Spatial Mapping of Glioblastoma Infiltration: Diffusion Tensor Imaging-Based Radiomics and Connectomics in Recurrence Prediction
Abstract
:1. Introduction
2. White Matter Tracts and the Infiltrative Nature of Glioblastoma
3. Diffusion Tensor Imaging: Principles, Metrics and Clinical Insights
4. Radiomics and Machine Learning in DTI-Based GBM Imaging
5. Structural Connectomics and Probabilistic Tractography
6. Future Directions and Clinical Translation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, J.M.; Taphoorn, J.B.M.; Janzer, C.R.; Ludwin, K.S.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Del Inda, M.M.; Bonavia, R.; Seoane, J. Glioblastoma multiforme: A look inside its heterogeneous nature. Cancers 2014, 6, 226–239. [Google Scholar] [CrossRef]
- Price, S.J.; Gillard, J.H. Imaging biomarkers of brain tumour margin and tumour invasion. Br. J. Radiol. 2011, 84, S159–S167. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.L.; Li, C.; Boonzaier, N.R.; Fountain, D.M.; Larkin, T.J.; Matys, T.; van der Hoorn, A.; Price, S.J. Multimodal MRI characteristics of the glioblastoma infiltration beyond contrast enhancement. Ther. Adv. Neurol. Disord. 2019, 12, 1756286419844664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scherer, H.J. A critical review: The pathology of cerebral gliomas. J. Neurol. Psychiatry 1940, 3, 147–177. [Google Scholar] [CrossRef]
- Cuddapah, V.A.; Robel, S.; Watkins, S.; Sontheimer, H. A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 2014, 15, 455–465. [Google Scholar] [CrossRef]
- Armocida, D.; Bianconi, A.; Zancana, G.; Jiang, T.; Pesce, A.; Tartara, F.; Garbossa, D.; Salvati, M.; Santoro, A.; Serra, C.; et al. DTI fiber-tracking parameters adjacent to gliomas: The role of tract irregularity value in operative planning, resection, and outcome. J. Neurooncol. 2025, 171, 241–252. [Google Scholar] [CrossRef]
- Cozzi, F.M.; Mayrand, R.C.; Wan, Y.; Price, S.J. Predicting glioblastoma progression using MR diffusion tensor imaging: A systematic review. J. Neuroimaging 2025, 35, e13251. [Google Scholar] [CrossRef]
- Jang, K.; Russo, C.; Di Ieva, A. Radiomics in gliomas: Clinical implications of computational modeling and fractal-based analysis. Neuroradiology 2020, 62, 771–790. [Google Scholar] [CrossRef]
- Wei, Y.; Li, C.; Cui, Z.; Mayrand, R.C.; Zou, J.; Wong, A.L.K.C.; Sinha, R.; Matys, T.; Schönlieb, C.B.; Price, S.J. Structural connectome quantifies tumour invasion and predicts survival in glioblastoma patients. Brain 2023, 146, 1714–1727. [Google Scholar] [CrossRef] [PubMed]
- Claes, A.; Idema, A.J.; Wesseling, P. Diffuse glioma growth: A guerilla war. Acta Neuropathol. 2007, 114, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Veeravalli, K.K.; Rao, J.S. MMP-9 and uPAR regulated glioma cell migration. Cell Adhes. Migr. 2012, 6, 509–512. [Google Scholar] [CrossRef]
- Foltz, G.; Yoon, J.-G.; Lee, H.; Ma, L.; Tian, Q.; Hood, L.; Madan, A. Epigenetic Regulation of Wnt Pathway Antagonists in Human Glioblastoma Multiforme. Genes Cancer 2010, 1, 81–90. [Google Scholar] [CrossRef]
- Barzegar Behrooz, A.; Talaie, Z.; Jusheghani, F.; Łos, M.J.; Klonisch, T.; Ghavami, S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int. J. Mol. Sci. 2022, 23, 1353. [Google Scholar] [CrossRef]
- Giese, A.; Kluwe, L.; Laube, B.; Meissner, H.; Berens, E.M.; Westphal, M. Migration of human glioma cells on myelin. J. Neuropathol. Exp. Neurol. 1996, 55, 1119–1125. [Google Scholar]
- Price, S.J.; Jena, R.; Burnet, N.G.; Hutchinson, P.J.; Dean, A.F.; Peña, A.; Pickard, J.D.; Carpenter, T.A.; Gillard, J.H. Improved delineation of glioma margins and regions of infiltration with diffusion tensor imaging: An image-guided biopsy study. AJNR Am. J. Neuroradiol. 2006, 27, 1969–1974. [Google Scholar]
- Niyazi, M.; Brada, M.; Chalmers, A.J.; Combs, S.E.; Erridge, S.C.; Fiorentino, A.; Grosu, A.L.; Lagerwaard, F.J.; Minniti, G.; Mirimanoff, R.O.; et al. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother. Oncol. 2016, 118, 16–23. [Google Scholar] [CrossRef]
- Ellingson, B.M.; Cloughesy, T.F.; Zaw, T.; Lai, A.; Nghiemphu, P.L.; Harris, R.; Lalezari, S.; Wagle, N.; Naeini, K.M.; Carrillo, J.; et al. Functional diffusion maps (fDMs) evaluated before and after radiochemotherapy predict progression-free and overall survival in newly diagnosed glioblastoma. Neuro Oncol. 2012, 14, 333–343. [Google Scholar] [CrossRef]
- Jena, R.; Price, S.J.; Baker, C.; Jefferies, S.J.; Pickard, J.D.; Gillard, J.H.; Burnet, N.G. Diffusion tensor imaging: Possible implications for radiotherapy treatment planning of patients with high-grade glioma. Clin. Oncol. 2005, 17, 581–590. [Google Scholar] [CrossRef]
- Wu, J.S.; Zhou, L.F.; Tang, W.J.; Mao, Y.; Hu, J.; Song, Y.Y.; Hong, X.N.; Du, G.H. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: A prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery 2007, 61, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cui, M.; Gao, X.; Yang, H.; Chen, H.; Guan, B.; Ma, X. Structural connectome combining DTI features predicts postoperative language decline and its recovery in glioma patients. Eur. Radiol. 2024, 34, 2759–2771. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.J.; Mattiello, J.; Le Bihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994, 66, 259–267. [Google Scholar] [CrossRef]
- Pierpaoli, C.; Jezzard, P.; Basser, P.J.; Barnett, A.; Di Chiro, G. Diffusion tensor MR imaging of the human brain. Radiology 1996, 201, 637–648. [Google Scholar] [CrossRef]
- Almairac, F.; Parker, D.; Mondot, L.; Isan, P.; Onno, M.; Papadopoulo, T.; Fontaine, D.; Verma, R. Improvement of diffusion tensor imaging-based tractography by free-water correction in nonedematous gliomas: Assessment with brain mapping. J. Neurosurg. 2024, 141, 684–694. [Google Scholar] [CrossRef]
- Pogosbekyan, E.L.; Zakharova, N.E.; Batalov, A.I.; Shevchenko, A.M.; Fadeeva, L.M.; Bykanov, A.E.; Tyurina, A.N.; Chekhonin, I.V.; Galstyan, S.A.; Pitskhelauri, D.I.; et al. Individual Brain Tumor Invasion Mapping Based on Diffusion Kurtosis Imaging. Mod. Technol. Med. 2025, 17, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Salvalaggio, A.; Pini, L.; Gaiola, M.; Velco, A.; Sansone, G.; Anglani, M.; Fekonja, L.; Chioffi, F.; Picht, T.; Thiebaut de Schotten, M.; et al. White Matter Tract Density Index Prediction Model of Overall Survival in Glioblastoma. JAMA Neurol. 2023, 80, 1222–1231. [Google Scholar] [CrossRef]
- Tournier, J.D.; Smith, R.; Raffelt, D.; Tabbara, R.; Dhollander, T.; Pietsch, M.; Christiaens, D.; Jeurissen, B.; Yeh, C.H.; Connelly, A. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 2019, 202, 116–137. [Google Scholar] [CrossRef]
- Djuricic, G.J.; Radulovic, M.; Sopta, J.P.; Nikitovic, M.; Milosevic, N.T. Fractal and Gray Level Cooccurrence Matrix Computational Analysis of Primary Osteosarcoma Magnetic Resonance Images Predicts the Chemotherapy Response. Front. Oncol. 2017, 7, 246. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features of image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Czarnek, N.; Clark, K.; Peters, K.B.; Mazurowski, M.A. Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: A multi-institutional study. J. Neurooncol. 2017, 132, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Mazurowski, M.A.; Czarnek, N.M.; Collins, L.M.; Peters, K.B.; Clark, K. Predicting outcomes in glioblastoma patients using computerized analysis of tumor shape—Preliminary data. Prog. Biomed. Opt. Imaging Proc. SPIE 2016, 9785, 97852T-1. [Google Scholar] [CrossRef]
- Ditmer, A.; Zhang, B.; Shujaat, T.; Pavlina, A.; Luibrand, N.; Gaskill-Shipley, M.; Vagal, A. Diagnostic accuracy of MRI texture analysis for grading gliomas. J. Neurooncol. 2018, 140, 583–589. [Google Scholar] [CrossRef]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Amadasun, M.; King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 1989, 19, 1264–1274. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Ambrosini, R.D.; Wang, P.; O’Dell, W.G. Computer-aided detection of metastatic brain tumors using automated three-dimensional template matching. J. Magn. Reson. Imaging 2010, 31, 85–93. [Google Scholar] [CrossRef]
- Lowe, D.G. Object Recognition from Local Scale-Invariant Features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 1152, pp. 1150–1157. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 881, pp. 886–893. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Freeman, W.H. Company (1983) The Fractal Geometry of Nature Henry Holt and Company. Available online: https://archive.org/details/fractalgeometryo00beno (accessed on 12 November 2019).
- Di Ieva, A.; Grizzi, F.; Jelinek, H.; Pellionisz, A.J.; Losa, G.A. Fractals in the Neurosciences, Part I: General Principles and Basic Neurosciences. Neuroscientist 2014, 20, 403–417. [Google Scholar] [CrossRef]
- Di Ieva, A.; Esteban, F.J.; Grizzi, F.; Klonowski, W.; Martín-Landrove, M. Fractals in the Neurosciences, Part II: Clinical Applications and Future Perspectives. Neuroscientist 2013, 21, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Smitha, K.A.; Gupta, A.K.; Jayasree, R.S. Fractal analysis: Fractal dimension and lacunarity from MR images for differentiating the grades of glioma. Phys. Med. Biol. 2015, 60, 6937–6947. [Google Scholar] [CrossRef]
- Lim, J.S. Two-Dimensional Signal and Image Processing; Prentice-Hall, Inc.: Saddle River, NJ, USA, 1990. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB; Pearson Education: Indianapolis, IN, USA, 2004. [Google Scholar]
- Kim, J.Y.; Park, J.E.; Jo, Y.; Shim, W.H.; Nam, S.J.; Kim, J.H.; Yoo, R.E.; Choi, S.H.; Kim, H.S. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro-oncology 2019, 21, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, S.; Wang, X.; Zhang, Y.; Liu, J.; Zhao, H.; Chen, Y.; Zhou, Q.; Zhang, H.; Feng, X.; et al. Support-vector-machine radiomics model based on diffusion-tensor imaging distinguishes glioblastoma recurrence from radiation necrosis. Eur. Radiol. 2023, 33, 1234–1246. [Google Scholar]
- Saksena, S.; Jain, R.; Narang, J.; Scarpace, L.; Schultz, L.R.; Lehman, N.L.; Hearshen, D.; Patel, S.C.; Mikkelsen, T. Predicting survival in glioblastomas using diffusion tensor imaging metrics. J. Magn. Reson. Imaging 2010, 32, 788–795. [Google Scholar] [CrossRef]
- Yan, J.; Zhao, Y.; Chen, Y.; Wang, W.; Duan, W.; Wang, L.; Zhang, S.; Ding, T.; Liu, L.; Sun, Q.; et al. Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities. eBioMedicine 2021, 72, 103583. [Google Scholar] [CrossRef]
- Cepeda, S.; Luppino, L.T.; Pérez-Núñez, A.; Solheim, O.; García-García, S.; Velasco-Casares, M.; Karlberg, A.; Eikenes, L.; Sarabia, R.; Arrese, I.; et al. Predicting Regions of Local Recurrence in Glioblastomas Using Voxel-Based Radiomic Features of Multiparametric Postoperative MRI. Cancers 2023, 15, 1894. [Google Scholar] [CrossRef]
- Jian, A.; Jang, K.; Manuguerra, M.; Liu, S.; Magnussen, J.; Di Ieva, A. Machine Learning for the Prediction of Molecular Markers in Glioma on Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Neurosurgery 2021, 89, 31–44. [Google Scholar] [CrossRef]
- Zhou, M.; Scott, J.; Chaudhury, B.; Hall, L.; Goldgof, D.; Yeom, K.W.; Iv, M.; Ou, Y.; Kalpathy-Cramer, J.; Napel, S.; et al. Radiomics in brain tumours: Image assessment, quantitative feature descriptors, and machine-learning approaches. AJNR Am. J. Neuroradiol. 2018, 39, 208–216. [Google Scholar] [CrossRef]
- Jian, A.; Jang, K.; Russo, C.; Liu, S.; Di Ieva, A. Foundations of Multiparametric Brain Tumour Imaging Characterisation Using Machine Learning. Acta Neurochir. Suppl. 2022, 134, 183–193. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Sporns, O.; Tononi, G.; Kötter, R. The human connectome: A structural description of the human brain. PLoS Comput. Biol. 2005, 1, e42. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph-theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Behrens, T.E.J.; Berg, H.J.; Jbabdi, S.; Rushworth, M.F.S.; Woolrich, M.W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 2007, 34, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Dirkson, A.R.; de Witt Hamer, P.C.; van Geest, Q.; Hulst, H.E.; Barkhof, F.; Pouwels, P.J.; Geurts, J.J.; Reijneveld, J.C.; Douw, L. Connectomic profile of glioma patients: Decreased global efficiency and strategically located hub disruption. Brain 2014, 137, 1799–1814. [Google Scholar]
- Garyfallidis, E.; Brett, M.; Amirbekian, B.; Rokem, A.; van der Walt, S.; Descoteaux, M.; Nimmo-Smith, I.; Dipy Contributors. DIPY, a library for the analysis of diffusion MRI data. Front. Neuroinform. 2014, 8, 8. [Google Scholar] [CrossRef]
- Bello, L.; Castellano, A.; Fava, E.; Casaceli, G.; Riva, M.; Scotti, G.; Gaini, S.M.; Falini, A. Intraoperative mapping combined with diffusion-tensor imaging tractography preserves language function in glioma surgery. Neurosurgery 2014, 74, 401–414. [Google Scholar]
- Yu, K.; Sun, X.; Liu, L.; Zhang, K.; Chen, Y.; Zeng, D.; Guo, Y.; Wang, X.; Yang, W.; Zhou, Y.; et al. Glioma grade influences structural connectome: A diffusion-tensor imaging study. Sci. Rep. 2016, 6, 21697. [Google Scholar]
- Boss, M.A.; Malyarenko, D.; Partridge, S.; Obuchowski, N.; Shukla-Dave, A.; Winfield, J.M.; Fuller, C.D.; Miller, K.; Mishra, V.; Ohliger, M.; et al. The QIBA Profile for Diffusion-Weighted MRI: Apparent Diffusion Coefficient as a Quantitative Imaging Biomarker. Radiology 2024, 313, e233055. [Google Scholar] [CrossRef]
- Theaud, G.; Houde, J.C.; Boré, A.; Rheault, F.; Morency, F.; Descoteaux, M. TractoFlow: A robust, efficient and reproducible diffusion MRI pipeline leveraging Nextflow and Singularity. NeuroImage 2020, 218, 116889. [Google Scholar] [CrossRef]
- Qiu, T.M.; Zhang, Y.; Wu, J.S.; Tang, W.J.; Zhao, Y.; Pan, Z.G.; Mao, Y.; Zhou, L.F. Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography. Acta Neurochir. 2010, 152, 1847–1857. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual explanations from deep networks via gradient-based localisation. Int. J. Comput. Vis. 2020, 128, 336–359. [Google Scholar] [CrossRef]
- Barthel, F.P.; Johnson, K.C.; Varn, F.S.; Moskalik, A.D.; Tanner, G.; Kocakavuk, E.; Anderson, K.J.; Abiola, O.; Aldape, K.; Alfaro, K.D.; et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 2019, 576, 112–120. [Google Scholar] [CrossRef] [PubMed]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process Syst. 2017, 30, 4765–4774. [Google Scholar]
- Lohmann, P.; Kocher, M.; Steger, J.; Galldiks, N. Combined amino-acid PET/MRI radiomics in glioblastoma: A first-in-human feasibility study. Eur. J. Nucl. Med. Mol. Imaging. 2020, 47, 3838–3850. [Google Scholar]
- Kickingereder, P.; Bonekamp, D.; Nowosielski, M.; Kratz, A.; Sill, M.; Burth, S.; Wick, A.; Eidel, O.; Schlemmer, H.P.; Radbruch, A.; et al. Radiogenomics of glioblastoma: Machine learning-based classification of molecular characteristics by multi-parametric MRI. Radiology 2016, 281, 907–918. [Google Scholar] [CrossRef]
- Prior, F.W.; Clark, K.; Commean, P.; Freymann, J.; Jaffe, C.; Kirby, J.; Moore, S.; Smith, K.; Tarbox, L.; Vendt, B. TCIA: An information resource to enable open science. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 2013, 2013, 12821285. [Google Scholar] [CrossRef]
- Sheller, M.J.; Edwards, B.; Reina, G.A.; Martin, J.; Pati, S.; Kotrotsou, A.; Milchenko, M.; Xu, W.; Marcus, D.; Colen, R.R.; et al. Federated learning in medicine: Facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 2020, 10, 12598. [Google Scholar] [CrossRef]
Parameter | Definition |
---|---|
Fractional Anistropy (FA) | Scalar value (0–1) representing the degree of directional diffusion of water molecules. |
Mean Diffusivity (MD) | Average magnitude of diffusion regardless of direction (in mm2/s). |
Axial Diffusivity (AD) | Diffusivity parallel to the principal eigenvector of diffusion. |
Radial Diffusivity (RD) | Diffusivity perpendicular to the principal fibre direction. |
Tract Density Index (TDI) | Quantifies the number of streamlines (fibres) per voxel from probabilistic tractography. |
Anisotropy Coefficient Maps | Maps derived from FA distribution to visualise fibre orientation and coherence. |
Parameters and Main References | Definition |
---|---|
First-order texture statistics | |
Entropy [29] | Measures the inherent randomness in the grey-level intensities of an image or ROI. |
Uniformity [29] | Measures the homogeneity of grey-level intensities within an image or ROI. |
Higher-order texture statistics | |
Grey-level co-occurrence matrix [30] | Examines the spatial distribution of grey-level intensities within an image through a 2D grey tone histogram. |
Angular second movement [29] | Measures the textural uniformity of an image (also referred to as homogeneity). Captures the two-dimensional complexity of the edge of the tumour abnormalities. |
Inverse difference moment [29] | Measures local image homogeneity as it assumes larger values for smaller grey tone differences in pair elements. |
Contrast [29] | Measures the spatial tone frequency of an image as the difference between the highest and lowest values of a contiguous set of pixels. |
Correlation [29] | Measure of grey tone linear dependencies in the image. |
Bounding ellipsoid volume ratio [31] | Ratio of the tumour volume to the volume of the smallest ellipsoid that entirely encapsulates the tumour. Captures the three-dimensional complexity of tumours. |
Semi-axis diameter ratios [32] | Ratios of the minor semi-axis length to the longest bounding ellipsoid semi-axis diameter. Captures the three-dimensional complexity of tumours. |
Margin fluctuation [31,32] | Captures the two-dimensional complexity of the edge of the tumour abnormalities. Standard deviation of the difference between the ordered radial distances of the tumour edge from the centroid to all the boundary points, smoothed with an averaging filter of length equal to 10% of the tumour boundary. |
Mean intensity [33] | Average intensity of the pixel values within the ROI. |
Mean of positive pixel values [33] | Average pixel values of only the positive pixel values within the ROI. |
Standard deviation (SD) [33] | Quantification of the variance from the mean value (high SD indicating wide variation in pixel values). |
Kurtosis [33] | Peakedness (or pointedness) of the histogram of pixel values. Positive kurtosis = more peaked distribution. Negative kurtosis = flatter distribution. |
Skewness [33] | Quantifies the asymmetry of the histogram. Negative skewness = longer tail on the left side of the histogram. Positive skewness = longer tail on the right. |
Grey-level run matrix (GLRL) [34] | Number of contiguous voxels that have the same grey-level value. Characterises the grey-level run lengths of different grey-level intensities in any direction. |
Short runs emphasis (SRE) [34] | Measures distributions of short runs. Higher values indicate fine textures. |
Long runs emphasis (LRE) [34] | Measures distribution of long runs. Higher values indicate course textures. |
Grey-level nonuniformity (GLN) [34] | Measures the distribution of runs over the grey values. Low value when runs are equally distributed along grey levels. A lower value indicates higher similarity in intensity values. |
Run-length nonuniformity (RLN) [34] | Measures the distribution of runs over run lengths. Low value when runs are equally distributed over run lengths. |
Run percentage (RP) [34] | Measures the fraction of the number of realised runs and the maximum number of potential runs. Highly uniform ROI volumes produce a low run percentage. |
Neighbourhood grey tone difference matrix [35] | One dimensional matrix where each grey-level entry is the summation of the differences between all the pixels with grey-level value and the average grey-level value of its neighbourhood. |
Coarseness [35] | Quantitative measure of local uniformity. |
Busyness [35] | Rapid intensity changes of neighbourhoods in a given ROI. |
Complexity [35] | Quantifies the complexity of the spatial information present in an image. |
Texture strength [35] | Characterises the visual aesthetics of an image. |
Local binary pattern (LBP) [36] | Quantifies local pixel structures through a binary coding scheme. Measures the tumour microenvironment. |
Scale-invariant feature transform (SIFT) [36,37] | Detects distributed key points with a radius on tumour images. Measures tumour spatial characteristics. |
Histogram of oriented gradients (HOG) [38] | Computes block-wise histogram gradients with multiple orientations. Measures the tumour microenvironment. |
Fractal | |
Fractal dimension (box-counting and sand-box algorithms) [39,40,41] | A non-integer number between 0 and 2, in a two-dimensional space, or 0 and 3, in a three-dimensional volume, that quantifies the space-filling properties of irregularly shaped objects. |
Outline box dimension [29] | Evaluates the irregularity in shape of the image (i.e., how much it deviates from classic geometric figures). |
Lacunarity [42] | Pixel distribution of an image at different box sizes and at various grid orientations. Describes the degree of non-homogeneity within an image. |
Spatial filtering | |
Median filter [43] | Reduces sparse noise. Sets each pixel in ROI equal to the median pixel value of its specified neighbourhood. |
Entropy filter [44] | Accentuates edges by brightening pixels which have dissimilar neighbours. Sets each pixel in the ROI equal to the entropy (measure of disorder) of the pixel values in its specified neighbourhood. |
Laplacian of Gaussian (LoG) filter [45] | The Laplacian filter is a derivative filter used to find areas of rapid change (edges) in an image. Images are first smoothed using a Gaussian filter before applying the Laplacian. |
Author (Year) | Major Findings |
---|---|
Basser et al. (1994) [23] | Introduced the diffusion tensor formalism, establishing FA and MD as quantitative indices of white matter microstructure. |
Pierpaoli et al. (1996) [24] | First human DTI study that mapped normal FA/MD distributions, providing the baseline against which tumour-related changes are measured. |
Giese et al. (1996) [16] | Preclinical assays showed glioma cells migrate preferentially on myelinated substrates, inspiring tract-based imaging investigations. |
Jena et al. (2005) [20] | Demonstrated anisotropic, tract-aware CTV expansion in radiotherapy planning using DTI, improving coverage while sparing eloquent tracts. |
Sporns et al. (2005) [55] | Coined the “human connectome”, providing the graph-theory framework later applied to glioma network disruption. |
Price et al. (2006) [17] | Image-guided biopsies proved reduced FA marks microscopic GBM infiltration beyond contrast enhancement. |
Behrens et al. (2007) [57] | Developed probabilistic tractography accommodating crossing fibres—now standard for peritumoural mapping. |
Wu et al. (2007) [21] | Prospective trial showed DTI-based neuronavigation increased safe resection and preserved motor outcomes. |
Ellingson et al. (2012) [19] | Functional-diffusion-map changes during chemoradiotherapy predicted progression-free and overall survival weeks before MRI relapse. |
Derks et al. (2014) [58] | Connectomic analysis revealed that decreased global efficiency and hub disruption correlate with survival in glioma patients. |
Garyfallidis et al. (2014) [59] | Released DIPY, an open library for reproducible diffusion-MRI processing and tractography. |
Bello et al. (2014) [60] | Combined tractography with intraoperative mapping to preserve language while maximising glioma resection. |
Yu et al. (2016) [61] | Showed higher-grade gliomas produce greater reductions in connectome efficiency and modularity than lower-grade ones. |
Saksena et al. (2010) [48] | Peritumoural DTI-texture heterogeneity independently predicted overall and progression-free survival. |
Boss et al. (2024) [62] | QIBA multicentre phantom study quantified inter-scanner variability, establishing benchmark standards for DTI harmonisation. |
Kim et al. (2019) [46] | DTI + perfusion radiomics model differentiated pseudoprogression from true progression with AUC 0.91. |
Tournier et al. (2019) [28] | Published MRtrix3, a flexible open-source platform for advanced tractography and connectome construction. |
Salvalaggio et al. (2023) [27] | Low peritumoural TDI values predicted improved overall survival. |
Theaud et al. (2020) [63] | Launched TractoFlow, a containerised diffusion-MRI pipeline that standardises tractography across centres. |
Yan et al. (2021) [49] | Deep learning features from whole-brain DTI stratified glioma risk groups and linked imaging phenotypes to molecular pathways. |
Liu et al. (2024) [22] | Patient-specific connectomes showed hub disruption in default-mode/salience networks predicts distant recurrence and survival. |
Wei et al. (2023) [11] | Structural connectome quantification of invasion provided an independent prognostic marker of overall survival in GBM. |
Li et al. (2023) [47] | SVM radiomics model based on DTI distinguished GBM recurrence from radiation necrosis with multicentre AUC > 0.86. |
Domain | Technical Barrier | Practical Solutions and Ongoing Initiatives |
---|---|---|
DTI acquisition and preprocessing | Scanner- and protocol-dependent variations in b-values, gradient directions, field strengths, and EPI distortion. | QIBA diffusion phantoms, vendor-neutral harmonised protocols, reverse-phase-encoded volumes for distortion correction, and site-wise ComBat harmonisation of diffusion metrics. |
Radiomics feature stability | Handcrafted texture/shape features sensitive to voxel size, interpolation, and intensity discretisation. | IBSI-conformant feature definitions, resampling to isotropic voxels, test–retest repeatability (ICC > 0.85), and robust feature selection. |
Machine learning interpretability | “Black-box” perception limits clinical trust. | Embedded XAI toolkits (SHAP, Grad-CAM) in PACS/RT-TPS viewers, model-agnostic partial-dependence plots, and calibration and decision-curve reporting [65]. |
Structural connectomics | No consensus on brain parcellation or tractography parameters, variable graph metrics. | Multi-atlas consensus parcellations (e.g., HCP-MMP 1.0), containerised pipelines (MRtrix3 Connectome, TractoFlow) with fixed seeds/thresholds, open-source code, and parameter disclosure. |
Inter-institutional data sharing | Privacy laws restrict transfer of imaging/genomic data for external validation. | Federated learning frameworks (Flower, NVIDIA FLARE), differential-privacy aggregation, and synthetic-data augmentation. |
Clinical workflow integration | Additional processing steps and limited DICOM-RT support hinder routine use. | Vendor plug-ins that auto-import parametric maps/tractograms into TPS, one-click containerised scripts, and automated QC and PDF summaries. |
Regulation and reimbursement | AI software must demonstrate robustness, safety, and cost-effectiveness. | FDA/EMA SaMD guidance adherence, multicentre external validation, and health-economic models showing reduced recurrence and cognitive toxicity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, K.; Back, M. Spatial Mapping of Glioblastoma Infiltration: Diffusion Tensor Imaging-Based Radiomics and Connectomics in Recurrence Prediction. Brain Sci. 2025, 15, 576. https://doi.org/10.3390/brainsci15060576
Jang K, Back M. Spatial Mapping of Glioblastoma Infiltration: Diffusion Tensor Imaging-Based Radiomics and Connectomics in Recurrence Prediction. Brain Sciences. 2025; 15(6):576. https://doi.org/10.3390/brainsci15060576
Chicago/Turabian StyleJang, Kevin, and Michael Back. 2025. "Spatial Mapping of Glioblastoma Infiltration: Diffusion Tensor Imaging-Based Radiomics and Connectomics in Recurrence Prediction" Brain Sciences 15, no. 6: 576. https://doi.org/10.3390/brainsci15060576
APA StyleJang, K., & Back, M. (2025). Spatial Mapping of Glioblastoma Infiltration: Diffusion Tensor Imaging-Based Radiomics and Connectomics in Recurrence Prediction. Brain Sciences, 15(6), 576. https://doi.org/10.3390/brainsci15060576