Cerebellum’s Contribution to Attention, Executive Functions and Timing: Psychophysiological Evidence from Event-Related Potentials
Abstract
:1. Introduction
2. Cerebellum and Attention
3. Cerebellum and Executive Functioning
4. Cerebellum and Timing Processing
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holmes, G.M. Clinical Symptoms of Cerebellar Disease and Their Interpretation. Lancet 1922, 2, 59–65. [Google Scholar]
- Ito, M. Control of Mental Activities by Internal Models in the Cerebellum. Nat. Rev. Neurosci. 2008, 9, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J.; Schmahmann, J.D. Functional Topography in the Human Cerebellum: A Meta-Analysis of Neuroimaging Studies. Neuroimage 2009, 44, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. The Role of the Cerebellum in Cognition and Emotion: Personal Reflections since 1982 on the Dysmetria of Thought Hypothesis, and Its Historical Evolution from Theory to Therapy. Neuropsychol. Rev. 2010, 20, 236–260. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J.; Valera, E.M.; Schmahmann, J.D. Functional Topography of the Cerebellum for Motor and Cognitive Tasks: An FMRI Study. Neuroimage 2012, 59, 1560–1570. [Google Scholar] [CrossRef] [PubMed]
- Allen, G.; Buxton, R.B.; Wong, E.C.; Courchesne, E. Attentional Activation of the Cerebellum Independent of Motor Involvement. Science 1997, 275, 1940–1943. [Google Scholar] [CrossRef] [PubMed]
- Le, T.H.; Pardo, J.V.; Hu, X. 4 T-FMRI Study of Nonspatial Shifting of Selective Attention: Cerebellar and Parietal Contributions. J. Neurophysiol. 1998, 79, 1535–1548. [Google Scholar] [CrossRef]
- Schweizer, T.A.; Alexander, M.P.; Cusimano, M.; Stuss, D.T. Fast and Efficient Visuotemporal Attention Requires the Cerebellum. Neuropsychologia 2007, 45, 3068–3074. [Google Scholar] [CrossRef]
- Striemer, C.L.; Cantelmi, D.; Cusimano, M.D.; Danckert, J.A.; Schweizer, T.A. Deficits in Reflexive Covert Attention Following Cerebellar Injury. Front. Hum. Neurosci. 2015, 9, 428. [Google Scholar] [CrossRef]
- Gottwald, B.; Mihajlovic, Z.; Wilde, B.; Mehdorn, H.M. Does the Cerebellum Contribute to Specific Aspects of Attention? Neuropsychologia 2003, 41, 1452–1460. [Google Scholar] [CrossRef]
- Exner, C.; Weniger, G.; Irle, E. Cerebellar Lesions in the PICA but Not SCA Territory Impair Cognition. Neurology 2004, 63, 2132–2135. [Google Scholar] [CrossRef] [PubMed]
- Baillieux, H.; De Smet, H.J.; Paquier, P.F.; De Deyn, P.P.; Mariën, P. Cerebellar Neurocognition: Insights into the Bottom of the Brain. Clin. Neurol. Neurosurg. 2008, 110, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.M.C.; Ivry, R.B. Cerebellum and Timing. In Handbook of the Cerebellum and Cerebellar Disorders; Springer: Dordrecht, The Netherlands, 2013; pp. 1201–1219. [Google Scholar]
- Petersen, S.E.; Fox, P.T.; Posner, M.I.; Mintun, M.; Raichle, M.E. Positron Emission Tomographic Studies of the Processing of Singe Words. J. Cogn. Neurosci. 1989, 1, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Fiez, J.A.; Petersen, S.E.; Cheney, M.K.; Raichle, M.E. Impaired Non-Motor Learning and Error Detection Associated with Cerebellar Damage. Brain 1992, 115, 155–178. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D.; Sherman, J.C. The Cerebellar Cognitive Affective Syndrome. Brain 1998, 121 Pt 4, 561–579. [Google Scholar] [CrossRef]
- Brodal, P. The Pontocerebellar Projection in the Rhesus Monkey: An Experimental Study with Retrograde Axonal Transport of Horseradish Peroxidase. Neuroscience 1979, 4, 193–208. [Google Scholar] [CrossRef]
- Strick, P.L.; Dum, R.P.; Fiez, J.A. Cerebellum and Nonmotor Function. Annu. Rev. Neurosci. 2009, 32, 413–434. [Google Scholar] [CrossRef]
- Schmahmann, J.D. The Cerebellum and Cognition. Neurosci. Lett. 2019, 688, 62–75. [Google Scholar] [CrossRef]
- Dum, R.P.; Strick, P.L. An Unfolded Map of the Cerebellar Dentate Nucleus and Its Projections to the Cerebral Cortex. J. Neurophysiol. 2003, 89, 634–639. [Google Scholar] [CrossRef]
- Brodal, P. The Corticopontine Projection in the Rhesus Monkey Origin and Principles of Organization. Brain 1978, 101, 251–283. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Pandya, D.N. Projections to the Basis Pontis from the Superior Temporal Sulcus and Superior Temporal Region in the Rhesus Monkey. J. Comp. Neurol. 1991, 308, 224–248. [Google Scholar] [CrossRef] [PubMed]
- Glickstein, M.; Gerrits, N.; Kralj-Hans, I.; Mercier, B.; Stein, J.; Voogd, J. Visual Pontocerebellar Projections in the Macaque. J. Comp. Neurol. 1994, 349, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D.; Weilburg, J.B.; Sherman, J.C. The Neuropsychiatry of the Cerebellum—Insights from the Clinic. Cerebellum 2007, 6, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.G.; Harper, J.W. Ascending Projections of the Cerebellar Fastigial Nucleus to the Hippocampus, Amygdala, and Other Temporal Lobe Sites: Evoked Potential and Histological Studies in Monkeys and Cats. Exp. Neurol. 1974, 45, 268–287. [Google Scholar] [CrossRef] [PubMed]
- Grodd, W.; Hülsmann, E.; Lotze, M.; Wildgruber, D.; Erb, M. Sensorimotor Mapping of the Human Cerebellum: FMRI Evidence of Somatotopic Organization. Hum. Brain Mapp. 2001, 13, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Rijntjes, M.; Buechel, C.; Kiebel, S.; Weiller, C. Multiple Somatotopic Representations in the Human Cerebellum. Neuroreport 1999, 10, 3653–3658. [Google Scholar] [CrossRef]
- Nitschke, M.F.; Kleinschmidt, A.; Wessel, K.; Frahm, J. Somatotopic Motor Representation in the Human Anterior Cerebellum. A High-Resolution Functional MRI Study. Brain 1996, 119 Pt 3, 1023–1029. [Google Scholar] [CrossRef]
- Habas, C.; Kamdar, N.; Nguyen, D.; Prater, K.; Beckmann, C.F.; Menon, V.; Greicius, M.D. Distinct Cerebellar Contributions to Intrinsic Connectivity Networks. J. Neurosci. 2009, 29, 8586–8594. [Google Scholar] [CrossRef]
- Buckner, R.L.; Krienen, F.M.; Castellanos, A.; Diaz, J.C.; Thomas Yeo, B.T. The Organization of the Human Cerebellum Estimated by Intrinsic Functional Connectivity. J. Neurophysiol. 2011, 106, 2322–2345. [Google Scholar] [CrossRef]
- O’Reilly, J.X.; Beckmann, C.F.; Tomassini, V.; Ramnani, N.; Johansen-Berg, H. Distinct and Overlapping Functional Zones in the Cerebellum Defined by Resting State Functional Connectivity. Cereb. Cortex 2010, 20, 953–965. [Google Scholar] [CrossRef]
- Dobromyslin, V.I.; Salat, D.H.; Fortier, C.B.; Leritz, E.C.; Beckmann, C.F.; Milberg, W.P.; McGlinchey, R.E. Distinct Functional Networks within the Cerebellum and Their Relation to Cortical Systems Assessed with Independent Component Analysis. Neuroimage 2012, 60, 2073–2085. [Google Scholar] [CrossRef] [PubMed]
- Ivry, R.; Fiez, J.C.N. Cerebellar Contributions to Cognition and Imagery. In The Cognitive Neurosciences; MIT Press: Cambridge, MA, USA, 2000; pp. 999–1011. [Google Scholar]
- Leiner, H.C.; Leiner, A.L.; Dow, R.S. Cognitive and Language Functions of the Human Cerebellum. Trends Neurosci. 1993, 16, 444–447. [Google Scholar] [CrossRef]
- Raichle, M.E.; Fiez, J.A.; Videen, T.O.; MacLeod, A.-M.K.; Pardo, J.V.; Fox, P.T.; Petersen, S.E. Practice-Related Changes in Human Brain Functional Anatomy during Nonmotor Learning. Cereb. Cortex 1994, 4, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, H.; Wildgruber, D.; Daum, I.; Grodd, W. Does the Cerebellum Contribute to Cognitive Aspects of Speech Production? A Functional Magnetic Resonance Imaging (FMRI) Study in Humans. Neurosci. Lett. 1998, 247, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.M.; Strick, P.L. Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate. J. Neurosci. 2003, 23, 8432–8444. [Google Scholar] [CrossRef] [PubMed]
- Galea, J.M.; Jayaram, G.; Ajagbe, L.; Celnik, P. Modulation of Cerebellar Excitability by Polarity-Specific Noninvasive Direct Current Stimulation. J. Neurosci. 2009, 29, 9115–9122. [Google Scholar] [CrossRef] [PubMed]
- Middleton, F.A.; Strick, P.L. Cerebellar Projections to the Prefrontal Cortex of the Primate. J. Neurosci. 2001, 21, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Middleton, F.A.; Strick, P.L. Cerebellar Output: Motor and Cognitive Channels. Trends Cogn. Sci. 1998, 2, 348–354. [Google Scholar] [CrossRef]
- Kappenman, E.S.; Luck, S.J. ERP Components: The Ups and Downs of Brainwave Recordings; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Woodman, G.F. A Brief Introduction to the use of Event-related potentials (ERPs) in studies of perception and attention. Atten. Percept. Psychophys. 2010, 72, 2031–2046. [Google Scholar] [CrossRef]
- Bao, H.; Xie, M.; Huang, Y.; Liu, Y.; Lan, C.; Lin, Z.; Wang, Y.; Qin, P. Specificity in the Processing of a Subject’s Own Name. Soc. Cogn. Affect. Neurosci. 2023, 18, nsad066. [Google Scholar] [CrossRef]
- Pauletti, C.; Mannarelli, D.; Grippo, A.; Currà, A.; Locuratolo, N.; De Lucia, M.C.; Fattapposta, F. Phasic Alertness in a Cued Double-Choice Reaction Time Task: A Contingent Negative Variation (CNV) Study. Neurosci. Lett. 2014, 581, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Proverbio, A.M.; Tacchini, M.; Jiang, K. What Do You Have in Mind? ERP Markers of Visual and Auditory Imagery. Brain Cogn. 2023, 166, 105954. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.C.; Barry, R.J.; Connolly, J.F.; Fischer, C.; Michie, P.T.; Näätänen, R.; Polich, J.; Reinvang, I.; Van Petten, C. Event-Related Potentials in Clinical Research: Guidelines for Eliciting, Recording, and Quantifying Mismatch Negativity, P300, and N400. Clin. Neurophysiol. 2009, 120, 1883–1908. [Google Scholar] [CrossRef] [PubMed]
- Paulus, K.S.; Magnano, I.; Conti, M.; Galistu, P.; D’Onofrio, M.; Satta, W.; Aiello, I. Pure Post–Stroke Cerebellar Cognitive Affective Syndrome: A Case Report. Neurol. Sci. 2004, 25, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Knolle, F.; Schröger, E.; Kotz, S.A. Cerebellar Contribution to the Prediction of Self-Initiated Sounds. Cortex 2013, 49, 2449–2461. [Google Scholar] [CrossRef] [PubMed]
- Mannarelli, D.; Pauletti, C.; De Lucia, M.C.; Currà, A.; Fattapposta, F. Insights from ERPs into Attention during Recovery after Cerebellar Stroke: A Case Report. Neurocase 2015, 21, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Adamaszek, M.; Olbrich, S.; Kirkby, K.C.; Woldag, H.; Willert, C.; Heinrich, A. Event-Related Potentials Indicating Impaired Emotional Attention in Cerebellar Stroke-a Case Study. Neurosci. Lett. 2013, 548, 206–211. [Google Scholar] [CrossRef]
- Tunc, S.; Baginski, N.; Lubs, J.; Bally, J.F.; Weissbach, A.; Baaske, M.K.; Tadic, V.; Brüggemann, N.; Bäumer, T.; Beste, C.; et al. Predictive Coding and Adaptive Behavior in Patients with Genetically Determined Cerebellar Ataxia-A Neurophysiology Study. Neuroimage Clin. 2019, 24, 102043. [Google Scholar] [CrossRef]
- Kremlacek, J.; Valis, M.; Masopust, J.; Urban, A.; Zumrova, A.; Talab, R.; Kuba, M.; Kubova, Z.; Langrova, J. An Electrophysiological Study of Visual Processing in Spinocerebellar Ataxia Type 2 (SCA2). Cerebellum 2011, 10, 32–42. [Google Scholar] [CrossRef]
- Rodríguez-Labrada, R.; Velázquez-Pérez, L.; Ortega-Sánchez, R.; Peña-Acosta, A.; Vázquez-Mojena, Y.; Canales-Ochoa, N.; Medrano-Montero, J.; Torres-Vega, R.; González-Zaldivar, Y. Insights into Cognitive Decline in Spinocerebellar Ataxia Type 2: A P300 Event-Related Brain Potential Study. Cerebellum Ataxias 2019, 6, 3. [Google Scholar] [CrossRef]
- Houston, J.R.; Hughes, M.L.; Lien, M.C.; Martin, B.A.; Loth, F.; Luciano, M.G.; Vorster, S.; Allen, P.A. An Electrophysiological Study of Cognitive and Emotion Processing in Type I Chiari Malformation. Cerebellum 2018, 17, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Krain, A.L.; Castellanos, F.X. Brain Development and ADHD. Clin. Psychol. Rev. 2006, 26, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J. Distinct Regions of the Cerebellum Show Gray Matter Decreases in Autism, ADHD, and Developmental Dyslexia. Front. Syst. Neurosci. 2014, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Bruchhage, M.M.K.; Bucci, M.P.; Becker, E.B.E. Cerebellar Involvement in Autism and ADHD. Handb. Clin. Neurol. 2018, 155, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Millan, M.J.; Agid, Y.; Brüne, M.; Bullmore, E.T.; Carter, C.S.; Clayton, N.S.; Connor, R.; Davis, S.; Deakin, B.; DeRubeis, R.J.; et al. Cognitive Dysfunction in Psychiatric Disorders: Characteristics, Causes and the Quest for Improved Therapy. Nat. Rev. Drug Discov. 2012, 11, 141–168. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, C.; Pham, E.; Kumar, S.; Piguet, C.; Deiber, M.P.; Aubry, J.M.; Dayer, A.; Michel, C.M.; Perroud, N.; Berchio, C. Dysfunctional Temporal Stages of Eye-Gaze Perception in Adults with ADHD: A High-Density EEG Study. Biol. Psychol. 2022, 171, 108351. [Google Scholar] [CrossRef]
- Adamaszek, M.; Kirkby, K.C.; Dagata, F.; Olbrich, S.; Langner, S.; Steele, C.; Sehm, B.; Busse, S.; Kessler, C.; Hamm, A. Neural Correlates of Impaired Emotional Face Recognition in Cerebellar Lesions. Brain Res. 2015, 1613, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gerschcovich, E.R.; Cerquetti, D.; Tenca, E.; Leiguarda, R. The Impact of Bilateral Cerebellar Damage on Theory of Mind, Empathy and Decision Making. Neurocase 2011, 17, 270–275. [Google Scholar] [CrossRef]
- Bersani, F.S.; Minichino, A.; Bernabei, L.; Spagnoli, F.; Corrado, A.; Vergnani, L.; Mannarelli, D.; Pauletti, C.; Fattapposta, F.; Biondi, M.; et al. Prefronto-Cerebellar TDCS Enhances Neurocognition in Euthymic Bipolar Patients. Findings from a Placebo-Controlled Neuropsychological and Psychophysiological Investigation. J. Affect. Disord. 2017, 209, 262–269. [Google Scholar] [CrossRef]
- Ruggiero, F.; Ferrucci, R.; Bocci, T.; Nigro, M.; Vergari, M.; Marceglia, S.; Barbieri, S.; Priori, A. Spino-Cerebellar TDCS Modulates N100 Components of the P300 Event Related Potential. Neuropsychologia 2019, 135, 107231. [Google Scholar] [CrossRef]
- Andrew, D.; Ibey, R.J.; Staines, W.R. Transient Inhibition of the Cerebellum Impairs Change-Detection Processes: Cerebellar Contributions to Sensorimotor Integration. Behav. Brain Res. 2020, 378, 112273. [Google Scholar] [CrossRef] [PubMed]
- Mannarelli, D.; Pauletti, C.; de Lucia, M.C.; Delle Chiaie, R.; Bersani, F.S.; Spagnoli, F.; Minichino, A.; Currà, A.; Trompetto, C.; Fattapposta, F. Effects of Cerebellar Transcranial Direct Current Stimulation on Attentional Processing of the Stimulus: Evidence from an Event-Related Potentials Study. Neuropsychologia 2016, 84, 127–135. [Google Scholar] [CrossRef]
- Mannarelli, D.; Pauletti, C.; Currà, A.; Marinelli, L.; Corrado, A.; Delle Chiaie, R.; Fattapposta, F. The Cerebellum Modulates Attention Network Functioning: Evidence from a Cerebellar Transcranial Direct Current Stimulation and Attention Network Test Study. Cerebellum 2019, 18, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Rusiniak, M.; Lewandowska, M.; Wolak, T.; Pluta, A.; Milner, R.; Ganc, M.; Włodarczyk, A.; Senderski, A.; Śliwa, L.; Skarżyński, H. A Modified Oddball Paradigm for Investigation of Neural Correlates of Attention: A Simultaneous ERP-FMRI Study. Magn. Reson. Mater. Phys. Biol. Med. 2013, 26, 511–526. [Google Scholar] [CrossRef]
- Chen, P.; Lin, J.; Chen, B.; Lu, C.; Guo, T. Processing Emotional Words in Two Languages with One Brain: ERP and FMRI Evidence from Chinese-English Bilinguals. Cortex 2015, 71, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Logan, G.D. Executive Control of Thought and Action. Acta Psychol. 1985, 60, 193–210. [Google Scholar] [CrossRef]
- Schmahmann, J.D. The Cerebellum and Cognition; Academic Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Heyder, K.; Suchan, B.; Daum, I. Cortico-Subcortical Contributions to Executive Control. Acta Psychol. 2004, 115, 271–289. [Google Scholar] [CrossRef]
- Purzner, J.; Paradiso, G.O.; Cunic, D.; Saint-Cyr, J.A.; Hoque, T.; Lozano, A.M.; Lang, A.E.; Moro, E.; Hodaie, M.; Mazzella, F.; et al. Involvement of the Basal Ganglia and Cerebellar Motor Pathways in the Preparation of Self-Initiated and Externally Triggered Movements in Humans. J. Neurosci. 2007, 27, 6029–6036. [Google Scholar] [CrossRef]
- Brunia, C.H.M.; van Boxtel, G.J.M. Wait and See. Int. J. Psychophysiol. 2001, 43, 59–75. [Google Scholar] [CrossRef]
- Currà, A.; Berardelli, A.; Agostino, R.; Modugno, N.; Puorger, C.C.; Accornero, N.; Manfredi, M. Performance of Sequential Arm Movements with and without Advance Knowledge of Motor Pathways in Parkinson’s Disease. Mov. Disord. 1997, 12, 646–654. [Google Scholar] [CrossRef]
- Bauer, L.O. Differential Effects of Alcohol, Cocaine, and Opioid Abuse on Event-Related Potentials Recorded during a Response Competition Task. Drug Alcohol. Depend. 2002, 66, 137–145. [Google Scholar] [CrossRef]
- Halgren, E.; Marinkovic, K.; Chauvel, P. Generators of the Late Cognitive Potentials in Auditory and Visual Oddball Tasks. Electroencephalogr. Clin. Neurophysiol. 1998, 106, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Polich, J.; Criado, J.R. Neuropsychology and Neuropharmacology of P3a and P3b. Int. J. Psychophysiol. 2006, 60, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Paitel, E.R.; Nielson, K.A. Cerebellar EEG Source Localization Reveals Age-related Compensatory Activity Moderated by Genetic Risk for Alzheimer’s Disease. Psychophysiology 2023, 60, e14395. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Harada, M.; Arai, M.; Hirata, K. Cognitive Dysfunction in Cortical Cerebellar Atrophy Correlates with Impairment of the Inhibitory System. Neuropsychobiology 2003, 47, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Zarka, D.; Cebolla, A.M.; Cevallos, C.; Palmero-Soler, E.; Dan, B.; Cheron, G. Caudate and Cerebellar Involvement in Altered P2 and P3 Components of GO/NoGO Evoked Potentials in Children with Attention-deficit/Hyperactivity Disorder. Eur. J. Neurosci. 2021, 53, 3447–3462. [Google Scholar] [CrossRef] [PubMed]
- Mannarelli, D.; Pauletti, C.; Petritis, A.; Delle Chiaie, R.; Currà, A.; Trompetto, C.; Fattapposta, F. Effects of Cerebellar TDCS on Inhibitory Control: Evidence from a Go/NoGo Task. Cerebellum 2020, 19, 788–798. [Google Scholar] [CrossRef]
- Yao, J.; Song, B.; Shi, J.; Yin, K.; Du, W. Effects of Repetitive Transcranial Magnetic Stimulation at the Cerebellum on Working Memory. Brain Sci. 2023, 13, 1158. [Google Scholar] [CrossRef]
- Saarikivi, K.; Chan, T.M.V.; Huotilainen, M.; Tervaniemi, M.; Putkinen, V. Enhanced Neural Mechanisms of Set Shifting in Musically Trained Adolescents and Young Adults: Converging FMRI, EEG, and Behavioral Evidence. Cereb. Cortex 2023, 33, 7237–7249. [Google Scholar] [CrossRef]
- Holmes, G. The Cerebellum of Man. Brain 1939, 62, 1–30. [Google Scholar] [CrossRef]
- Mauk, M.D.; Buonomano, D.V. The Neural Basis of Temporal Processing. Annu. Rev. Neurosci. 2004, 27, 307–340. [Google Scholar] [CrossRef] [PubMed]
- Hore, J.; Wild, B.; Diener, H.C. Cerebellar Dysmetria at the Elbow, Wrist, and Fingers. J. Neurophysiol. 1991, 65, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Moberget, T.; Karns, C.M.; Deouell, L.Y.; Lindgren, M.; Knight, R.T.; Ivry, R.B. Detecting Violations of Sensory Expectancies Following Cerebellar Degeneration: A Mismatch Negativity Study. Neuropsychologia 2008, 46, 2569–2579. [Google Scholar] [CrossRef] [PubMed]
- Kotz, S.A.; Stockert, A.; Schwartze, M. Cerebellum, Temporal Predictability and the Updating of a Mental Model. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130403. [Google Scholar] [CrossRef] [PubMed]
- Tesche, C.D.; Karhu, J.J. Anticipatory Cerebellar Responses during Somatosensory Omission in Man. Hum. Brain Mapp. 2000, 9, 119–142. [Google Scholar] [CrossRef]
- Mannarelli, D.; Pauletti, C.; Petritis, A.; Maffucci, A.; Currà, A.; Trompetto, C.; Marinelli, L.; Fattapposta, F. The Role of Cerebellum in Timing Processing: A Contingent Negative Variation Study. Neurosci. Lett. 2023, 808, 137301. [Google Scholar] [CrossRef]
- Onoda, K.; Takahashi, E.; Sakata, S. Event-Related Potentials in the Frontal Cortex, Hippocampus, and Cerebellum during a Temporal Discrimination Task in Rats. Cogn. Brain Res. 2003, 17, 380–387. [Google Scholar] [CrossRef]
- Onoda, K.; Sakata, S. An ERP Study of Temporal Discrimination in Rats. Behav. Process. 2006, 71, 235–240. [Google Scholar] [CrossRef]
- Luck, S.J. An Introduction to the Event-Related Potential Technique, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Voss, J.L.; Paller, K.A. Neural Substrates of Remembering—Electroencephalographic Studies. In Learning and Memory: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2008; pp. 79–97. [Google Scholar]
- Mannarelli, D.; Pauletti, C.; Grippo, A.; Amantini, A.; Augugliaro, V.; Currà, A.; Missori, P.; Locuratolo, N.; De Lucia, M.C.; Rinalduzzi, S.; et al. The Role of the Right Dorsolateral Prefrontal Cortex in Phasic Alertness: Evidence from a Contingent Negative Variation and Repetitive Transcranial Magnetic Stimulation Study. Neural Plast. 2015, 2015, 137301. [Google Scholar] [CrossRef]
Cognitive Function Explored | Study | Subjects | NIBS | Stimulus Modality | Paradigm | Response Mode | Component Evoked | Results |
---|---|---|---|---|---|---|---|---|
Attention | Kremlacek, J. et al., 2011 [52] | n = 10 (SCA 2) | no | visual | oddball | motor | P3b | ↑ latency |
Attention | Adamaszek, M. et al., 2013 [50] | n = 1 (stroke) | no | visual and auditory | oddball | counting | EPN | absent |
LPP | ↑ amplitude | |||||||
Attention | Knolle, F. et al., 2013 [48] | n = 10 (cerebellar focal lesions) and n = 10 HS | no | auditory | auditory–motor paradigm | motor | N100 | No suppression |
Attention | Mannarelli, D. et al., 2015 [49] | n = 1 (stroke) | no | auditory | oddball | counting | P3b | ↓ amplitude |
Attention | Mannarelli, D. et al., 2016 [64] | n = 15 HS | tDCS | auditory | novelty P3 | counting | N100 | ↓ latency and ↓ amplitude after cathodal tDCS |
Attention | Bersani, F.S. et al., 2017 [62] | n = 42 (bipolar disorder) | tDCS | auditory | novelty P3 | counting | P3b | ↑ amplitude and ↓ latency after active tDCS |
Attention | Houston, J.R. et al., 2018 [54] | n = 20 (CMI) and n = 20 HS | no | visual | dual task | motor | P3 | ↑ amplitude |
Attention | Ruggiero, F. et al., 2019 [63] | n = 37 HS | tDCS | auditory | oddball | counting | N100 | ↑ amplitude after active tDCS |
Attention | Tunc, S. et al., 2019 [51] | n = 25 (CA) and n = 30 HS | no | auditory | distraction paradigm | motor | P3a | ↓ amplitude |
RON | ↓ amplitude | |||||||
Pe | ↓ amplitude | |||||||
MMN | normal | |||||||
ERN | normal | |||||||
Attention | Rodríguez-Labrada, R. et al., 2019 [53] | n = 30 (SCA 2) and n = 33 HS | no | visual and auditory | oddball | motor | P3 | ↑ latency |
Attention | Andrew, D. et al., 2020 [64] | n = 20 HS | cTBS | somatosensory | oddball | none | MMN | ↓ amplitude after cTBS |
Attention | Mauriello, C. et al., 2022 [59] | n = 23 ADHD vs. n = 23 HS | no | visual | delayed-face matching task | motor | P100 | normal |
P2 | ↓ amplitude | |||||||
P3a | no change after active tDCS | |||||||
P300 | no change after active tDCS | |||||||
N200 | ↓ amplitude after cathodal tDCS | |||||||
P3a | ↓amplitude and =latency after cathodal tDCS | |||||||
P3b | ↓ amplitude and =latency after cathodal tDCS | |||||||
Executive functions | Bauer, L.O. et al., 2002 [75] | n = 66 (drug abusers) and n = 18 HS | no | visual | response competition task | motor | SP | ↓ amplitude |
Executive functions | Tanaka, H. et al., 2003 [79] | n = 13 (CCA) and n = 13 HC | no | visual | continuous performance task | motor | NoGo GFP | ↑ latency and ↓ amplitude |
Attention/ Executive functions | Paulus, K.S. et al., 2004 [45] | n = 1 (stroke) | no | auditory | oddball | counting | P3b | ↓ amplitude |
Executive functions | Mannarelli, D. et al., 2020 [81] | n = 16 HS | tDCS | auditory | Go/NoGo task | motor | NoGo N2 | ↑ latency and ↓ amplitude after cathodal tDCS |
P3 | no change after cathodal tDCS | |||||||
Executive functions | Yao J. et al., 2023 [82] | n = 36 HS | rTMS | visual | 2-back working memory task | motor | N170 | ↑ amplitude after excitatory rTMS |
P300 | ↑ amplitude after excitatory rTMS | |||||||
Executive functions | Saarikivi K. et al., 2023 [83] | n = 35 musicians and n = 28 controls | no | visual | set-shifting task | motor | P300 | ↑ amplitude |
Timing | Moberget, T. et al., 2008 [87] | n = 7 (cerebellar degeneration) and n = 10 HS | no | auditory | MMN paradigm | none | MMN | ↑ latency |
Timing | Kotz, S.A. et al., 2014 [88] | n = 11 (cerebellar lesions) and n = 11 HS | no | auditory | oddball | counting | P3b | ↓ amplitude |
Timing | Mannarelli, D. et al., 2023 [90] | n = 16 HS | tDCS | auditory | CNV task | motor | CNV | ↓ amplitude after cathodal tDCS (short and target intervals) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannarelli, D.; Pauletti, C.; Missori, P.; Trompetto, C.; Cotellessa, F.; Fattapposta, F.; Currà, A. Cerebellum’s Contribution to Attention, Executive Functions and Timing: Psychophysiological Evidence from Event-Related Potentials. Brain Sci. 2023, 13, 1683. https://doi.org/10.3390/brainsci13121683
Mannarelli D, Pauletti C, Missori P, Trompetto C, Cotellessa F, Fattapposta F, Currà A. Cerebellum’s Contribution to Attention, Executive Functions and Timing: Psychophysiological Evidence from Event-Related Potentials. Brain Sciences. 2023; 13(12):1683. https://doi.org/10.3390/brainsci13121683
Chicago/Turabian StyleMannarelli, Daniela, Caterina Pauletti, Paolo Missori, Carlo Trompetto, Filippo Cotellessa, Francesco Fattapposta, and Antonio Currà. 2023. "Cerebellum’s Contribution to Attention, Executive Functions and Timing: Psychophysiological Evidence from Event-Related Potentials" Brain Sciences 13, no. 12: 1683. https://doi.org/10.3390/brainsci13121683
APA StyleMannarelli, D., Pauletti, C., Missori, P., Trompetto, C., Cotellessa, F., Fattapposta, F., & Currà, A. (2023). Cerebellum’s Contribution to Attention, Executive Functions and Timing: Psychophysiological Evidence from Event-Related Potentials. Brain Sciences, 13(12), 1683. https://doi.org/10.3390/brainsci13121683