Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration
Abstract
:1. Introduction
2. Neuroplasticity
2.1. Structural Neuroplasticity
2.1.1. Developmental Neurogenesis and Synaptogenesis
2.1.2. Adult Neurogenesis
2.2. Functional Neuroplasticity
3. Neurodevelopment and Neuroplasticity
3.1. Prenatal Stage (from Conception until Birth)
3.2. Infancy and Childhood
3.3. Adolescence
3.4. Adulthood
3.5. Prenatal Factors That Impact Neurodevelopment and Neuroplasticity
3.6. Postnatal Factors That Impact Neurodevelopment and Neuroplasticity
3.7. Sex Hormones and Neuroplasticity
4. Aging, Neurodegeneration, and Neuroplasticity
4.1. Physiological Aging
4.2. Neurodegeneration
4.2.1. Protein Aggregation in Neurodegeneration
4.2.2. Mitochondrial Dysfunction and Oxidative Stress in Neurodegeneration
4.2.3. Neuroinflammation in Neurodegeneration
4.2.4. Genetic and Environmental Factors in Neurodegeneration
4.3. Correlation between Aging, Neurodegeneration, and Neuroplasticity
4.4. Non-Pharmacologic and Non-Invasive Strategies to Promote Neuroplasticity during Aging
4.4.1. Physical Exercise
4.4.2. Cognitive Stimulation and Socialization
4.4.3. Diet and Caloric Restriction
4.4.4. Sleep Hygiene and Quality of Sleep
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, W. Habits. In The Principles of Psychology; Henry Holt and Company: New York, NY, USA, 1890; pp. 104–127. [Google Scholar]
- Konorski, J. Conditioned Reflexes and Neuron Organization, Facsimile Reprint of the 1948; Cambridge University Press: Cambridge, UK, 1968. [Google Scholar]
- Voss, P.; Thomas, M.E.; Cisneros-Franco, J.M.; de Villers-Sidani, É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front. Psychol. 2017, 8, 1657. [Google Scholar] [CrossRef]
- Draganski, B.; May, A. Training-Induced Structural Changes in the Adult Human Brain. Behav. Brain Res. 2008, 192, 137–142. [Google Scholar] [CrossRef]
- Frizzell, T.O.; Phull, E.; Khan, M.; Song, X.; Grajauskas, L.A.; Gawryluk, J.; D’Arcy, R.C.N. Imaging Functional Neuroplasticity in Human White Matter Tracts. Brain Struct. Funct. 2022, 227, 381–392. [Google Scholar] [CrossRef]
- Leuner, B.; Gould, E. Structural Plasticity and Hippocampal Function. Annu. Rev. Psychol. 2010, 61, 111–140. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, X.; Yang, L.; Miao, X.; Lu, D.-H.; Yang, X.-Y.; Zhou, Z.-B.; Kang, W.-B.; Chen, K.-Y.; Zhou, L.-H.; et al. Neonatal Exposure to Low-Dose (1.2%) Sevoflurane Increases Rats’ Hippocampal Neurogenesis and Synaptic Plasticity in Later Life. Neurotox. Res. 2018, 34, 188–197. [Google Scholar] [CrossRef]
- Garthe, A.; Roeder, I.; Kempermann, G. Mice in an Enriched Environment Learn More Flexibly Because of Adult Hippocampal Neurogenesis. Hippocampus 2016, 26, 261–271. [Google Scholar] [CrossRef]
- Kempermann, G.; Song, H.; Gage, F.H. Neurogenesis in the Adult Hippocampus. Cold Spring Harb. Perspect. Biol. 2015, 7, a018812. [Google Scholar] [CrossRef]
- Takeuchi, N.; Izumi, S.-I. Rehabilitation with Poststroke Motor Recovery: A Review with a Focus on Neural Plasticity. Stroke Res. Treat. 2013, 2013, 128641. [Google Scholar] [CrossRef]
- Aimone, J.B.; Li, Y.; Lee, S.W.; Clemenson, G.D.; Deng, W.; Gage, F.H. Regulation and Function of Adult Neurogenesis: From Genes to Cognition. Physiol. Rev. 2014, 94, 991–1026. [Google Scholar] [CrossRef]
- Jurkowski, M.P.; Bettio, L.; Woo, E.K.; Patten, A.; Yau, S.-Y.; Gil-Mohapel, J. Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Front. Cell. Neurosci. 2020, 14, 576444. [Google Scholar] [CrossRef]
- Zhao, C.; Deng, W.; Gage, F.H. Mechanisms and Functional Implications of Adult Neurogenesis. Cell 2008, 132, 645–660. [Google Scholar] [CrossRef]
- Kempermann, G.; Kuhn, H.G.; Gage, F.H. More Hippocampal Neurons in Adult Mice Living in an Enriched Environment. Nature 1997, 386, 493–495. [Google Scholar] [CrossRef]
- Lazarov, O.; Mattson, M.P.; Peterson, D.A.; Pimplikar, S.W.; van Praag, H. When Neurogenesis Encounters Aging and Disease. Trends Neurosci. 2010, 33, 569–579. [Google Scholar] [CrossRef]
- van Praag, H.; Kempermann, G.; Gage, F.H. Running Increases Cell Proliferation and Neurogenesis in the Adult Mouse Dentate Gyrus. Nat. Neurosci. 1999, 2, 266–270. [Google Scholar] [CrossRef]
- Lai, C.S.W.; Franke, T.F.; Gan, W.-B. Opposite Effects of Fear Conditioning and Extinction on Dendritic Spine Remodelling. Nature 2012, 483, 87–91. [Google Scholar] [CrossRef]
- Yang, G.; Pan, F.; Gan, W.-B. Stably Maintained Dendritic Spines Are Associated with Lifelong Memories. Nature 2009, 462, 920–924. [Google Scholar] [CrossRef]
- Bliss, T.V.P.; Collingridge, G.L. A Synaptic Model of Memory: Long-Term Potentiation in the Hippocampus. Nature 1993, 361, 31–39. [Google Scholar] [CrossRef]
- Bear, M.F.; Malenka, R.C. Synaptic Plasticity: LTP and LTD. Curr. Opin. Neurobiol. 1994, 4, 389–399. [Google Scholar] [CrossRef]
- Pinar, C.; Fontaine, C.J.; Triviño-Paredes, J.; Lottenberg, C.P.; Gil-Mohapel, J.; Christie, B.R. Revisiting the Flip Side: Long-Term Depression of Synaptic Efficacy in the Hippocampus. Neurosci. Biobehav. Rev. 2017, 80, 394–413. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Hamilton, R. Chapter 27 The Metamodal Organization of the Brain. Prog. Brain Res. 2001, 134, 427–445. [Google Scholar] [CrossRef]
- Knudsen, E.I. Sensitive Periods in the Development of the Brain and Behavior. J. Cogn. Neurosci. 2004, 16, 1412–1425. [Google Scholar] [CrossRef]
- Monday, H.R.; Younts, T.J.; Castillo, P.E. Long-Term Plasticity of Neurotransmitter Release: Emerging Mechanisms and Contributions to Brain Function and Disease. Annu. Rev. Neurosci. 2018, 41, 299–322. [Google Scholar] [CrossRef]
- Zuo, Y.; Lin, A.; Chang, P.; Gan, W.-B. Development of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex. Neuron 2005, 46, 181–189. [Google Scholar] [CrossRef]
- Kourosh-Arami, M.; Hosseini, N.; Komaki, A. Brain Is Modulated by Neuronal Plasticity during Postnatal Development. J. Physiol. Sci. 2021, 71, 34. [Google Scholar] [CrossRef]
- Johnston, M.V.; Ishida, A.; Ishida, W.N.; Matsushita, H.B.; Nishimura, A.; Tsuji, M. Plasticity and Injury in the Developing Brain. Brain Dev. 2009, 31, 1–10. [Google Scholar] [CrossRef]
- Altman, J.; Das, G.D. Autoradiographic and Histological Evidence of Postnatal Hippocampal Neurogenesis in Rats. J. Comp. Neurol. 1965, 124, 319–335. [Google Scholar] [CrossRef]
- Ming, G.; Song, H. Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron 2011, 70, 687–702. [Google Scholar] [CrossRef]
- Budday, S.; Steinmann, P.; Kuhl, E. Physical Biology of Human Brain Development. Front. Cell. Neurosci. 2015, 9, 257. [Google Scholar] [CrossRef]
- Gage, F.H. Structural Plasticity of the Adult Brain. Dialogues Clin. Neurosci. 2004, 6, 135–141. [Google Scholar] [CrossRef]
- Bhatt, S.; Diaz, R.; Trainor, P.A. Signals and Switches in Mammalian Neural Crest Cell Differentiation. Cold Spring Harb. Perspect. Biol. 2013, 5, a008326. [Google Scholar] [CrossRef]
- Kosodo, Y.; Röper, K.; Haubensak, W.; Marzesco, A.-M.; Corbeil, D.; Huttner, W.B. Asymmetric Distribution of the Apical Plasma Membrane during Neurogenic Divisions of Mammalian Neuroepithelial Cells. EMBO J. 2004, 23, 2314–2324. [Google Scholar] [CrossRef]
- Stiles, J.; Jernigan, T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef]
- Gil-Sanz, C.; Franco, S.J.; Martinez-Garay, I.; Espinosa, A.; Harkins-Perry, S.; Müller, U. Cajal-Retzius Cells Instruct Neuronal Migration by Coincidence Signaling between Secreted and Contact-Dependent Guidance Cues. Neuron 2013, 79, 461–477. [Google Scholar] [CrossRef]
- Patton, M.H.; Blundon, J.A.; Zakharenko, S.S. Rejuvenation of Plasticity in the Brain: Opening the Critical Period. Curr. Opin. Neurobiol. 2019, 54, 83–89. [Google Scholar] [CrossRef]
- Huttenlocher, P.R.; Dabholkar, A.S. Regional Differences in Synaptogenesis in Human Cerebral Cortex. J. Comp. Neurol. 1997, 387, 167–178. [Google Scholar] [CrossRef]
- Ismail, F.Y.; Fatemi, A.; Johnston, M.V. Cerebral Plasticity: Windows of Opportunity in the Developing Brain. Eur. J. Paediatr. Neurol. 2017, 21, 23–48. [Google Scholar] [CrossRef]
- Faust, T.E.; Gunner, G.; Schafer, D.P. Mechanisms Governing Activity-Dependent Synaptic Pruning in the Developing Mammalian CNS. Nat. Rev. Neurosci. 2021, 22, 657–673. [Google Scholar] [CrossRef]
- Fares, J.; Bou Diab, Z.; Nabha, S.; Fares, Y. Neurogenesis in the Adult Hippocampus: History, Regulation, and Prospective Roles. Int. J. Neurosci. 2019, 129, 598–611. [Google Scholar] [CrossRef]
- Eriksson, P.S.; Perfilieva, E.; Björk-Eriksson, T.; Alborn, A.-M.; Nordborg, C.; Peterson, D.A.; Gage, F.H. Neurogenesis in the Adult Human Hippocampus. Nat. Med. 1998, 4, 1313–1317. [Google Scholar] [CrossRef]
- Merkle, F.T.; Tramontin, A.D.; García-Verdugo, J.M.; Alvarez-Buylla, A. Radial Glia Give Rise to Adult Neural Stem Cells in the Subventricular Zone. Proc. Natl. Acad. Sci. USA 2004, 101, 17528–17532. [Google Scholar] [CrossRef]
- Kuhn, H.; Dickinson-Anson, H.; Gage, F. Neurogenesis in the Dentate Gyrus of the Adult Rat: Age-Related Decrease of Neuronal Progenitor Proliferation. J. Neurosci. 1996, 16, 2027–2033. [Google Scholar] [CrossRef]
- Lois, C.; Alvarez-Buylla, A. Long-Distance Neuronal Migration in the Adult Mammalian Brain. Science 1994, 264, 1145–1148. [Google Scholar] [CrossRef]
- Maggi, R.; Zasso, J.; Conti, L. Neurodevelopmental Origin and Adult Neurogenesis of the Neuroendocrine Hypothalamus. Front. Cell. Neurosci. 2015, 8, 440. [Google Scholar] [CrossRef]
- Kokoeva, M.V.; Yin, H.; Flier, J.S. Neurogenesis in the Hypothalamus of Adult Mice: Potential Role in Energy Balance. Science 2005, 310, 679–683. [Google Scholar] [CrossRef]
- Villalba, A.; Götz, M.; Borrell, V. The Regulation of Cortical Neurogenesis. Curr. Top. Dev. Biol. 2021, 142, 1–66. [Google Scholar] [CrossRef]
- Gould, E.; Reeves, A.J.; Graziano, M.S.A.; Gross, C.G. Neurogenesis in the Neocortex of Adult Primates. Science 1999, 286, 548–552. [Google Scholar] [CrossRef]
- Roeder, S.S.; Burkardt, P.; Rost, F.; Rode, J.; Brusch, L.; Coras, R.; Englund, E.; Håkansson, K.; Possnert, G.; Salehpour, M.; et al. Evidence for Postnatal Neurogenesis in the Human Amygdala. Commun. Biol. 2022, 5, 366. [Google Scholar] [CrossRef]
- Ponti, G.; Peretto, P.; Bonfanti, L. Genesis of Neuronal and Glial Progenitors in the Cerebellar Cortex of Peripuberal and Adult Rabbits. PLoS ONE 2008, 3, e2366. [Google Scholar] [CrossRef]
- Andreotti, J.P.; Prazeres, P.H.D.M.; Magno, L.A.V.; Romano-Silva, M.A.; Mintz, A.; Birbrair, A. Neurogenesis in the Postnatal Cerebellum after Injury. Int. J. Dev. Neurosci. 2018, 67, 33–36. [Google Scholar] [CrossRef]
- Ernst, A.; Alkass, K.; Bernard, S.; Salehpour, M.; Perl, S.; Tisdale, J.; Possnert, G.; Druid, H.; Frisén, J. Neurogenesis in the Striatum of the Adult Human Brain. Cell 2014, 156, 1072–1083. [Google Scholar] [CrossRef]
- Bruel-Jungerman, E.; Rampon, C.; Laroche, S. Adult Hippocampal Neurogenesis, Synaptic Plasticity and Memory: Facts and Hypotheses. Rev. Neurosci. 2007, 18, 93–114. [Google Scholar] [CrossRef]
- Koehl, M.; Abrous, D.N. A New Chapter in the Field of Memory: Adult Hippocampal Neurogenesis. Eur. J. Neurosci. 2011, 33, 1101–1114. [Google Scholar] [CrossRef]
- Samuels, B.A.; Hen, R. Neurogenesis and Affective Disorders. Eur. J. Neurosci. 2011, 33, 1152–1159. [Google Scholar] [CrossRef]
- Åberg, M.A.I.; Åberg, N.D.; Hedbäcker, H.; Oscarsson, J.; Eriksson, P.S. Peripheral Infusion of IGF-I Selectively Induces Neurogenesis in the Adult Rat Hippocampus. J. Neurosci. 2000, 20, 2896–2903. [Google Scholar] [CrossRef]
- Zigova, T.; Pencea, V.; Wiegand, S.J.; Luskin, M.B. Intraventricular Administration of BDNF Increases the Number of Newly Generated Neurons in the Adult Olfactory Bulb. Mol. Cell. Neurosci. 1998, 11, 234–245. [Google Scholar] [CrossRef]
- Yao, B.; Christian, K.M.; He, C.; Jin, P.; Ming, G.; Song, H. Epigenetic Mechanisms in Neurogenesis. Nat. Rev. Neurosci. 2016, 17, 537–549. [Google Scholar] [CrossRef]
- Du Preez, A.; Onorato, D.; Eiben, I.; Musaelyan, K.; Egeland, M.; Zunszain, P.A.; Fernandes, C.; Thuret, S.; Pariante, C.M. Chronic Stress Followed by Social Isolation Promotes Depressive-like Behaviour, Alters Microglial and Astrocyte Biology and Reduces Hippocampal Neurogenesis in Male Mice. Brain. Behav. Immun. 2021, 91, 24–47. [Google Scholar] [CrossRef]
- Malberg, J.E.; Eisch, A.J.; Nestler, E.J.; Duman, R.S. Chronic Antidepressant Treatment Increases Neurogenesis in Adult Rat Hippocampus. J. Neurosci. 2000, 20, 9104–9110. [Google Scholar] [CrossRef]
- Manev, H.; Uz, T.; Smalheiser, N.R.; Manev, R. Antidepressants Alter Cell Proliferation in the Adult Brain in Vivo and in Neural Cultures in Vitro. Eur. J. Pharmacol. 2001, 411, 67–70. [Google Scholar] [CrossRef]
- Micheli, L.; Ceccarelli, M.; D’Andrea, G.; Tirone, F. Depression and Adult Neurogenesis: Positive Effects of the Antidepressant Fluoxetine and of Physical Exercise. Brain Res. Bull. 2018, 143, 181–193. [Google Scholar] [CrossRef]
- Bettio, L.E.B.; Rajendran, L.; Gil-Mohapel, J. The Effects of Aging in the Hippocampus and Cognitive Decline. Neurosci. Biobehav. Rev. 2017, 79, 66–86. [Google Scholar] [CrossRef]
- Boldrini, M.; Fulmore, C.A.; Tartt, A.N.; Simeon, L.R.; Pavlova, I.; Poposka, V.; Rosoklija, G.B.; Stankov, A.; Arango, V.; Dwork, A.J.; et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell 2018, 22, 589–599.e5. [Google Scholar] [CrossRef]
- Isaev, N.K.; Stelmashook, E.V.; Genrikhs, E.E. Neurogenesis and Brain Aging. Rev. Neurosci. 2019, 30, 573–580. [Google Scholar] [CrossRef]
- Gipson, C.D.; Kupchik, Y.M.; Kalivas, P.W. Rapid, Transient Synaptic Plasticity in Addiction. Neuropharmacology 2014, 76, 276–286. [Google Scholar] [CrossRef]
- Bicker, F.; Nardi, L.; Maier, J.; Vasic, V.; Schmeisser, M.J. Criss-crossing Autism Spectrum Disorder and Adult Neurogenesis. J. Neurochem. 2021, 159, 452–478. [Google Scholar] [CrossRef]
- Hansel, C. Deregulation of Synaptic Plasticity in Autism. Neurosci. Lett. 2019, 688, 58–61. [Google Scholar] [CrossRef]
- Fries, G.R.; Saldana, V.A.; Finnstein, J.; Rein, T. Molecular Pathways of Major Depressive Disorder Converge on the Synapse. Mol. Psychiatry 2023, 28, 284–297. [Google Scholar] [CrossRef]
- Murphy, K.P.S.J.; Carter, R.J.; Lione, L.A.; Mangiarini, L.; Mahal, A.; Bates, G.P.; Dunnett, S.B.; Morton, A.J. Abnormal Synaptic Plasticity and Impaired Spatial Cognition in Mice Transgenic for Exon 1 of the Human Huntington’s Disease Mutation. J. Neurosci. 2000, 20, 5115–5123. [Google Scholar] [CrossRef]
- Babcock, K.R.; Page, J.S.; Fallon, J.R.; Webb, A.E. Adult Hippocampal Neurogenesis in Aging and Alzheimer’s Disease. Stem Cell Rep. 2021, 16, 681–693. [Google Scholar] [CrossRef]
- Magee, J.C.; Grienberger, C. Synaptic Plasticity Forms and Functions. Annu. Rev. Neurosci. 2020, 43, 95–117. [Google Scholar] [CrossRef]
- Baltaci, S.B.; Mogulkoc, R.; Baltaci, A.K. Molecular Mechanisms of Early and Late LTP. Neurochem. Res. 2019, 44, 281–296. [Google Scholar] [CrossRef]
- Mainberger, F.; Langer, S.; Mall, V.; Jung, N.H. Impaired Synaptic Plasticity in RASopathies: A Mini-Review. J. Neural Transm. 2016, 123, 1133–1138. [Google Scholar] [CrossRef]
- Bliss, T.V.P.; Lømo, T. Long-Lasting Potentiation of Synaptic Transmission in the Dentate Area of the Anaesthetized Rabbit Following Stimulation of the Perforant Path. J. Physiol. 1973, 232, 331–356. [Google Scholar] [CrossRef]
- Gall, C.M.; Le, A.A.; Lynch, G. Sex Differences in Synaptic Plasticity Underlying Learning. J. Neurosci. Res. 2023, 101, 764–782. [Google Scholar] [CrossRef]
- Lynch, M.A. Long-Term Potentiation and Memory. Physiol. Rev. 2004, 84, 87–136. [Google Scholar] [CrossRef]
- Johnson, M.H. Functional Brain Development in Humans. Nat. Rev. Neurosci. 2001, 2, 475–483. [Google Scholar] [CrossRef]
- Stiles, J. The Fundamentals of Brain Development: Integrating Nature and Nurture; Harvard University Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Pascual-Leone, A.; Amedi, A.; Fregni, F.; Merabet, L.B. THE PLASTIC HUMAN BRAIN CORTEX. Annu. Rev. Neurosci. 2005, 28, 377–401. [Google Scholar] [CrossRef]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Changes in Grey Matter Induced by Training. Nature 2004, 427, 311–312. [Google Scholar] [CrossRef]
- Boyke, J.; Driemeyer, J.; Gaser, C.; Büchel, C.; May, A. Training-Induced Brain Structure Changes in the Elderly. J. Neurosci. 2008, 28, 7031–7035. [Google Scholar] [CrossRef]
- Castrén, E.; Hen, R. Neuronal Plasticity and Antidepressant Actions. Trends Neurosci. 2013, 36, 259–267. [Google Scholar] [CrossRef]
- Kleim, J.A.; Barbay, S.; Cooper, N.R.; Hogg, T.M.; Reidel, C.N.; Remple, M.S.; Nudo, R.J. Motor Learning-Dependent Synaptogenesis Is Localized to Functionally Reorganized Motor Cortex. Neurobiol. Learn. Mem. 2002, 77, 63–77. [Google Scholar] [CrossRef]
- Gil-Mohapel, J.; Boehme, F.; Kainer, L.; Christie, B.R. Hippocampal Cell Loss and Neurogenesis after Fetal Alcohol Exposure: Insights from Different Rodent Models. Brain Res. Rev. 2010, 64, 283–303. [Google Scholar] [CrossRef]
- Miller, M.W. Effects of Prenatal Exposure to Alcohol on Postnatal Brain Development. Nat. Rev. Neurosci. 2018, 19, 639–651. [Google Scholar]
- McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of Stress in the Brain. Nat. Neurosci. 2015, 18, 1353–1363. [Google Scholar] [CrossRef]
- Catala, M. Embryonic Development of the Central Nervous System. In Encyclopedia of Neuroscience; Springer: Berlin/Heidelberg, Germany, 2021; pp. 196–202. [Google Scholar]
- Copp, A.J.; Greene, N.D.E. Neural Tube Defects-Disorders of Neurulation and Related Embryonic Processes. Wiley Interdiscip. Rev. Dev. Biol. 2013, 2, 213–227. [Google Scholar] [CrossRef]
- Rakic, P. Specification of Cerebral Cortical Areas. Science 1988, 241, 170–176. [Google Scholar] [CrossRef]
- Lemaire, V.; Koehl, M.; Le Moal, M.; Abrous, D.N. Prenatal Stress Produces Learning Deficits Associated with an Inhibition of Neurogenesis in the Hippocampus. Proc. Natl. Acad. Sci. USA 2000, 97, 11032–11037. [Google Scholar] [CrossRef]
- Martinez, S.; Alvarado-Mallart, R.M. Developmental Aspects of the Segmented Brain Hypothesis. Brain Res. Bull. 2002, 57, 301–305. [Google Scholar]
- Perry, V.H.; Hume, D.A.; Gordon, S. Immunohistochemical Localization of Macrophages and Microglia in the Adult and Developing Mouse Brain. Neuroscience 1985, 15, 313–326. [Google Scholar] [CrossRef]
- Miller, F.D.; Gauthier-Fisher, A. Home at Last: Neural Stem Cell Niches Defined. Cell Stem Cell 2009, 4, 507–510. [Google Scholar] [CrossRef]
- Paus, T. Growth of White Matter in the Adolescent Brain: Myelin or Axon? Brain Cogn. 2010, 72, 26–35. [Google Scholar] [CrossRef]
- Kuan, C.-Y.; Roth, K.A.; Flavell, R.A.; Rakic, P. Mechanisms of Programmed Cell Death in the Developing Brain. Trends Neurosci. 2000, 23, 291–297. [Google Scholar] [CrossRef]
- Bourgeois, J. Synaptogenesis, Heterochrony and Epigenesis in the Mammalian Neocortex. Acta Paediatr. 1997, 86, 27–33. [Google Scholar] [CrossRef]
- Scott, J.G.; McNaughton, A.J.; Polis, I.; Stein, D.J. Childhood Trauma and COMT Genotype Interact to Increase Hippocampal Activation in Adulthood. Mol. Psychiatry 2006, 11, 1066–1067. [Google Scholar]
- Hultman, C.M.; Sparen, P.; Takei, N.; Murray, R.M.; Cnattingius, S.; Geddes, J. Prenatal and Perinatal Risk Factors for Schizophrenia, Affective Psychosis, and Reactive Psychosis of Early Onset: Case-Control Study Prenatal and Perinatal Risk Factors for Early Onset Schizophrenia, Affective Psychosis, and Reactive Psychosis. BMJ 1999, 318, 421–426. [Google Scholar] [CrossRef]
- Lacagnina, S. The Developmental Origins of Health and Disease (DOHaD). Am. J. Lifestyle Med. 2020, 14, 47–50. [Google Scholar] [CrossRef]
- Wadhwa, P.; Buss, C.; Entringer, S.; Swanson, J. Developmental Origins of Health and Disease: Brief History of the Approach and Current Focus on Epigenetic Mechanisms. Semin. Reprod. Med. 2009, 27, 358–368. [Google Scholar] [CrossRef]
- de Juan Romero, C.; Borrell, V. Genetic Maps and Patterns of Cerebral Cortex Folding. Curr. Opin. Cell Biol. 2017, 49, 31–37. [Google Scholar] [CrossRef]
- Toso, L.; Poggi, S.H.; Roberson, R.; Woodard, J.; Park, J.; Abebe, D.; Spong, C.Y. Prevention of Alcohol-Induced Learning Deficits in Fetal Alcohol Syndrome Mediated through NMDA and GABA Receptors. Am. J. Obstet. Gynecol. 2006, 194, 681–686. [Google Scholar] [CrossRef]
- Olney, J.W.; Wozniak, D.F.; Jevtovic-Todorovic, V.; Farber, N.B.; Bittigau, P.; Ikonomidou, C. Glutamate and GABA Receptor Dysfunction in the Fetal Alcohol Syndrome. Neurotox. Res. 2002, 4, 315–325. [Google Scholar] [CrossRef]
- Buss, C.; Entringer, S.; Wadhwa, P.D. Fetal Programming of Brain Development: Intrauterine Stress and Susceptibility to Psychopathology. Sci. Signal. 2012, 5, pt7. [Google Scholar] [CrossRef]
- Winkler, I.; Tervaniemi, M.; Schröger, E. Pre-Attentive Auditory Processing in the Human Brainstem and Cortex. Neurosci. Biobehav. Rev. 2021, 122, 332–351. [Google Scholar]
- Partanen, E.; Kujala, T.; Tervaniemi, M.; Huotilainen, M. Prenatal Music Exposure Induces Long-Term Neural Effects. PLoS ONE 2013, 8, e78946. [Google Scholar] [CrossRef]
- Golub, M.D.; Sadtler, P.T.; Oby, E.R.; Quick, K.M.; Ryu, S.I.; Tyler-Kabara, E.C.; Batista, A.P.; Chase, S.M.; Yu, B.M. Learning by Neural Reassociation. Nat. Neurosci. 2018, 21, 607–616. [Google Scholar] [CrossRef]
- Giedd, J.N. Structural Magnetic Resonance Imaging of the Adolescent Brain. Ann. N. Y. Acad. Sci. 2004, 1021, 77–85. [Google Scholar] [CrossRef]
- Bishop, D.V.M.; Snowling, M.J. Developmental Dyslexia and Specific Language Impairment: Same or Different? Psychol. Bull. 2004, 130, 858–886. [Google Scholar] [CrossRef]
- Kuhl, P.K. Brain Mechanisms in Early Language Acquisition. Neuron 2010, 67, 713–727. [Google Scholar] [CrossRef]
- Werker, J.F.; Hensch, T.K. Critical Periods in Speech Perception: New Directions. Annu. Rev. Psychol. 2015, 66, 173–196. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Hackman, D.A.; Farah, M.J. Socioeconomic Status and the Developing Brain. Trends Cogn. Sci. 2009, 13, 65–73. [Google Scholar] [CrossRef]
- Bowlby, J. Attachment and Loss: Retrospect and Prospect. Am. J. Orthopsychiatry 1982, 52, 664–678. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Violence Prevention 2014; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- World Health Organization. Global Status Report on Preventing Violence against Children; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Russell, G.; Lightman, S. The Human Stress Response. Nat. Rev. Endocrinol. 2019, 15, 525–534. [Google Scholar] [CrossRef]
- McEwen, B.S. Neurobiological and Systemic Effects of Chronic Stress. Chronic Stress 2017, 1, 2470547017692328. [Google Scholar] [CrossRef]
- Oomen, C.A.; Mayer, J.L.; De Kloet, E.R.; Joëls, M.; Lucassen, P.J. Brief Treatment with the Glucocorticoid Receptor Antagonist Mifepristone Normalizes the Reduction in Neurogenesis after Chronic Stress. Eur. J. Neurosci. 2007, 26, 3395–3401. [Google Scholar] [CrossRef]
- Liu, R.; Yang, X.D.; Liao, X.M.; Xie, X.M.; Su, Y.A.; Li, J.T.; Wang, X.D.; Si, T.M. Early Postnatal Stress Suppresses the Developmental Trajectory of Hippocampal Pyramidal Neurons: The Role of CRHR1. Brain Struct. Funct. 2016, 221, 4525–4536. [Google Scholar] [CrossRef]
- Fabricius, K.; Wörtwein, G.; Pakkenberg, B. The Impact of Maternal Separation on Adult Mouse Behaviour and on the Total Neuron Number in the Mouse Hippocampus. Brain Struct. Funct. 2008, 212, 403–416. [Google Scholar] [CrossRef]
- Chocyk, A.; Majcher-Maoelanka, I.; Dudys, D.; Przyborowska, A.; Wêdzony, K. Impact of Early-Life Stress on the Medial Prefrontal Cortex Functions-a Search for the Pathomechanisms of Anxiety and Mood Disorders. Pharmacol. Rep. 2013, 65, 1462–1470. [Google Scholar] [CrossRef]
- Herzberg, M.P.; Gunnar, M.R. Early Life Stress and Brain Function: Activity and Connectivity Associated with Processing Emotion and Reward. Neuroimage 2020, 209, 116493. [Google Scholar] [CrossRef]
- McEwen, B.S.; Gianaros, P.J. Central Role of the Brain in Stress and Adaptation: Links to Socioeconomic Status, Health, and Disease. Ann. N. Y. Acad. Sci. 2010, 1186, 190–222. [Google Scholar] [CrossRef]
- Hair, N.L.; Hanson, J.L.; Wolfe, B.L.; Pollak, S.D. Association of Child Poverty, Brain Development, and Academic Achievement. JAMA Pediatr. 2015, 169, 822–829. [Google Scholar] [CrossRef]
- Enoch, M.-A. The Role of Early Life Stress as a Predictor for Alcohol and Drug Dependence. Psychopharmacology 2011, 214, 17–31. [Google Scholar] [CrossRef]
- Rothman, E.F.; Edwards, E.M.; Heeren, T.; Hingson, R.W. Adverse Childhood Experiences Predict Earlier Age of Drinking Onset: Results from a Representative US Sample of Current or Former Drinkers. Pediatrics 2008, 122, 298–304. [Google Scholar] [CrossRef]
- Pilowsky, D.J.; Keyes, K.M.; Hasin, D.S. Adverse Childhood Events and Lifetime Alcohol Dependence. Am. J. Public Health 2009, 99, 258–263. [Google Scholar] [CrossRef]
- Hyman, S.M.; Paliwal, P.; Chaplin, T.M.; Mazure, C.M.; Rounsaville, B.J.; Sinha, R. Severity of Childhood Trauma Is Predictive of Cocaine Relapse Outcomes in Women but Not Men. Drug Alcohol Depend. 2008, 92, 208–216. [Google Scholar] [CrossRef]
- Blakemore, S.-J.; Choudhury, S. Development of the Adolescent Brain: Implications for Executive Function and Social Cognition. J. Child Psychol. Psychiatry 2006, 47, 296–312. [Google Scholar] [CrossRef]
- Fareri, D.S.; Gabard-Durnam, L.J.; Goff, B.; Tottenham, N. Developmental Trajectories of Amygdala-Prefrontal Morphology and Functioning in Adolescents: A Longitudinal Study. Neuroimage 2015, 118, 239–247. [Google Scholar]
- Gee, D.G.; Humphreys, K.L.; Flannery, J.; Goff, B.; Telzer, E.H.; Shapiro, M.; Hare, T.A.; Bookheimer, S.Y.; Tottenham, N. A Developmental Shift from Positive to Negative Connectivity in Human Amygdala–Prefrontal Circuitry. J. Neurosci. 2013, 33, 4584–4593. [Google Scholar] [CrossRef]
- Blakemore, S.-J. Development of the Social Brain in Adolescence. J. R. Soc. Med. 2012, 105, 111–116. [Google Scholar] [CrossRef]
- Tottenham, N.; Galván, A. Stress and the Adolescent Brain. Neurosci. Biobehav. Rev. 2016, 70, 217–227. [Google Scholar] [CrossRef]
- Sowell, E.R.; Peterson, B.S.; Thompson, P.M.; Welcome, S.E.; Henkenius, A.L.; Toga, A.W. Mapping Cortical Change across the Human Life Span. Nat. Neurosci. 2003, 6, 309–315. [Google Scholar] [CrossRef]
- Evans, J.; Sumners, C.; Moore, J.; Huentelman, M.J.; Deng, J.; Gelband, C.H.; Shaw, G. Characterization of Mitotic Neurons Derived From Adult Rat Hypothalamus and Brain Stem. J. Neurophysiol. 2002, 87, 1076–1085. [Google Scholar] [CrossRef]
- Parent, A.; Côté, P.Y.; Lavoie, B. Chemical Anatomy of Primate Basal Ganglia. Prog. Neurobiol. 1995, 46, 131–197. [Google Scholar] [CrossRef]
- Suzuki, S.O.; Goldman, J.E. Multiple Cell Populations in the Early Postnatal Subventricular Zone Take Distinct Migratory Pathways: A Dynamic Study of Glial and Neuronal Progenitor Migration. J. Neurosci. 2003, 23, 4240–4250. [Google Scholar] [CrossRef]
- Shapiro, L.A.; Ng, K.; Zhou, Q.-Y.; Ribak, C.E. Subventricular Zone-Derived, Newly Generated Neurons Populate Several Olfactory and Limbic Forebrain Regions. Epilepsy Behav. 2009, 14, 74–80. [Google Scholar] [CrossRef]
- Zhao, M.; Momma, S.; Delfani, K.; Carlén, M.; Cassidy, R.M.; Johansson, C.B.; Brismar, H.; Shupliakov, O.; Frisén, J.; Janson, A.M. Evidence for Neurogenesis in the Adult Mammalian Substantia Nigra. Proc. Natl. Acad. Sci. USA 2003, 100, 7925–7930. [Google Scholar] [CrossRef]
- Magavi, S.S.; Leavitt, B.R.; Macklis, J.D. Induction of Neurogenesis in the Neocortex of Adult Mice. Nature 2000, 405, 951–955. [Google Scholar] [CrossRef]
- Bernier, P.J.; Bédard, A.; Vinet, J.; Lévesque, M.; Parent, A. Newly Generated Neurons in the Amygdala and Adjoining Cortex of Adult Primates. Proc. Natl. Acad. Sci. USA 2002, 99, 11464–11469. [Google Scholar] [CrossRef]
- Cao, Q.-L.; Howard, R.M.; Dennison, J.B.; Whittemore, S.R. Differentiation of Engrafted Neuronal-Restricted Precursor Cells Is Inhibited in the Traumatically Injured Spinal Cord. Exp. Neurol. 2002, 177, 349–359. [Google Scholar] [CrossRef]
- Dayer, A.G.; Cleaver, K.M.; Abouantoun, T.; Cameron, H.A. New GABAergic Interneurons in the Adult Neocortex and Striatum Are Generated from Different Precursors. J. Cell Biol. 2005, 168, 415–427. [Google Scholar] [CrossRef]
- Inta, D.; Alfonso, J.; von Engelhardt, J.; Kreuzberg, M.M.; Meyer, A.H.; van Hooft, J.A.; Monyer, H. Neurogenesis and Widespread Forebrain Migration of Distinct GABAergic Neurons from the Postnatal Subventricular Zone. Proc. Natl. Acad. Sci. USA 2008, 105, 20994–20999. [Google Scholar] [CrossRef]
- Florio, M.; Huttner, W.B. Neural Progenitors, Neurogenesis and the Evolution of the Neocortex. Development 2014, 141, 2182–2194. [Google Scholar] [CrossRef]
- Zecevic, N.; Rakic, P. Development of Layer I Neurons in the Primate Cerebral Cortex. J. Neurosci. 2001, 21, 5607–5619. [Google Scholar] [CrossRef]
- Jhaveri, D.J.; Tedoldi, A.; Hunt, S.; Sullivan, R.; Watts, N.R.; Power, J.M.; Bartlett, P.F.; Sah, P. Evidence for Newly Generated Interneurons in the Basolateral Amygdala of Adult Mice. Mol. Psychiatry 2018, 23, 521–532. [Google Scholar] [CrossRef]
- Lee, D.A.; Bedont, J.L.; Pak, T.; Wang, H.; Song, J.; Miranda-Angulo, A.; Takiar, V.; Charubhumi, V.; Balordi, F.; Takebayashi, H.; et al. Tanycytes of the Hypothalamic Median Eminence Form a Diet-Responsive Neurogenic Niche. Nat. Neurosci. 2012, 15, 700–702. [Google Scholar] [CrossRef]
- Li, J.; Tang, Y.; Cai, D. IKKβ/NF-ΚB Disrupts Adult Hypothalamic Neural Stem Cells to Mediate a Neurodegenerative Mechanism of Dietary Obesity and Pre-Diabetes. Nat. Cell Biol. 2012, 14, 999–1012. [Google Scholar] [CrossRef]
- Bernstein, P.L.; Zuo, M.; Cheng, M.-F. Social Condition Affects the Courtship Behavior of Male Ring Doves with Posterior Medial Hypothalamic Lesions. Behav. Neural Biol. 1993, 59, 120–125. [Google Scholar] [CrossRef]
- Fowler, C.D.; Liu, Y.; Ouimet, C.; Wang, Z. The Effects of Social Environment on Adult Neurogenesis in the Female Prairie Vole. J. Neurobiol. 2002, 51, 115–128. [Google Scholar] [CrossRef]
- Cheng, M.-F.; Peng, J.-P.; Chen, G.; Gardner, J.P.; Bonder, E.M. Functional Restoration of Acoustic Units and Adult-Generated Neurons after Hypothalamic Lesion. J. Neurobiol. 2004, 60, 197–213. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, M.S.; Jia, B.; Yan, J.; Zuniga-Hertz, J.P.; Han, C.; Cai, D. Hypothalamic Stem Cells Control Ageing Speed Partly through Exosomal MiRNAs. Nature 2017, 548, 52–57. [Google Scholar] [CrossRef]
- Plakkot, B.; Di Agostino, A.; Subramanian, M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity-Associated Cardiovascular Diseases. Cells 2023, 12, 769. [Google Scholar] [CrossRef]
- Duman, R.S.; Nakagawa, S.; Malberg, J.E. Regulation of Adult Neurogenesis by Antidepressant Treatment. Neuropsychopharmacology 2001, 25, 836–844. [Google Scholar] [CrossRef]
- Santarelli, L.; Saxe, M.; Gross, C.; Surget, A.; Battaglia, F.; Dulawa, S.; Weisstaub, N.; Lee, J.; Duman, R.; Arancio, O.; et al. Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants. Science 2003, 301, 805–809. [Google Scholar] [CrossRef]
- Castello, N.A.; Nguyen, M.H.; Tran, J.D.; Cheng, D.; Green, K.N.; LaFerla, F.M. Ketamine-Induced Neurogenesis in Prefrontal Cortex Contributes to Antidepressant-like Effects. Proc. Natl. Acad. Sci. USA 2020, 117, 28794–28804. [Google Scholar]
- Gil-Mohapel, J.; Simpson, J.M.; Christie, B.R. Modulation of Adult Neurogenesis by Physical Exercise and Environmental Enrichment: Insights for the Treatment of Neurological Disorders. In Adult Neurogenesis and CNS Diseases; Transworld Research Network: Kerala, India, 2010; pp. 125–150. [Google Scholar]
- van Praag, H.; Christie, B.R.; Sejnowski, T.J.; Gage, F.H. Running Enhances Neurogenesis, Learning, and Long-Term Potentiation in Mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13427–13431. [Google Scholar] [CrossRef]
- Yau, S.; Gil-Mohapel, J.; Christie, B.R.; So, K. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases? Biomed Res. Int. 2014, 2014, 403120. [Google Scholar] [CrossRef]
- Christian, P.; Stewart, C.P.; Omumbo, J.A. Impact of Maternal and Child Nutrition on Health. Annu. Rev. Nutr. 2019, 39, 213–231. [Google Scholar]
- Edlow, A.G. Maternal Obesity and Neurodevelopmental and Psychiatric Disorders in Offspring. Prenat. Diagn. 2017, 37, 95–110. [Google Scholar] [CrossRef]
- Rivera, H.M.; Christiansen, K.J.; Sullivan, E.L. The Role of Maternal Obesity in the Risk of Neuropsychiatric Disorders. Front. Neurosci. 2015, 9, 194. [Google Scholar] [CrossRef]
- Dearden, L.; Ozanne, S.E. Early Life Origins of Metabolic Disease: Developmental Programming of Hypothalamic Pathways Controlling Energy Homeostasis. Front. Neuroendocrinol. 2015, 39, 3–16. [Google Scholar] [CrossRef]
- Bae-Gartz, I.; Janoschek, R.; Breuer, S.; Schmitz, L.; Hoffmann, T.; Ferrari, N.; Branik, L.; Oberthuer, A.; Kloppe, C.-S.; Appel, S.; et al. Maternal Obesity Alters Neurotrophin-Associated MAPK Signaling in the Hypothalamus of Male Mouse Offspring. Front. Neurosci. 2019, 13, 962. [Google Scholar] [CrossRef]
- Schmitz, L.; Kuglin, R.; Bae-Gartz, I.; Janoschek, R.; Appel, S.; Mesaros, A.; Jakovcevski, I.; Vohlen, C.; Handwerk, M.; Ensenauer, R.; et al. Hippocampal Insulin Resistance Links Maternal Obesity with Impaired Neuronal Plasticity in Adult Offspring. Psychoneuroendocrinology 2018, 89, 46–52. [Google Scholar] [CrossRef]
- Van Dam, J.M.; Garrett, A.J.; Schneider, L.A.; Hodyl, N.A.; Goldsworthy, M.R.; Coat, S.; Rowan, J.A.; Hague, W.M.; Pitcher, J.B. Reduced Cortical Excitability, Neuroplasticity, and Salivary Cortisol in 11–13-Year-Old Children Born to Women with Gestational Diabetes Mellitus. EBioMedicine 2018, 31, 143–149. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, X.; He, Y.; Shi, Y. Butyrate, but Not Propionate, Reverses Maternal Diet-Induced Neurocognitive Deficits in Offspring. Pharmacol. Res. 2020, 160, 105082. [Google Scholar] [CrossRef]
- Mendes-da-Silva, C.; Lemes, S.F.; Baliani, T.d.S.; Versutti, M.D.; Torsoni, M.A. Increased Expression of Hes5 Protein in Notch Signaling Pathway in the Hippocampus of Mice Offspring of Dams Fed a High-fat Diet during Pregnancy and Suckling. Int. J. Dev. Neurosci. 2015, 40, 35–42. [Google Scholar] [CrossRef]
- Ge, Q.; Hu, X.; Ma, N.; Sun, M.; Zhang, L.; Cai, Z.; Tan, R.; Lu, H. Maternal High-salt Diet during Pregnancy Impairs Synaptic Plasticity and Memory in Offspring. FASEB J. 2021, 35, e21244. [Google Scholar] [CrossRef]
- Wasserman, G.A.; Liu, X.; Parvez, F.; Ahsan, H.; Factor-Litvak, P.; van Geen, A.; Slavkovich, V.; Lolacono, N.J.; Cheng, Z.; Hussain, I.; et al. Water Arsenic Exposure and Children’s Intellectual Function in Araihazar, Bangladesh. Environ. Health Perspect. 2004, 112, 1329–1333. [Google Scholar] [CrossRef]
- May, P.A.; Chambers, C.D.; Kalberg, W.O.; Zellner, J.; Feldman, H.; Buckley, D.; Kopald, D.; Hasken, J.M.; Xu, R.; Honerkamp-Smith, G.; et al. Prevalence of Fetal Alcohol Spectrum Disorders in 4 US Communities. JAMA 2018, 319, 474. [Google Scholar] [CrossRef]
- Brancato, A.; Castelli, V.; Lavanco, G.; Marino, R.A.M.; Cannizzaro, C. In Utero Δ9-Tetrahydrocannabinol Exposure Confers Vulnerability towards Cognitive Impairments and Alcohol Drinking in the Adolescent Offspring: Is There a Role for Neuropeptide Y? J. Psychopharmacol. 2020, 34, 663–679. [Google Scholar] [CrossRef]
- Volkow, N.D.; Jones, E.B. Have We Entered a New Era of Prenatal Cocaine Exposure? Neuropharmacology 2019, 151, 117–124. [Google Scholar]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural Effects of Developmental Toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef]
- Dolk, H.; Lopes dos Santos, M.; Soares, P. Congenital Rubella Syndrome in the Era of Global Elimination of Measles and Rubella. Lancet 2017, 5, e287–e288. [Google Scholar]
- Mullins, E.; Evans, D.; Viner, R.M.; O’Brien, P. The Impact of the COVID-19 Pandemic on Perinatal Mental Health. J. Perinat. Med. 2021, 49, 327–329. [Google Scholar]
- Kancherla, V.; Razzaghi, H.; Okoniewski, K.C.; Wong, K.K.; Salihu, H.M.; Kirby, R.S.; Anjohrin, S.B. Increased Proportion of Reported Congenital Anomalies during the COVID-19 Pandemic. Birth Defects Res. 2021, 113, 1079–1087. [Google Scholar]
- Heidarzadeh, M.; Taheri, M.; Mazaheripour, Z.; Abbasi-Khameneh, F. The Incidence of Congenital Anomalies in Newborns before and during the Covid-19 Pandemic. Ital. J. Pediatr. 2022, 48, 174. [Google Scholar] [CrossRef]
- Black, M.M.; Walker, S.P.; Fernald, L.C.H.; Andersen, C.T.; DiGirolamo, A.M.; Lu, C.; McCoy, D.C.; Fink, G.; Shawar, Y.R.; Shiffman, J.; et al. Early Childhood Development Coming of Age: Science through the Life Course. Lancet 2017, 389, 77–90. [Google Scholar] [CrossRef]
- Vinuesa, A.; Bentivegna, M.; Calfa, G.; Filipello, F.; Pomilio, C.; Bonaventura, M.M.; Lux-Lantos, V.; Matzkin, M.E.; Gregosa, A.; Presa, J.; et al. Early Exposure to a High-Fat Diet Impacts on Hippocampal Plasticity: Implication of Microglia-Derived Exosome-like Extracellular Vesicles. Mol. Neurobiol. 2019, 56, 5075–5094. [Google Scholar] [CrossRef]
- Arcego, D.M.; Olivo, L.B.; Moraes, R.O.; Garcia, E.d.S.; Silveira, A.C.; Krolow, R.; Couto-Pereira, N.d.S.; Lampert, C.; Toniazzo, A.P.; Nicola, F.d.C.; et al. Neurometabolic Effects of Sweetened Solution Intake during Adolescence Related to Depressive-like Phenotype in Rats. Nutrition 2020, 75–76, 110770. [Google Scholar] [CrossRef]
- Lee, H.; Park, H.; Ha, E.; Hong, Y.-C.; Ha, M.; Park, H.; Kim, B.-N.; Lee, B.; Lee, S.-J.; Lee, K.Y.; et al. Effect of Breastfeeding Duration on Cognitive Development in Infants: 3-Year Follow-up Study. J. Korean Med. Sci. 2016, 31, 579. [Google Scholar] [CrossRef]
- Abbink, M.R.; Schipper, L.; Naninck, E.F.G.; de Vos, C.M.H.; Meier, R.; van der Beek, E.M.; Lucassen, P.J.; Korosi, A. The Effects of Early Life Stress, Postnatal Diet Modulation, and Long-Term Western-Style Diet on Later-Life Metabolic and Cognitive Outcomes. Nutrients 2020, 12, 570. [Google Scholar] [CrossRef]
- Ruel, M.T.; Alderman, H. Nutrition-Sensitive Interventions and Programmes: How Can They Help to Accelerate Progress in Improving Maternal and Child Nutrition? Lancet 2013, 382, 536–551. [Google Scholar] [CrossRef]
- Victora, C.G.; Adair, L.; Fall, C.; Hallal, P.C.; Martorell, R.; Richter, L.; Sachdev, H.S. Maternal and Child Undernutrition: Consequences for Adult Health and Human Capital. Lancet 2008, 371, 340–357. [Google Scholar] [CrossRef]
- Prado, E.L.; Abbeddou, S.; Adu-Afarwuah, S.; Arimond, M.; Ashorn, P.; Ashorn, U.; Brown, K.H.; Hess, S.Y.; Lartey, A.; Maleta, K.; et al. Linear Growth and Child Development in Burkina Faso, Ghana, and Malawi. Pediatrics 2016, 138, e20154698. [Google Scholar] [CrossRef]
- Granat-McGregor, S.M.; Powell, C.A.; Walker, S.P. Nutritional Supplementation, Cognitive and Scholastic Outcomes of Kenyan Children. J. Nutr. 2007, 137, 2694–2699. [Google Scholar]
- Shonkoff, J.P.; Garner, A.S.; Siegel, B.S.; Dobbins, M.I.; Earls, M.F.; Garner, A.S.; McGuinn, L.; Pascoe, J.; Wood, D.L. The Lifelong Effects of Early Childhood Adversity and Toxic Stress. Pediatrics 2012, 129, e232–e246. [Google Scholar] [CrossRef]
- Campbell, F.; Conti, G.; Heckman, J.J.; Moon, S.H.; Pinto, R.; Pungello, E.; Pan, Y. Early Childhood Investments Substantially Boost Adult Health. Science 2014, 343, 1478–1485. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Weiland, C.; Brooks-Gunn, J.; Burchinal, M.R.; Espinosa, L.M.; Gormley, W.T.; Ludwig, J.; Magnuson, K.A.; Phillips, D.; Zaslow, M.J. Investing in Our Future: The Evidence Base on Preschool Education; Society for Research in Child Development, Foundation for Child Development: Washington, DC, USA, 2013. [Google Scholar]
- Sheridan, M.A.; Fox, N.A.; Zeanah, C.H.; McLaughlin, K.A.; Nelson, C.A. Variation in Neural Development as a Result of Exposure to Institutionalization Early in Childhood. Proc. Natl. Acad. Sci. USA 2012, 109, 12927–12932. [Google Scholar] [CrossRef]
- Nelson, C.A.; Thomas, K.M.; de Haan, M. Neural Bases of Cognitive Development. In Handbook of Child Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 1–56. [Google Scholar]
- Kempermann, G. Environmental Enrichment, New Neurons and the Neurobiology of Individuality. Nat. Rev. Neurosci. 2019, 20, 235–245. [Google Scholar] [CrossRef]
- Bergami, M.; Masserdotti, G.; Temprana, S.G.; Motori, E.; Eriksson, T.M.; Göbel, J.; Yang, S.M.; Conzelmann, K.-K.; Schinder, A.F.; Götz, M.; et al. A Critical Period for Experience-Dependent Remodeling of Adult-Born Neuron Connectivity. Neuron 2015, 85, 710–717. [Google Scholar] [CrossRef]
- Barichello, T.; Fagundes, G.D.; Generoso, J.S.; Dagostin, C.S.; Simões, L.R.; Vilela, M.C.; Comim, C.M.; Petronilho, F.; Quevedo, J.; Teixeira, A.L. Environmental Enrichment Restores Cognitive Deficits Induced by Experimental Childhood Meningitis. Rev. Bras. Psiquiatr. 2014, 36, 322–329. [Google Scholar] [CrossRef]
- Troller-Renfree, S.V.; Costanzo, M.A.; Duncan, G.J.; Magnuson, K.; Gennetian, L.A.; Yoshikawa, H.; Halpern-Meekin, S.; Fox, N.A.; Noble, K.G. The Impact of a Poverty Reduction Intervention on Infant Brain Activity. Proc. Natl. Acad. Sci. USA 2022, 119, e2115649119. [Google Scholar] [CrossRef]
- Vogel Ciernia, A.; Laufer, B.I.; Dunaway, K.W.; Mordaunt, C.E.; Coulson, R.L.; Totah, T.S.; Stolzenberg, D.S.; Frahm, J.C.; Singh-Taylor, A.; Baram, T.Z.; et al. Experience-Dependent Neuroplasticity of the Developing Hypothalamus: Integrative Epigenomic Approaches. Epigenetics 2018, 13, 318–330. [Google Scholar] [CrossRef]
- Marrocco, J.; McEwen, B.S. Sex in the Brain: Hormones and Sex Differences. Dialogues Clin. Neurosci. 2016, 18, 373–383. [Google Scholar] [CrossRef]
- Duarte-Guterman, P.; Yagi, S.; Chow, C.; Galea, L.A.M. Hippocampal Learning, Memory, and Neurogenesis: Effects of Sex and Estrogens across the Lifespan in Adults. Horm. Behav. 2015, 74, 37–52. [Google Scholar] [CrossRef]
- Triviño-Paredes, J.; Patten, A.R.; Gil-Mohapel, J.; Christie, B.R. The Effects of Hormones and Physical Exercise on Hippocampal Structural Plasticity. Front. Neuroendocrinol. 2016, 41, 23–43. [Google Scholar] [CrossRef]
- Hojo, Y.; Murakami, G.; Mukai, H.; Higo, S.; Hatanaka, Y.; Ogiue-Ikeda, M.; Ishii, H.; Kimoto, T.; Kawato, S. Estrogen Synthesis in the Brain—Role in Synaptic Plasticity and Memory. Mol. Cell. Endocrinol. 2008, 290, 31–43. [Google Scholar] [CrossRef]
- Hojo, Y.; Hattori, T.; Enami, T.; Furukawa, A.; Suzuki, K.; Ishii, H.; Mukai, H.; Morrison, J.H.; Janssen, W.G.M.; Kominami, S.; et al. Adult Male Rat Hippocampus Synthesizes Estradiol from Pregnenolone by Cytochromes P45017α and P450 Aromatase Localized in Neurons. Proc. Natl. Acad. Sci. USA 2004, 101, 865–870. [Google Scholar] [CrossRef]
- Kato, A.; Hojo, Y.; Higo, S.; Komatsuzaki, Y.; Murakami, G.; Yoshino, H.; Uebayashi, M.; Kawato, S. Female Hippocampal Estrogens Have a Significant Correlation with Cyclic Fluctuation of Hippocampal Spines. Front. Neural Circuits 2013, 7, 149. [Google Scholar] [CrossRef]
- Okamoto, M.; Hojo, Y.; Inoue, K.; Matsui, T.; Kawato, S.; McEwen, B.S.; Soya, H. Mild Exercise Increases Dihydrotestosterone in Hippocampus Providing Evidence for Androgenic Mediation of Neurogenesis. Proc. Natl. Acad. Sci. USA 2012, 109, 13100–13105. [Google Scholar] [CrossRef]
- Prange-Kiel, J.; Wehrenberg, U.; Jarry, H.; Rune, G.M. Para/Autocrine Regulation of Estrogen Receptors in Hippocampal Neurons. Hippocampus 2003, 13, 226–234. [Google Scholar] [CrossRef]
- Camacho-Arroyo, I.; Piña-Medina, A.G.; Bello-Alvarez, C.; Zamora-Sánchez, C.J. Sex Hormones and Proteins Involved in Brain Plasticity. Vitam. Horm. 2020, 114, 145–165. [Google Scholar] [CrossRef]
- Fester, L.; Rune, G.M. Sex Neurosteroids: Hormones Made by the Brain for the Brain. Neurosci. Lett. 2021, 753, 135849. [Google Scholar] [CrossRef]
- Brunne, B.; Rune, G.M. Sex Neurosteroidogenesis and Hippocampal Network Maintenance. Curr. Opin. Endocr. Metab. Res. 2022, 23, 100316. [Google Scholar] [CrossRef]
- McEwen, B.S.; Akama, K.T.; Spencer-Segal, J.L.; Milner, T.A.; Waters, E.M. Estrogen Effects on the Brain: Actions beyond the Hypothalamus via Novel Mechanisms. Behav. Neurosci. 2012, 126, 4–16. [Google Scholar] [CrossRef]
- Brann, D.W.; Lu, Y.; Wang, J.; Zhang, Q.; Thakkar, R.; Sareddy, G.R.; Pratap, U.P.; Tekmal, R.R.; Vadlamudi, R.K. Brain-Derived Estrogen and Neural Function. Neurosci. Biobehav. Rev. 2022, 132, 793–817. [Google Scholar] [CrossRef]
- Lu, Y.; Sareddy, G.R.; Wang, J.; Wang, R.; Li, Y.; Dong, Y.; Zhang, Q.; Liu, J.; O’Connor, J.C.; Xu, J.; et al. Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J. Neurosci. 2019, 39, 2792–2809. [Google Scholar] [CrossRef]
- Bettio, L.E.B.; Thacker, J.S.; Rodgers, S.P.; Brocardo, P.S.; Christie, B.R.; Gil-Mohapel, J. Interplay between Hormones and Exercise on Hippocampal Plasticity across the Lifespan. Biochim. Biophys. Acta-Mol. Basis Dis. 2020, 1866, 165821. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- United Nations. World Population Ageing 2019; United Nations: New York, NY, USA, 2020. [Google Scholar]
- United Nations. World Population Ageing 2019: Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- World Health Organization. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Centers for Disease Control and Prevention. Diabetes and Aging; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021. [Google Scholar]
- American Cancer Society. Cancer Facts and Figures 2021; American Cancer Society: Atlanta, GA, USA, 2021. [Google Scholar]
- Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.-P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.; Mahanani, W.R.; et al. The World Report on Ageing and Health: A Policy Framework for Healthy Ageing. Lancet 2016, 387, 2145–2154. [Google Scholar] [CrossRef]
- Childs, B.G.; Durik, M.; Baker, D.J.; van Deursen, J.M. Cellular Senescence in Aging and Age-Related Disease: From Mechanisms to Therapy. Nat. Med. 2015, 21, 1424–1435. [Google Scholar] [CrossRef]
- Navarro, A.; Boveris, A. The Mitochondrial Energy Transduction System and the Aging Process. Am. J. Physiol. Physiol. 2007, 292, C670–C686. [Google Scholar] [CrossRef]
- Muñoz-Espín, D.; Serrano, M. Cellular Senescence: From Physiology to Pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive Reserve✩. Neuropsychologia 2009, 47, 2015–2028. [Google Scholar] [CrossRef]
- Stern, Y.; Arenaza-Urquijo, E.M.; Bartrés-Faz, D.; Belleville, S.; Cantilon, M.; Chetelat, G.; Ewers, M.; Franzmeier, N.; Kempermann, G.; Kremen, W.S.; et al. Whitepaper: Defining and Investigating Cognitive Reserve, Brain Reserve, and Brain Maintenance. Alzheimers Dement. 2020, 16, 1305–1311. [Google Scholar] [CrossRef]
- McQuail, J.A.; Dunn, A.R.; Stern, Y.; Barnes, C.A.; Kempermann, G.; Rapp, P.R.; Kaczorowski, C.C.; Foster, T.C. Cognitive Reserve in Model Systems for Mechanistic Discovery: The Importance of Longitudinal Studies. Front. Aging Neurosci. 2021, 12, 607685. [Google Scholar] [CrossRef]
- Ionescu-Tucker, A.; Cotman, C.W. Emerging Roles of Oxidative Stress in Brain Aging and Alzheimer’s Disease. Neurobiol. Aging 2021, 107, 86–95. [Google Scholar] [CrossRef]
- Baracaldo-Santamaría, D.; Avendaño-Lopez, S.S.; Ariza-Salamanca, D.F.; Rodriguez-Giraldo, M.; Calderon-Ospina, C.A.; González-Reyes, R.E.; Nava-Mesa, M.O. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 9067. [Google Scholar] [CrossRef]
- Lesuis, S.L.; Hoeijmakers, L.; Korosi, A.; de Rooij, S.R.; Swaab, D.F.; Kessels, H.W.; Lucassen, P.J.; Krugers, H.J. Vulnerability and Resilience to Alzheimer’s Disease: Early Life Conditions Modulate Neuropathology and Determine Cognitive Reserve. Alzheimers. Res. Ther. 2018, 10, 95. [Google Scholar] [CrossRef]
- Jellinger, K.A.; Attems, J. Neuropathological Approaches to Cerebral Aging and Neuroplasticity. Dialogues Clin. Neurosci. 2013, 15, 29–43. [Google Scholar] [CrossRef]
- Hy, L.X.; Keller, D.M. Prevalence of AD among Whites. Neurology 2000, 55, 198–204. [Google Scholar] [CrossRef]
- Niu, H.; Álvarez-Álvarez, I.; Guillén-Grima, F.; Aguinaga-Ontoso, I. Prevalence and Incidence of Alzheimer’s Disease in Europe: A Meta-Analysis. Neurologia 2017, 32, 523–532. [Google Scholar] [CrossRef]
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer Disease. Nat. Rev. Dis. Prim. 2021, 7, 33. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and Aging-Related Diseases: From Molecular Mechanisms to Interventions and Treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Lazareva, N.; Semyanov, A. Glial Decline and Loss of Homeostatic Support Rather than Inflammation Defines Cognitive Aging. Neural Regen. Res. 2022, 17, 565. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, R.M.; Kitt, M.M.; Watkins, L.R.; Maier, S.F. Neuroinflammation in the Normal Aging Hippocampus. Neuroscience 2015, 309, 84–99. [Google Scholar] [CrossRef]
- Wang, X.; Michaelis, E.K. Selective Neuronal Vulnerability to Oxidative Stress in the Brain. Front. Aging Neurosci. 2010, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Grimm, A.; Eckert, A. Brain Aging and Neurodegeneration: From a Mitochondrial Point of View. J. Neurochem. 2017, 143, 418–431. [Google Scholar] [CrossRef]
- Johnson, F.B.; Sinclair, D.A.; Guarente, L. Molecular Biology of Aging. Cell 1999, 96, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Khachaturian, Z.S. The Role of Calcium Regulation in Brain Aging: Reexamination of a Hypothesis. Aging Clin. Exp. Res. 1989, 1, 17–34. [Google Scholar] [CrossRef]
- Foster, T.C. Calcium Homeostasis and Modulation of Synaptic Plasticity in the Aged Brain. Aging Cell 2007, 6, 319–325. [Google Scholar] [CrossRef]
- Gant, J.C.; Chen, K.-C.; Kadish, I.; Blalock, E.M.; Thibault, O.; Porter, N.M.; Landfield, P.W. Reversal of Aging-Related Neuronal Ca2+ Dysregulation and Cognitive Impairment by Delivery of a Transgene Encoding FK506-Binding Protein 12.6/1b to the Hippocampus. J. Neurosci. 2015, 35, 10878–10887. [Google Scholar] [CrossRef]
- Kumar, A.; Foster, T.C. Alteration in NMDA Receptor Mediated Glutamatergic Neurotransmission in the Hippocampus During Senescence. Neurochem. Res. 2019, 44, 38–48. [Google Scholar] [CrossRef]
- Santos-Parker, J.R.; LaRocca, T.J.; Seals, D.R. Aerobic Exercise and Other Healthy Lifestyle Factors That Influence Vascular Aging. Adv. Physiol. Educ. 2014, 38, 296–307. [Google Scholar] [CrossRef]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015, 135, 355–380. [Google Scholar] [CrossRef]
- Fjell, A.M.; Walhovd, K.B. Structural Brain Changes in Aging: Courses, Causes and Cognitive Consequences. Rev. Neurosci. 2010, 21, 187–222. [Google Scholar] [CrossRef]
- Beyer, K.; Domingo-Sàbat, M.; Ariza, A.; Guillazo-Blanch, G. Molecular Anatomy of the Nigrostriatal Pathway in the Rat: A Review. Neuroscience 2012, 227, 70–83. [Google Scholar]
- Gil, J.M.; Rego, A.C. Mechanisms of Neurodegeneration in Huntington’s Disease. Eur. J. Neurosci. 2008, 27, 2803–2820. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Oo, T.F.; Wang, L.; Tang, Y.; Jackson-Lewis, V.; Zhou, C.; Geghman, K.; Bogdanov, M.; Przedborski, S.; et al. Mutant LRRK2R1441G BAC Transgenic Mice Recapitulate Cardinal Features of Parkinson’s Disease. Nat. Neurosci. 2009, 12, 826–828. [Google Scholar] [CrossRef]
- Alzheimer’s Association. 2022 Alzheimer’s Disease Facts and Figures, More Than Normal Aging: Understanding Mild Cognitive Impairment; Alzheimer’s Association: Chicago, IL, USA, 2022. [Google Scholar]
- Parkinson’s Foundation. Statistics on Parkinson’s; Parkinson’s Foundation: New York, NY, USA, 2021. [Google Scholar]
- World Health Organization. Dementia; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative Stress, Mitochondrial Dysfunction and Neurodegenerative Diseases; a Mechanistic Insight. Biomed. Pharmacother. 2015, 74, 101–110. [Google Scholar] [CrossRef]
- Sweeney, P.; Park, H.; Baumann, M.; Dunlop, J.; Frydman, J.; Kopito, R.; McCampbell, A.; Leblanc, G.; Venkateswaran, A.; Nurmi, A.; et al. Protein misfolding in neurodegenerative diseases: Implications and strategies. Transl Neurodegener. 2017, 6, 1–13. [Google Scholar] [CrossRef]
- DiFiglia, M.; Sapp, E.; Chase, K.O.; Davies, S.W.; Bates, G.P.; Vonsattel, J.P.; Aronin, N. Aggregation of Huntingtin in Neuronal Intranuclear Inclusions and Dystrophic Neurites in Brain. Science 1997, 277, 1990–1993. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, I.; Edwards III, G.; Salvadores, N. Shining a Light on Protein Misfolding and Aggregation in Neurological Diseases. Protein Sci. 2018, 27, 1820–1831. [Google Scholar]
- Sun, N.; Youle, R.J.; Finkel, T. The Mitochondrial Basis of Aging. Mol. Cell 2016, 61, 654–666. [Google Scholar] [CrossRef]
- Hroudová, J.; Singh, N.; Fišar, Z. Mitochondrial Dysfunctions in Neurodegenerative Diseases: Relevance to Alzheimer’s Disease. Biomed Res. Int. 2014, 2014, 175062. [Google Scholar] [CrossRef]
- Li, M.; Fu, X.; Xie, W.; Guo, W.; Li, B.; Cui, R.; Yang, W. Effect of Early Life Stress on the Epigenetic Profiles in Depression. Front. Cell Dev. Biol. 2020, 8, 867. [Google Scholar] [CrossRef]
- Niranjan, R. The Role of Inflammatory and Oxidative Stress Mechanisms in the Pathogenesis of Parkinson’s Disease: Focus on Astrocytes. Mol. Neurobiol. 2014, 49, 28–38. [Google Scholar] [CrossRef]
- das Neves, S.P.; Sousa, J.C.; Sousa, N.; Cerqueira, J.J.; Marques, F. Altered astrocytic function in experimental neuroinflammation and multiple sclerosis. Glia 2021, 69, 1341–1368. [Google Scholar] [CrossRef]
- Xie, Z.; Morgan, T.E.; Rozovsky, I.; Finch, C.E.; Longo, D.L. The Inflammation-Coagulation Connection in Brain Aging and Alzheimer’s Disease. Neurosci. Biobehav. Rev. 2013, 37, 1572–1587. [Google Scholar]
- Prusiner, S.B. A Unifying Role for Prions in Neurodegenerative Diseases. Science 2012, 336, 1511–1513. [Google Scholar] [CrossRef]
- Powers, E.T.; Balch, W.E. Diversity in the Origins of Proteostasis Networks—A Driver for Protein Function in Evolution. Nat. Rev. Mol. Cell Biol. 2013, 14, 237–248. [Google Scholar] [CrossRef]
- Hoozemans, J.J.M.; van Haastert, E.S.; Nijholt, D.A.T.; Rozemuller, A.J.M.; Eikelenboom, P.; Scheper, W. The Unfolded Protein Response Is Activated in Pretangle Neurons in Alzheimer’s Disease Hippocampus. Am. J. Pathol. 2009, 174, 1241–1251. [Google Scholar] [CrossRef]
- Hetz, C.; Saxena, S. ER Stress and the Unfolded Protein Response in Neurodegeneration. Nat. Rev. Neurol. 2017, 13, 477–491. [Google Scholar] [CrossRef]
- Smith, H.L.; Mallucci, G.R. The Unfolded Protein Response: Mechanisms and Therapy of Neurodegeneration. Brain 2016, 139, 2113–2121. [Google Scholar] [CrossRef]
- Hoozemans, J.J.M.; Veerhuis, R.; Van Haastert, E.S.; Rozemuller, J.M.; Baas, F.; Eikelenboom, P.; Scheper, W. The Unfolded Protein Response Is Activated in Alzheimer’s Disease. Acta Neuropathol. 2005, 110, 165–172. [Google Scholar] [CrossRef]
- Bellucci, A.; Navarria, L.; Zaltieri, M.; Falarti, E.; Bodei, S.; Sigala, S.; Battistin, L.; Spillantini, M.; Missale, C.; Spano, P. Induction of the Unfolded Protein Response by α-Synuclein in Experimental Models of Parkinson’s Disease. J. Neurochem. 2011, 116, 588–605. [Google Scholar] [CrossRef]
- Briston, T.; Hicks, A.R. Mitochondrial Dysfunction and Neurodegenerative Proteinopathies: Mechanisms and Prospects for Therapeutic Intervention. Biochem. Soc. Trans. 2018, 46, 829–842. [Google Scholar] [CrossRef]
- Kraytsberg, Y.; Kudryavtseva, E.; McKee, A.C.; Geula, C.; Kowall, N.W.; Khrapko, K. Mitochondrial DNA Deletions Are Abundant and Cause Functional Impairment in Aged Human Substantia Nigra Neurons. Nat. Genet. 2006, 38, 518–520. [Google Scholar] [CrossRef]
- Rhein, V.; Baysang, G.; Rao, S.; Meier, F.; Bonert, A.; Müller-Spahn, F.; Eckert, A. Amyloid-Beta Leads to Impaired Cellular Respiration, Energy Production and Mitochondrial Electron Chain Complex Activities in Human Neuroblastoma Cells. Cell. Mol. Neurobiol. 2009, 29, 1063–1071. [Google Scholar] [CrossRef]
- Du, J.; Wang, Y.; Hunter, R.; Wei, Y.; Blumenthal, R.; Falke, C.; Khairova, R.; Zhou, R.; Yuan, P.; Machado-Vieira, R.; et al. Dynamic Regulation of Mitochondrial Function by Glucocorticoids. Proc. Natl. Acad. Sci. USA 2009, 106, 3543–3548. [Google Scholar] [CrossRef]
- Schon, E.A.; Przedborski, S. Mitochondria: The Next (Neurode)Generation. Neuron 2011, 70, 1033–1053. [Google Scholar] [CrossRef]
- Nunomura, A.; Moreira, P.I.; Castellani, R.J.; Lee, H.; Zhu, X.; Smith, M.A.; Perry, G. Oxidative Damage to RNA in Aging and Neurodegenerative Disorders. Neurotox. Res. 2012, 22, 231–248. [Google Scholar] [CrossRef]
- Mishra, S.R.; Mahapatra, K.K.; Behera, B.P.; Patra, S.; Bhol, C.S.; Panigrahi, D.P.; Praharaj, P.P.; Singh, A.; Patil, S.; Dhiman, R.; et al. Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics. Int. J. Biochem Cell Biol. 2021, 136, 106013. [Google Scholar] [CrossRef]
- Choo, Y.S. Mutant Huntingtin Directly Increases Susceptibility of Mitochondria to the Calcium-Induced Permeability Transition and Cytochrome c Release. Hum. Mol. Genet. 2004, 13, 1407–1420. [Google Scholar] [CrossRef]
- Gallart-Palau, X.; Lee, B.S.; Adav, S.S.; Qian, J.; Serra, A.; Park, J.E.; Lai, M.K.; Chen, C.P.; Kalaria, R.N.; Sze, S.K. Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer’s disease with cerebrovascular disease. Mol. Brain. 2016, 17, 27. [Google Scholar] [CrossRef]
- Hansson Petersen, C.A.; Alikhani, N.; Behbahani, H.; Wiehager, B.; Pavlov, P.F.; Alafuzoff, I.; Leinonen, V.; Ito, A.; Winblad, B.; Glaser, E.; et al. The Amyloid β-Peptide Is Imported into Mitochondria via the TOM Import Machinery and Localized to Mitochondrial Cristae. Proc. Natl. Acad. Sci. USA 2008, 105, 13145–13150. [Google Scholar] [CrossRef]
- Schapira, A.H.V. Mitochondrial Dysfunction in Parkinson’s Disease. Cell Death Differ. 2007, 14, 1261–1266. [Google Scholar] [CrossRef]
- Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Parkinson’s Disease Is Not Simply a Prion Disorder. J. Neurosci. 2017, 37, 9799–9807. [Google Scholar] [CrossRef]
- McGeer, P.L.; McGeer, E.G. Inflammation and Neurodegeneration in Parkinson’s Disease. Parkinsonism Relat. Disord. 2004, 10, S3–S7. [Google Scholar] [CrossRef]
- Mandrekar-Colucci, S.; Karlo, J.C.; Landreth, G.E. Mechanisms Underlying the Rapid Peroxisome Proliferator-Activated Receptor-γ-Mediated Amyloid Clearance and Reversal of Cognitive Deficits in a Murine Model of Alzheimer’s Disease. J. Neurosci. 2012, 32, 10117–10128. [Google Scholar] [CrossRef]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s Disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Ising, C.; Heneka, M.T. Functional and Structural Damage of Neurons by Innate Immune Mechanisms during Neurodegeneration. Cell Death Dis. 2018, 9, 120. [Google Scholar] [CrossRef]
- Lučiūnaitė, A.; McManus, R.M.; Jankunec, M.; Rácz, I.; Dansokho, C.; Dalgėdienė, I.; Schwartz, S.; Brosseron, F.; Heneka, M.T. Soluble Aβ Oligomers and Protofibrils Induce NLRP3 Inflammasome Activation in Microglia. J. Neurochem. 2020, 155, 650–661. [Google Scholar] [CrossRef]
- La Vitola, P.; Balducci, C.; Baroni, M.; Artioli, L.; Santamaria, G.; Castiglioni, M.; Cerovic, M.; Colombo, L.; Caldinelli, L.; Pollegioni, L.; et al. Peripheral Inflammation Exacerbates A-synuclein Toxicity and Neuropathology in Parkinson’s Models. Neuropathol. Appl. Neurobiol. 2021, 47, 43–60. [Google Scholar] [CrossRef]
- Colombo, E.; Farina, C. Astrocytes: Key Regulators of Neuroinflammation. Trends Immunol. 2016, 37, 608–620. [Google Scholar] [CrossRef]
- Rodríguez-Arellano, J.J.; Parpura, V.; Zorec, R.; Verkhratsky, A. Astrocytes in Physiological Aging and Alzheimer’s Disease. Neuroscience 2016, 323, 170–182. [Google Scholar] [CrossRef]
- Coppedè, F.; Mancuso, M.; Siciliano, G.; Migliore, L.; Murri, L. Genes and the environment in neurodegeneration. Biosci. Rep. 2006, 26, 341–367. [Google Scholar] [CrossRef]
- Ulrich, J.D.; Holtzman, D.M. TREM2 Function in Alzheimer’s Disease and Neurodegeneration. ACS Chem. Neurosci. 2016, 7, 420–427. [Google Scholar] [CrossRef]
- Gialluisi, A.; Reccia, M.G.; Modugno, N.; Nutile, T.; Lombardi, A.; Di Giovannantonio, L.G.; Pietracupa, S.; Ruggiero, D.; Scala, S.; Gambardella, S.; et al. Identification of Sixteen Novel Candidate Genes for Late Onset Parkinson’s Disease. Mol. Neurodegener. 2021, 16, 35. [Google Scholar] [CrossRef]
- Costa, L.G. Neurotoxicity of Pesticides: A Brief Review. Front. Biosci. 2008, 13, 1240. [Google Scholar] [CrossRef]
- Itzhaki, R.F.; Lathe, R.; Balin, B.J.; Ball, M.J.; Bearer, E.L.; Braak, H.; Bullido, M.J.; Carter, C.; Clerici, M.; Cosby, S.L.; et al. Microbes and Alzheimer’s Disease. J. Alzheimers Dis. 2016, 51, 979–984. [Google Scholar] [CrossRef]
- McKee, A.C.; Stein, T.D.; Nowinski, C.J.; Stern, R.A.; Daneshvar, D.H.; Alvarez, V.E.; Lee, H.-S.; Hall, G.; Wojtowicz, S.M.; Baugh, C.M.; et al. The Spectrum of Disease in Chronic Traumatic Encephalopathy. Brain 2013, 136, 43–64. [Google Scholar] [CrossRef]
- Morrison, J.H.; Baxter, M.G. The Ageing Cortical Synapse: Hallmarks and Implications for Cognitive Decline. Nat. Rev. Neurosci. 2012, 13, 240–250. [Google Scholar] [CrossRef]
- Lövdén, M.; Bäckman, L.; Lindenberger, U.; Schaefer, S.; Schmiedek, F. A Theoretical Framework for the Study of Adult Cognitive Plasticity. Psychol. Bull. 2010, 136, 659–676. [Google Scholar] [CrossRef]
- Burke, S.N.; Barnes, C.A.; Seneczko, K. Decreased Hippocampal LTP in Aged Rats Associated with Deficits in Explicit Memory Retrieval. Hippocampus 2010, 20, 817–827. [Google Scholar]
- Spencer, J.L.; Waters, E.M.; Milner, T.A.; Lee, F.S.; McEwen, B.S. BDNF Variant Val66Met Interacts with Estrous Cycle in the Control of Hippocampal Function. Proc. Natl. Acad. Sci. USA 2010, 107, 4395–4400. [Google Scholar] [CrossRef]
- Amani, M.; Lauterborn, J.C.; Le, A.A.; Cox, B.M.; Wang, W.; Quintanilla, J.; Cox, C.D.; Gall, C.M.; Lynch, G. Rapid Aging in the Perforant Path Projections to the Rodent Dentate Gyrus. J. Neurosci. 2021, 41, 2301–2312. [Google Scholar] [CrossRef]
- Buss, E.W.; Corbett, N.J.; Roberts, J.G.; Ybarra, N.; Musial, T.F.; Simkin, D.; Molina-Campos, E.; Oh, K.-J.; Nielsen, L.L.; Ayala, G.D.; et al. Cognitive Aging Is Associated with Redistribution of Synaptic Weights in the Hippocampus. Proc. Natl. Acad. Sci. USA 2021, 118, e1921481118. [Google Scholar] [CrossRef]
- Yu, X.-W.; Oh, M.M.; Disterhoft, J.F. CREB, Cellular Excitability, and Cognition: Implications for Aging. Behav. Brain Res. 2017, 322, 206–211. [Google Scholar] [CrossRef]
- Gharsemian-Shirvan, M.; Khodagholi, F.; Shaerzadeh, F. Age-Related Changes in Dendritic Arborization, Spine Morphology, and Synaptic Density: An Ultrastructural Study on CA1 Pyramidal Neurons of Rat Hippocampus. Synapse 2020, 74, e22101. [Google Scholar]
- Lilja, A.M.; Röjdner, J.; Mustafiz, T.; Thomé, C.M.; Storelli, E.; Gonzalez, D.; Unger-Lithner, C.; Greig, N.H.; Nordberg, A.; Marutle, A. Age-Dependent Neuroplasticity Mechanisms in Alzheimer Tg2576 Mice Following Modulation of Brain Amyloid-β Levels. PLoS ONE 2013, 8, e58752. [Google Scholar] [CrossRef]
- Torres, L.L.; Quaglio, N.B.; de Souza, G.T.; Garcia, R.C.T. Synaptic Plasticity, Dementia and Alzheimer Disease. In Synaptic Plasticity in Neurodegenerative Diseases; Academic Press: Cambridge, MA, USA, 2020; pp. 67–90. [Google Scholar]
- Demars, M.; Hu, Y.-S.; Gadadhar, A.; Lazarov, O. Impaired Neurogenesis Is an Early Event in the Etiology of Familial Alzheimer’s Disease in Transgenic Mice. J. Neurosci. Res. 2010, 88, 2103–2117. [Google Scholar] [CrossRef]
- Gil-Mohapel, J.; Brocardo, P.S.; Choquette, W.; Gothard, R.; Simpson, J.M.; Christie, B.R. Hippocampal Neurogenesis Levels Predict WATERMAZE Search Strategies in the Aging Brain. PLoS ONE 2013, 8, e75125. [Google Scholar] [CrossRef]
- Fjell, A.M.; Walhovd, K.B.; Fennema-Notestine, C.; McEvoy, L.K.; Hagler, D.J.; Holland, D.; Brewer, J.B.; Dale, A.M. One-Year Brain Atrophy Evident in Healthy Aging. J. Neurosci. 2009, 29, 15223–15231. [Google Scholar] [CrossRef]
- Hötting, K.; Röder, B. Beneficial Effects of Physical Exercise on Neuroplasticity and Cognition. Neurosci. Biobehav. Rev. 2013, 37, 2243–2257. [Google Scholar] [CrossRef]
- Franzén, E.; Johansson, H.; Freidle, M.; Ekman, U.; Wallén, M.B.; Schalling, E.; Lebedev, A.; Lövdén, M.; Holmin, S.; Svenningsson, P.; et al. The EXPANd Trial: Effects of Exercise and Exploring Neuroplastic Changes in People with Parkinson’s Disease: A Study Protocol for a Double-Blinded Randomized Controlled Trial. BMC Neurol. 2019, 19, 280. [Google Scholar] [CrossRef]
- Garzón, B.; Lövdén, M.; de Boer, L.; Axelsson, J.; Riklund, K.; Bäckman, L.; Nyberg, L.; Guitart-Masip, M. Role of Dopamine and Gray Matter Density in Aging Effects and Individual Differences of Functional Connectomes. Brain Struct. Funct. 2021, 226, 743–758. [Google Scholar] [CrossRef]
- Katz, M.J.; Fratiglioni, L.; Wang, H.X.; Frisoni, G.B.; Bäckman, L. Maintaining Cognitive Health in Aging: The Role of Cognitive Reserve. Alzheimers. Res. Ther. 2021, 13, 1–11. [Google Scholar]
- Gavelin, H.M.; Dong, C.; Minkov, R.; Bahar-Fuchs, A.; Ellis, K.A.; Lautenschlager, N.T.; Mellow, M.L.; Wade, A.T.; Smith, A.E.; Finke, C.; et al. Combined physical and cognitive training for older adults with and without cognitive impairment: A systematic review and network meta-analysis of randomized controlled trials. Ageing Res Rev. 2021, 66, 101232. [Google Scholar] [CrossRef]
- Duzel, E.; van Praag, H.; Sendtner, M. Can Physical Exercise in Old Age Improve Memory and Hippocampal Function? Brain 2016, 139, 662–673. [Google Scholar] [CrossRef]
- Erickson, K.I.; Kramer, A.F. Aerobic Exercise Effects on Cognitive and Neural Plasticity in Older Adults. Br. J. Sports Med. 2008, 43, 22–24. [Google Scholar] [CrossRef]
- Vaynman, S.; Ying, Z.; Gomez-Pinilla, F. Hippocampal BDNF Mediates the Efficacy of Exercise on Synaptic Plasticity and Cognition. Eur. J. Neurosci. 2004, 20, 2580–2590. [Google Scholar] [CrossRef]
- Gutierrez, R.M.; Hidalgo-Lanussa, O.; Lattig, M.C.; Velez-Pardo, C. Exercise Intervention in Transgenic Alzheimer’s Rats Improves Hippocampal GABAergic Transmission and Cognition. Behav. Brain Res. 2018, 346, 136–143. [Google Scholar]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise Training Increases Size of Hippocampus and Improves Memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- van de Rest, O.; Berendsen, A.A.M.; Haveman-Nies, A.; de Groot, L.C.P.G.M. Dietary Patterns, Cognitive Decline, and Dementia: A Systematic Review. Adv. Nutr. 2015, 6, 154–168. [Google Scholar] [CrossRef]
- Heyn, P.; Abreu, B.C.; Ottenbacher, K.J. The Effects of Exercise Training on Elderly Persons with Cognitive Impairment and Dementia: A Meta-Analysis. Arch. Phys. Med. Rehabil. 2004, 85, 1694–1704. [Google Scholar] [CrossRef]
- Lautenschlager, N.T.; Cox, K.L.; Flicker, L.; Foster, J.K.; van Bockxmeer, F.M.; Xiao, J.; Greenop, K.R.; Almeida, O.P. Effect of Physical Activity on Cognitive Function in Older Adults at Risk for Alzheimer Disease. JAMA 2008, 300, 1027. [Google Scholar] [CrossRef]
- Smith, P.J.; Blumenthal, J.A.; Hoffman, B.M.; Cooper, H.; Strauman, T.A.; Welsh-Bohmer, K.; Browndyke, J.N.; Sherwood, A. Aerobic Exercise and Neurocognitive Performance: A Meta-Analytic Review of Randomized Controlled Trials. Psychosom. Med. 2010, 72, 239–252. [Google Scholar] [CrossRef]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B. Exercise Interventions for Cognitive Function in Adults Older than 50: A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef]
- McGregor, K.M.; Crosson, B.; Mammino, K.; Omar, J.; García, P.S.; Nocera, J.R. Influences of 12-Week Physical Activity Interventions on TMS Measures of Cortical Network Inhibition and Upper Extremity Motor Performance in Older Adults—A Feasibility Study. Front. Aging Neurosci. 2018, 9, 422. [Google Scholar] [CrossRef]
- Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F. Aerobic Exercise Training Increases Brain Volume in Aging Humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 1166–1170. [Google Scholar] [CrossRef]
- Maillot, P.; Perrot, A.; Hartley, A. Effects of Interactive Physical-Activity Video-Game Training on Physical and Cognitive Function in Older Adults. Psychol. Aging 2012, 27, 589–600. [Google Scholar] [CrossRef]
- Yates, L.A.; Ziser, S.; Spector, A.; Orrell, M. Cognitive Leisure Activities and Future Risk of Cognitive Impairment and Dementia: Systematic Review and Meta-Analysis. Int. Psychogeriatr. 2016, 28, 1791–1806. [Google Scholar] [CrossRef]
- Park, D.C.; Bischof, G.N. The Aging Mind: Neuroplasticity in Response to Cognitive Training. Dialogues Clin. Neurosci. 2013, 15, 109–119. [Google Scholar] [CrossRef]
- Marioni, R.E.; Valenzuela, M.J.; van den Hout, A.; Brayne, C.; Matthews, F.E. Active Cognitive Lifestyle Is Associated with Positive Cognitive Health Transitions and Compression of Morbidity from Age Sixty-Five. PLoS ONE 2012, 7, e50940. [Google Scholar] [CrossRef]
- Verghese, J.; Lipton, R.B.; Katz, M.J.; Hall, C.B.; Derby, C.A.; Kuslansky, G.; Ambrose, A.F.; Sliwinski, M.; Buschke, H. Leisure Activities and the Risk of Dementia in the Elderly. N. Engl. J. Med. 2003, 348, 2508–2516. [Google Scholar] [CrossRef]
- Fabrigoule, C.; Letenneur, L.; Dartigues, J.F.; Zarrouk, M.; Commenges, D.; Barberger-Gateau, P. Social and Leisure Activities and Risk of Dementia: A Prospective Longitudinal Study. J. Am. Geriatr. Soc. 1995, 43, 485–490. [Google Scholar] [CrossRef]
- Holwerda, T.J.; Deeg, D.J.H.; Beekman, A.T.F.; van Tilburg, T.G.; Stek, M.L.; Jonker, C.; Schoevers, R.A. Feelings of Loneliness, but Not Social Isolation, Predict Dementia Onset: Results from the Amsterdam Study of the Elderly (AMSTEL). J. Neurol. Neurosurg. Psychiatry 2014, 85, 135–142. [Google Scholar] [CrossRef]
- Spreng, R.N.; Turner, G.R. Structural Covariance of the Default Network in Healthy and Pathological Aging. J. Neurosci. 2013, 33, 15226–15234. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, S.; Ding, D.; Lutz, M.W.; Zeng, Y.; Yao, Y. Leisure Activities, APOE Ε4, and Cognitive Decline: A Longitudinal Cohort Study. Front. Aging Neurosci. 2021, 13, 736201. [Google Scholar] [CrossRef]
- Gomez-Pinilla, F. The Combined Effects of Exercise and Foods in Preventing Neurological and Cognitive Disorders. Prev. Med. (Baltim.) 2011, 52, S75–S80. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND Diet Associated with Reduced Incidence of Alzheimer’s Disease. Alzheimers Dement. 2015, 11, 1007–1014. [Google Scholar] [CrossRef]
- Tangney, C.C.; Kwasny, M.J.; Li, H.; Wilson, R.S.; Evans, D.A.; Morris, M.C. Adherence to a Mediterranean-Type Dietary Pattern and Cognitive Decline in a Community Population. Am. J. Clin. Nutr. 2011, 93, 601–607. [Google Scholar] [CrossRef]
- Innis, S.M. Dietary Omega 3 Fatty Acids and the Developing Brain. Brain Res. 2008, 1237, 35–43. [Google Scholar] [CrossRef]
- Konagai, C.; Yanagimoto, K.; Hayamizu, K.; Han, L.; Tsuji, T.; Koga, Y. Effects of Krill Oil Containing N-3 Polyunsaturated Fatty Acids in Phospholipid Form on Human Brain Function: A Randomized Controlled Trial in Healthy Elderly Volunteers. Clin. Interv. Aging 2013, 8, 1247–1257. [Google Scholar] [CrossRef]
- Witte, A.V.; Kerti, L.; Hermannstädter, H.M.; Fiebach, J.B.; Schreiber, S.J.; Schuchardt, J.P.; Hahn, A.; Flöel, A. Long-Chain Omega-3 Fatty Acids Improve Brain Function and Structure in Older Adults. Cereb. Cortex 2014, 24, 3059–3068. [Google Scholar] [CrossRef]
- Dullemeijer, C.; Durga, J.; Brouwer, I.A.; van de Rest, O.; Kok, F.J.; Brummer, R.-J.M.; van Boxtel, M.P.; Verhoef, P. N−3 Fatty Acid Proportions in Plasma and Cognitive Performance in Older Adults. Am. J. Clin. Nutr. 2007, 86, 1479–1485. [Google Scholar] [CrossRef]
- Melzer, T.M.; Manosso, L.M.; Yau, S.; Gil-Mohapel, J.; Brocardo, P.S. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. Int. J. Mol. Sci. 2021, 22, 5026. [Google Scholar] [CrossRef]
- Wu, L.; Sun, D.; Qu, X.; Zhang, R.; Wang, Y. Dietary Fat Intake and Risk of Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Ann. Med. 2018, 50, 698–712. [Google Scholar]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Bennett, D.A.; Aggarwal, N.; Schneider, J.; Wilson, R.S. Dietary Fats and the Risk of Incident Alzheimer Disease. Arch. Neurol. 2003, 60, 194. [Google Scholar] [CrossRef]
- Solfrizzi, V.; Colacicco, A.M.; D’Introno, A.; Capurso, C.; Torres, F.; Rizzo, C.; Capurso, A.; Panza, F. Dietary Intake of Unsaturated Fatty Acids and Age-Related Cognitive Decline: A 8.5-Year Follow-up of the Italian Longitudinal Study on Aging. Neurobiol. Aging 2006, 27, 1694–1704. [Google Scholar] [CrossRef]
- Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of Intermittent Fasting on Health and Disease Processes. Ageing Res. Rev. 2017, 39, 46–58. [Google Scholar] [CrossRef]
- Lee, J.; Duan, W.; Long, J.M.; Ingram, D.K.; Mattson, M.P. Dietary Restriction Increases the Number of Newly Generated Neural Cells, and Induces BDNF Expression, in the Dentate Gyrus of Rats. J. Mol. Neurosci. 2000, 15, 99–108. [Google Scholar] [CrossRef]
- Stranahan, A.M.; Lee, K.; Martin, B.; Maudsley, S.; Golden, E.; Cutler, R.G.; Mattson, M.P. Voluntary Exercise and Caloric Restriction Enhance Hippocampal Dendritic Spine Density and BDNF Levels in Diabetic Mice. Hippocampus 2009, 19, 951–961. [Google Scholar] [CrossRef]
- Witte, A.V.; Fobker, M.; Gellner, R.; Knecht, S.; Flöel, A. Caloric Restriction Improves Memory in Elderly Humans. Proc. Natl. Acad. Sci. USA 2009, 106, 1255–1260. [Google Scholar] [CrossRef]
- Marshall, L.; Helgadóttir, H.; Mölle, M.; Born, J. Boosting Slow Oscillations during Sleep Potentiates Memory. Nature 2006, 444, 610–613. [Google Scholar] [CrossRef]
- Stickgold, R. Sleep-Dependent Memory Consolidation. Nature 2005, 437, 1272–1278. [Google Scholar] [CrossRef]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef]
- Cross, N.E.; Carrier, J.; Postuma, R.B.; Gosselin, N.; Kakinami, L.; Thompson, C.; Chouchou, F.; Dang-Vu, T.T. Association between insomnia disorder and cognitive function in middle-aged and older adults: A cross-sectional analysis of the Canadian Longitudinal Study on Aging. Sleep 2019, 42, zsz114. [Google Scholar] [CrossRef]
- Lim, A.S.P.; Kowgier, M.; Yu, L.; Buchman, A.S.; Bennett, D.A. Sleep Fragmentation and the Risk of Incident Alzheimer’s Disease and Cognitive Decline in Older Persons. Sleep 2013, 36, 1027–1032. [Google Scholar] [CrossRef]
- Lucey, B.P.; Wisch, J.; Boerwinkle, A.H.; Landsness, E.C.; Toedebusch, C.D.; McLeland, J.S.; Butt, O.H.; Hassenstab, J.; Morris, J.C.; Ances, B.M.; et al. Sleep and Longitudinal Cognitive Performance in Preclinical and Early Symptomatic Alzheimer’s Disease. Brain 2021, 144, 2852–2862. [Google Scholar] [CrossRef]
- National Sleep Foundation. National Sleep Foundation Recommends New Sleep Times; National Sleep Foundation: Washington, DC, USA, 2022. [Google Scholar]
- Luyster, F.S.; Strollo, P.J.; Zee, P.C.; Walsh, J.K. Sleep: A Health Imperative. Sleep 2012, 35, 727–734. [Google Scholar] [CrossRef]
- Saper, C.B.; Chou, T.C.; Scammell, T.E. The Sleep Switch: Hypothalamic Control of Sleep and Wakefulness. Trends Neurosci. 2001, 24, 726–731. [Google Scholar] [CrossRef]
- Wu, C.W.; van Gelderen, P.; Hanakawa, T.; Yaseen, M.A.; Duyn, J.H. Compensation after Stroke: Plasticity of Intrinsic Connectivity Networks. Neuroimage 2021, 244, 118532. [Google Scholar]
- Lövdén, M.; Schaefer, S.; Noack, H.; Kanowski, M.; Kaufmann, J.; Tempelmann, C.; Bodammer, N.C.; Kühn, S.; Heinze, H.-J.; Lindenberger, U.; et al. Performance-Related Increases in Hippocampal N-Acetylaspartate (NAA) Induced by Spatial Navigation Training Are Restricted to BDNF Val Homozygotes. Cereb. Cortex 2011, 21, 1435–1442. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzola, P.; Melzer, T.; Pavesi, E.; Gil-Mohapel, J.; Brocardo, P.S. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci. 2023, 13, 1610. https://doi.org/10.3390/brainsci13121610
Marzola P, Melzer T, Pavesi E, Gil-Mohapel J, Brocardo PS. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sciences. 2023; 13(12):1610. https://doi.org/10.3390/brainsci13121610
Chicago/Turabian StyleMarzola, Patrícia, Thayza Melzer, Eloisa Pavesi, Joana Gil-Mohapel, and Patricia S. Brocardo. 2023. "Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration" Brain Sciences 13, no. 12: 1610. https://doi.org/10.3390/brainsci13121610