S.; Grahn, J.A. Rhythm perception and production abilities and their relationship to gait after stroke. Arch. Phys. Med. Rehabil. 2018, 99, 945–951. [Google Scholar] [CrossRef]
- Cameron, D.J.; Pickett, K.A.; Earhart, G.M.; Grahn, J.A. The effect of dopaminergic medication on beat-based auditory timing in Parkinson’s disease. Front. Neurol. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Grahn, J.A.; Brett, M. Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex 2009, 45, 54–61. [Google Scholar] [CrossRef]
- O’Shea, S.; Morris, M.E.; Iansek, R. Dual task interference during gait in people with Parkinson disease: Effects of motor versus cognitive secondary tasks. Phys. Ther. 2002, 82, 888–897. [Google Scholar] [CrossRef] [PubMed]
- Yogev, G.; Giladi, N.; Peretz, C.; Springer, S.; Simon, E.S.; Hausdorff, J.M. Dual tasking, gait rhythmicity, and Parkinson’s disease: Which aspects of gait are attention demanding? Eur. J. Neurosci. 2005, 22, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Lohnes, C.A.; Earhart, G.M. The impact of attentional, auditory, and combined cues on walking during single and cognitive dual tasks in Parkinson disease. Gait Posture 2011, 33, 478–483. [Google Scholar] [CrossRef]
- Rochester, L.; Nieuwboer, A.; Baker, K.; Hetherington, V.; Willems, A.-M.; Chavret, F.; Kwakkel, G.; Van Wegen, E.; Lim, I.; Jones, D. The attentional cost of external rhythmical cues and their impact on gait in Parkinson’s disease: Effect of cue modality and task complexity. J. Neural Transm. 2007, 114, 1243–1248. [Google Scholar] [CrossRef]
- Baker, K.; Rochester, L.; Nieuwboer, A. The immediate effect of attentional, auditory, and a combined cue strategy on gait during single and dual tasks in Parkinson’s disease. Arch. Phys. Med. Rehabil. 2007, 88, 1593–1600. [Google Scholar] [CrossRef]
- Goetz, C.G.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stebbins, G.T.; Stern, M.B.; Tilley, B.C.; Dodel, R.; Dubois, B.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Mov. Disord. 2007, 22, 41–47. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Müllensiefen, D.; Gingras, B.; Musil, J.; Stewart, L. The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS ONE 2014, 9, e89642. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An inventory for measuring clinical anxiety: Psychometric properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef] [PubMed]
- Starkstein, S.E.; Mayberg, H.S.; Preziosi, T.; Andrezejewski, P.; Leiguarda, R.; Robinson, R.G. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 1992, 4, 134–139. [Google Scholar] [CrossRef]
- Hollman, J.H.; Childs, K.B.; McNeil, M.L.; Mueller, A.C.; Quilter, C.M.; Youdas, J.W. Number of strides required for reliable measurements of pace, rhythm and variability parameters of gait during normal and dual task walking in older individuals. Gait Posture 2010, 32, 23–28. [Google Scholar] [CrossRef]
- Rennie, L.; Löfgren, N.; Moe-Nilssen, R.; Opheim, A.; Dietrichs, E.; Franzén, E. The reliability of gait variability measures for individuals with Parkinson’s disease and healthy older adults—The effect of gait speed. Gait Posture 2018, 62, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Müllensiefen, D.; Gingras, B.; Stewart, L.; Musil, J. The Goldsmiths Musical Sophistication Index (Gold-MSI): Technical Report and Documentation v1.0; Goldsmiths, University of London: London, UK, 2014. [Google Scholar]
- Hsu, P.; Ready, E.A.; Grahn, J.A.; Kotz, S. The effects of Parkinson’s disease, music training, and dance training on beat perception and production abilities. PLoS ONE 2022, 17, e0264587. [Google Scholar] [CrossRef] [PubMed]
- ProtoKinetics. Measurements and Definitions; ProtoKinetics: Peekskill, NY, USA, 2013. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed.; Waterloo Biomechanics: Waterloo, ON, Canada, 1991. [Google Scholar]
- Nombela, C.; Hughes, L.E.; Owen, A.M.; Grahn, J.A. Into the Groove: Can Rhythm Influence Parkinson’s Disease? Neurosci. Biobehav. Rev. 2013, 37, 2564–2570. [Google Scholar] [CrossRef]
- Matthews, T.E.; Witek, M.A.G.; Lund, T.; Vuust, P.; Penhune, V.B. The Sensation of Groove Engages Motor and Reward Networks. Neuroimage 2020, 214, 116768. [Google Scholar] [CrossRef]
- Morris, M.E.; Iansek, R.; Matyas, T.A.; Summers, J.J. Stride length regulation in Parkinson’s disease: Normalization strategies and underlying mechanisms. Brain 1996, 119, 551–568. [Google Scholar] [CrossRef]
- Giladi, N.; Shabtai, H.; Rozenberg, E.; Shabtai, E. Gait festination in Parkinson’s disease. Park. Relat. Disord. 2001, 7, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.E.; Iansek, R.; Galna, B. Gait festination and freezing in Parkinson’s disease: Pathogenesis and rehabilitation. Mov. Disord. 2008, 23, S451–S460. [Google Scholar] [CrossRef]
- Nonnekes, J.; Giladi, N.; Guha, A.; Fietzek, U.M. Gait festination in parkinsonism: Introduction of two phenotypes. J. Neurol. 2019, 266, 426–430. [Google Scholar] [CrossRef]
- Willems, A.M.; Nieuwboer, A.; Chavret, F.; Desloovere, K.; Dom, R.; Rochester, L.; Jones, D.; Kwakkel, G.; Van Wegen, E. The use of rhythmic auditory cues to influence gait in patients with Parkinson’s disease, the differential effect for freezers and non-freezers, an explorative study. Disabil. Rehabil. 2006, 28, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Howe, T.E.; Lövgreen, B.; Cody, F.W.; Ashton, V.J.; Oldham, J.A. Auditory cues can modify the gait of persons with early-stage Parkinson’s disease: A method for enhancing Parkinsonian walking performance? Clin. Rehabil. 2003, 17, 363–367. [Google Scholar] [CrossRef]
- Arias, P.; Cudeiro, J. Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson’s disease patients. Exp. Brain Res. 2008, 186, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Picelli, A.; Camin, M.; Tinazzi, M.; Vangelista, A.; Cosentino, A.; Fiaschi, A.; Smania, N. Three-dimensional motion analysis of the effects of auditory cueing on gait pattern in patients with Parkinson’s disease: A preliminary investigation. Neurol. Sci. 2010, 31, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Chester, E.L.; Turnbull, G.I.; Kozey, J. The effect of auditory cues on gait at different stages of Parkinsonʼs disease and during “on”/”off” fluctuations. Top. Geriatr. Rehabil. 2006, 22, 187–195. [Google Scholar] [CrossRef]
- Park, K.S. Decomposing the effects of familiarity with music cues on stride length and variability in persons with Parkinson’s disease: On the role of covariates. Int. J. Environ. Res. Public Health 2022, 19, 10793. [Google Scholar] [CrossRef]
- De Icco, R.; Tassorelli, C.; Berra, E.; Bolla, M.; Pacchetti, C.; Sandrini, G. Acute and chronic effect of acoustic and visual cues on gait training in Parkinson’s disease: A randomized, controlled study. Park. Dis. 2015, 2015, 978590. [Google Scholar] [CrossRef] [PubMed]
- Benoit, C.-E.; Dalla Bella, S.; Farrugia, N.; Obrig, H.; Mainka, S.; Kotz, S.A. Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease. Front. Hum. Neurosci. 2014, 8, 494. [Google Scholar] [CrossRef]
- Giorgi, F.; Donati, D.; Tedeschi, R. Cueing interventions for gait and balance in Parkinson’s disease: A scoping review of current evidence. Appl. Sci. 2024, 14, 11781. [Google Scholar] [CrossRef]
- Brant, M.; Barrick, C.; Muno, L.; Stegemoller, E. A pilot study on the influence of self-paced auditory cues and preferred music on gait in persons with Parkinson’s disease. Brain Sci. 2025, 15, 528. [Google Scholar] [CrossRef] [PubMed]
- Morris, I.B.; Vasudevan, E.; Schedel, M.; Weymouth, D.; Loomis, J.; Pinkhasov, T.; Muratori, L.M. Music to one’s ears: Familiarity and music engagement in people with Parkinson’s disease. Front. Neurosci. 2019, 13, 661. [Google Scholar] [CrossRef] [PubMed]
- Devlin, K.; Alshaikh, J.T.; Pantelyat, A. Music therapy and music-based interventions for movement disorders. Curr. Neurol. Neurosci. Rep. 2019, 19, 79. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, R.; Wei, W.; Luan, R.; Li, K. Effects of music-based movement therapy on motor function, balance, gait, mental health, and quality of life for patients with Parkinson’s disease: A systematic review and meta-analysis. Clin. Rehabil. 2021, 35, 937–951. [Google Scholar] [CrossRef]
- Calabrò, R.S.; Naro, A.; Filoni, S.; Pullia, M.; Billeri, L.; Tomasello, P.; Portaro, S.; Di Lorenzo, G.; Tomaino, C.; Bramanti, P. Walking to your right music: A randomized controlled trial on the novel use of treadmill plus music in Parkinson’s disease. J. Neuroeng. Rehabil. 2019, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Zhou, P.Y.; Cao, Z.H.; Ding, Z.G.; Chen, H.X.; Zhang, G.B. Rhythmic auditory stimulation with visual stimuli on motor and balance function of patients with Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 2001–2007. [Google Scholar]
Variable | Definition | Unit |
---|---|---|
Step Length | Distance from heel contact of one foot to the heel contact of the contralateral foot | cm |
Stride Width | Distance between a line connecting the two ipsilateral foot heel contacts (the stride) and the contralateral foot heel contact between those events; measured perpendicular to the stride | cm |
Cadence | Ratio of stride length by the stride time | cm/s |
Stride Velocity | Steps per minute, obtained after dividing the number of footfalls minus one by the ambulation time | steps/min |
Double-Limb Support Time | Number of seconds with both feet on the ground at the end of the stance phase, presented as a percentage of the gait cycle time | % sec |
Step Length Variability | Coefficient of variation [average standard deviation in the gait parameter divided by the average mean; CV] of step length | % |
Step Time Variability | CV of step time (where step time is the number of seconds from one step to the first contact on the following, contralateral foot; used as a proxy for cadence variability | % |
Stride Velocity Variability | CV of stride velocity | % |
Free Walking | Synchronized Walking | |||||
---|---|---|---|---|---|---|
Poor BP (n = 6) | Good BP (n = 4) | All (n = 10) | Poor BP (n = 4) | Good BP (n = 7) | All (n = 11) | |
Age (years) | 72.3 (1.6) | 68.8 (10.8) | 70.9 (6.7) | 67.3 (11.1) | 66 (7) | 66.5 (8.2) |
Sex (M/F) | 5/1 | 2/2 | 7/3 | 2/2 | 6/1 | 8/3 |
MDS-Unified PD Rating Scale (Section III) | 42.5 (15.1) | 29 (15.2) | 37.1 (16.0) | 35 (16.9) | 32.4 (16.0) | 33.4 (15.5) |
Hoehn and Yahr Score | 2.4 (0.5) | 2.3 (0.5) | 2.3 (0.5) | 2.3 (0.5) | 2.1 (0.4) | 2.2 (0.4) |
Timed Up-and-Go Test | 12.9 (1.4) | 10 (1.3) | 11.7 (2) | 12.8 (1.7) | 10.5 (0.5) | 11.4 (1.5) |
Montreal Cognitive Assessment 7.2 | 24.8 (4.6) | 26.3 (1.4) | 25.4 (3.5) | 26 (1.7) | 26.9 (2.2) | 26.5 (2.5) |
Beat Alignment Test (% Accuracy) | 53.9 (4.4) | 80.9 (10) | 64.7 (15.4) | 54.4 (8.8) | 75.6 (6.3) | 67.9 (12.7) |
Beck Depression Inventory | 11.6 (2.8) | 9 (2.9) | 10.3 (2.9) | 13.3 (10.6) | 11 (4.7) | 11.8 (6.9) |
Beck Anxiety Inventory | 6 (4.7) | 11.5 (8.7) | 8.2 (7.6) | 10.5 (4.7) | 10 (8.8) | 10.8 (7.3) |
Starkstein Apathy Scale | 15 (2.8) | 12.3 (4.5) | 13.9 (3.6) | 15 (4.5) | 10.4 (5.5) | 12.1 (5.4) |
Goldsmith Musical Sophistication Index * | 14.5 (7.2) | 25.3 (13.1) | 18.8 (10.8) | 17.3 (9) | 17.9 (7.3) | 17.6 (7.5) |
Dance Training (years) | 0 (0) | 0.3 (0.5) | 0.3 (0.3) | 0 (0) | 1.8 (4.5) | 1.1 (3.6) |
Baseline | Low Groove | High Groove | Metronome | ||
---|---|---|---|---|---|
Step Length | |||||
Free Walking | 58.2 (7.8) | 55 (8.9) † | 56.2 (9.3) | 55 (9.3) | |
Synchronized Walking | 59.3 (7) | 57.6 (8.9) † | 60.3 (8.6) | 59.3 (7.3) | |
Stride Width | |||||
Free Walking | 7 (3.7) | 8.1 (4) † | 8 (4) | 8.1 (4.1) | |
Synchronized Walking | 7.3 (2.2) | 7.8 (3.7) † | 7.4 (2.5) | 7.2 (2) | |
Cadence | |||||
Free Walking | 109 (9.6) | 106.3 (11.4) | 110.6 (13.1) | 109 (12.2) | |
Synchronized Walking | 106.5 (5.7) | 106.9 (11.9) | 114.5 (9.6) * | 115.1 (6.1) * | |
Stride Velocity | |||||
Free Walking | 105.6 (18.9) | 97.5 (20.8) | 104 (24.2) | 100.2 (23.4) | |
Synchronized Walking | 105.1 (13.6) | 103.9 (21.7) | 115.4 (19.6) | 113.3 (13.8) * | |
Double Limb Support Time | |||||
Free Walking | 17.1 (2.3) | 18.2 (2.8) † | 17.8 (2.9) | 18 (2.8) | |
Synchronized Walking | 16.4 (1.5) | 17.1 (2.8) † | 16.3 (2.6) | 16.3 (2.1) | |
CV Step Length | |||||
Free Walking | 7.6 (2.9) | 7.7 (2.7) | 7.3 (2.8) | 6.7 (2.2) | |
Synchronized Walking | 6.1 (3.4) | 5.9 (2.9) | 5.5 (2.7) | 5.6 (1.8) | |
CV Step Time | |||||
Free Walking | 4.7 (1.5) | 4.7 (1.2) | 4.6 (1.4) | 3.8 (0.9) | |
Synchronized Walking | 5.4 (5) | 4.4 (3.3) | 4.1 (1.6) | 3.7 (1.1) | |
CV Stride Velocity | |||||
Free Walking | 5.7 (2.2) | 5.4 (2.1) | 5.3 (2.1) | 5.2 (1.8) | |
Synchronized Walking | 6 (4.8) | 5 (2.9) | 4.2 (2) | 4.7 (1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ready, E.A.; Holmes, J.D.; Lonnee, E.P.; Grahn, J.A. Optimizing Gait Outcomes in Parkinson’s Disease: The Effects of Musical Groove and Familiarity. Brain Sci. 2025, 15, 901. https://doi.org/10.3390/brainsci15090901
Ready EA, Holmes JD, Lonnee EP, Grahn JA. Optimizing Gait Outcomes in Parkinson’s Disease: The Effects of Musical Groove and Familiarity. Brain Sciences. 2025; 15(9):901. https://doi.org/10.3390/brainsci15090901
Chicago/Turabian StyleReady, Emily A., Jeffrey D. Holmes, Eryn P. Lonnee, and Jessica A. Grahn. 2025. "Optimizing Gait Outcomes in Parkinson’s Disease: The Effects of Musical Groove and Familiarity" Brain Sciences 15, no. 9: 901. https://doi.org/10.3390/brainsci15090901
APA StyleReady, E. A., Holmes, J. D., Lonnee, E. P., & Grahn, J. A. (2025). Optimizing Gait Outcomes in Parkinson’s Disease: The Effects of Musical Groove and Familiarity. Brain Sciences, 15(9), 901. https://doi.org/10.3390/brainsci15090901