The Comparison of Early Hemodynamic Response to Single-Pulse Transcranial Magnetic Stimulation following Inhibitory or Excitatory Theta Burst Stimulation on Motor Cortex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedure
2.3. spTMS and TBS
2.4. Frequency-Domain Multi-Distance (FDMD) Near-Infrared Spectroscopy (NIRS)
2.5. Statistical Analysis
3. Results
3.1. Evoked Blood Volume Changes: Real vs. Sham
3.2. Evoked Blood Volume Changes: After cTBS vs. after iTBS
3.3. Evoked Blood Volume Changes: After TBS vs. Baseline before TBS
3.4. Evoked Oxygenated Hemoglobin (HbO2)
3.5. Deoxygenated Hemoglobin (HHb)
3.6. Linear Mixed Model Analysis
4. Discussion
- 1.
- cTBS increases cerebral vasomotor reactivity (VMR)
- 2.
- cTBS reduces lateral inhibition, allowing the activation of the surrounding area
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 1, 1106–1107. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Edwards, M.J.; Rounis, E.; Bhatia, K.P.; Rothwell, J.C. Theta burst stimulation of the human motor cortex. Neuron 2005, 45, 201–206. [Google Scholar] [CrossRef]
- Chung, S.W.; Hill, A.T.; Rogasch, N.C.; Hoy, K.E.; Fitzgerald, P.B. Use of theta-burst stimulation in changing excitability of motor cortex: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2016, 63, 43–64. [Google Scholar] [CrossRef]
- Fitzgerald, P.B.; Fountain, S.; Hoy, K.; Maller, J.; Enticott, P.; Laycock, R.; Upton, D.; Daskalakis, Z.J. A comparative study of the effects of repetitive paired transcranial magnetic stimulation on motor cortical excitability. J. Neurosci. Methods 2007, 165, 265–269. [Google Scholar] [CrossRef]
- Suppa, A.; Huang, Y.Z.; Funke, K.; Ridding, M.C.; Cheeran, B.; Di Lazzaro, V.; Ziemann, U.; Rothwell, J.C. Ten Years of Theta Burst Stimulation in Humans: Established Knowledge, Unknowns and Prospects. Brain Stimul. 2016, 9, 323–335. [Google Scholar] [CrossRef]
- Mensen, A.; Gorban, C.; Niklaus, M.; Kuske, E.; Khatami, R. The effects of theta-burst stimulation on sleep and vigilance in humans. Front. Hum. Neurosci. 2014, 8, 420. [Google Scholar] [CrossRef]
- Mutanen, T.; Maki, H.; Ilmoniemi, R.J. The effect of stimulus parameters on TMS-EEG muscle artifacts. Brain Stimul. 2013, 6, 371–376. [Google Scholar] [CrossRef]
- Wyckhuys, T.; De Geeter, N.; Crevecoeur, G.; Stroobants, S.; Staelens, S. Quantifying the effect of repetitive transcranial magnetic stimulation in the rat brain by muSPECT CBF scans. Brain Stimul. 2013, 6, 554–562. [Google Scholar] [CrossRef]
- Krieg, T.D.; Salinas, F.S.; Narayana, S.; Fox, P.T.; Mogul, D.J. PET-based confirmation of orientation sensitivity of TMS-induced cortical activation in humans. Brain Stimul. 2013, 6, 898–904. [Google Scholar] [CrossRef]
- Peschina, W.; Conca, A.; Konig, P.; Fritzsche, H.; Beraus, W. Low frequency rTMS as an add-on antidepressive strategy: Heterogeneous impact on 99mTc-HMPAO and 18 F-FDG uptake as measured simultaneously with the double isotope SPECT technique. Pilot study. Nucl. Med. Commun. 2001, 22, 867–873. [Google Scholar] [CrossRef]
- Bohning, D.E.; Shastri, A.; Nahas, Z.; Lorberbaum, J.P.; Andersen, S.W.; Dannels, W.R.; Haxthausen, E.U.; Vincent, D.J.; George, M.S. Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Investig. Radiol. 1998, 33, 336–340. [Google Scholar] [CrossRef]
- Fitzgerald, P.B.; Brown, T.L.; Daskalakis, Z.J.; Chen, R.; Kulkarni, J. Intensity-dependent effects of 1 Hz rTMS on human corticospinal excitability. Clin. Neurophysiol. 2002, 113, 1136–1141. [Google Scholar] [CrossRef]
- Li, X.; Nahas, Z.; Lomarev, M.; Denslow, S.; Shastri, A.; Bohning, D.E.; George, M.S. Prefrontal cortex transcranial magnetic stimulation does not change local diffusion: A magnetic resonance imaging study in patients with depression. Cogn. Behav. Neurol. 2003, 16, 128–135. [Google Scholar] [CrossRef]
- Hoshi, Y. Functional near-infrared spectroscopy: Current status and future prospects. J. Biomed. Opt. 2007, 12, 062106–062109. [Google Scholar] [CrossRef]
- Zhai, J.; Li, T.; Zhang, Z.; Gong, H. Hemodynamic and electrophysiological signals of conflict processing in the Chinese-character Stroop task: A simultaneous near-infrared spectroscopy and event-related potential study. J. Biomed. Opt. 2009, 14, 054022. [Google Scholar] [CrossRef]
- Moscatelli, F.; Monda, V.; Limone, P.; Marsala, G.; Mancini, N.; Monda, M.; Messina, A.; De Maria, A.; Scarinci, A.; Monda, A.; et al. Acute non invasive brain stimulation improves performances in volleyball players. Physiol. Behav. 2023, 271, 114356. [Google Scholar] [CrossRef]
- Curtin, A.; Tong, S.; Sun, J.; Wang, J.; Onaral, B.; Ayaz, H. A Systematic Review of Integrated Functional Near-Infrared Spectroscopy (fNIRS) and Transcranial Magnetic Stimulation (TMS) Studies. Front. Neurosci. 2019, 13, 84. [Google Scholar] [CrossRef]
- Groiss, S.J.; Mochizuki, H.; Furubayashi, T.; Kobayashi, S.; Nakatani-Enomoto, S.; Nakamura, K.; Ugawa, Y. Quadri-pulse stimulation induces stimulation frequency dependent cortical hemoglobin concentration changes within the ipsilateral motor cortical network. Brain Stimul. 2013, 6, 40–48. [Google Scholar] [CrossRef]
- Mochizuki, H.; Ugawa, Y.; Terao, Y.; Sakai, K.L. Cortical hemoglobin-concentration changes under the coil induced by single-pulse TMS in humans: A simultaneous recording with near-infrared spectroscopy. Exp. Brain Res. 2006, 169, 302–310. [Google Scholar] [CrossRef]
- Furubayashi, T.; Mochizuki, H.; Terao, Y.; Arai, N.; Hanajima, R.; Hamada, M.; Matsumoto, H.; Nakatani-Enomoto, S.; Okabe, S.; Yugeta, A.; et al. Cortical hemoglobin concentration changes underneath the coil after single-pulse transcranial magnetic stimulation: A near-infrared spectroscopy study. J. Neurophysiol. 2013, 109, 1626–1637. [Google Scholar] [CrossRef]
- Hada, Y.; Abo, M.; Kaminaga, T.; Mikami, M. Detection of cerebral blood flow changes during repetitive transcranial magnetic stimulation by recording hemoglobin in the brain cortex, just beneath the stimulation coil, with near-infrared spectroscopy. Neuroimage 2006, 32, 1226–1230. [Google Scholar] [CrossRef]
- Nasi, T.; Maki, H.; Kotilahti, K.; Nissila, I.; Haapalahti, P.; Ilmoniemi, R.J. Magnetic-stimulation-related physiological artifacts in hemodynamic near-infrared spectroscopy signals. PLoS ONE 2011, 6, e24002. [Google Scholar] [CrossRef]
- Kozel, F.A.; Tian, F.; Dhamne, S.; Croarkin, P.E.; McClintock, S.M.; Elliott, A.; Mapes, K.S.; Husain, M.M.; Liu, H. Using simultaneous repetitive Transcranial Magnetic Stimulation/functional Near Infrared Spectroscopy (rTMS/fNIRS) to measure brain activation and connectivity. Neuroimage 2009, 47, 1177–1184. [Google Scholar] [CrossRef]
- Mesquita, R.C.; Faseyitan, O.K.; Turkeltaub, P.E.; Buckley, E.M.; Thomas, A.; Kim, M.N.; Durduran, T.; Greenberg, J.H.; Detre, J.A.; Yodh, A.G.; et al. Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex. J. Biomed. Opt. 2013, 18, 067006. [Google Scholar] [CrossRef]
- Furukawa, T.; Kanke, H.; Masakado, Y. Effects of Low-frequency Repetitive Transcranial Magnetic Stimulation on Focal Hand Dystonia: A Case Report. Tokai J. Exp. Clin. Med. 2021, 46, 44–50. [Google Scholar]
- Park, E.; Kang, M.J.; Lee, A.; Chang, W.H.; Shin, Y.I.; Kim, Y.H. Real-time measurement of cerebral blood flow during and after repetitive transcranial magnetic stimulation: A near-infrared spectroscopy study. Neurosci. Lett. 2017, 653, 78–83. [Google Scholar] [CrossRef]
- Thomson, R.H.; Maller, J.J.; Daskalakis, Z.J.; Fitzgerald, P.B. Blood oxygenation changes resulting from trains of low frequency transcranial magnetic stimulation. Cortex 2012, 48, 487–491. [Google Scholar] [CrossRef]
- Thomson, R.H.; Cleve, T.J.; Bailey, N.W.; Rogasch, N.C.; Maller, J.J.; Daskalakis, Z.J.; Fitzgerald, P.B. Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation. Brain Stimul. 2013, 6, 576–581. [Google Scholar] [CrossRef]
- Thomson, R.H.; Rogasch, N.C.; Maller, J.J.; Daskalakis, Z.J.; Fitzgerald, P.B. Intensity dependent repetitive transcranial magnetic stimulation modulation of blood oxygenation. J. Affect. Disord. 2012, 136, 1243–1246. [Google Scholar] [CrossRef]
- Cao, T.T.; Thomson, R.H.; Bailey, N.W.; Rogasch, N.C.; Segrave, R.A.; Maller, J.J.; Daskalakis, Z.J.; Fitzgerald, P.B. A near infra-red study of blood oxygenation changes resulting from high and low frequency repetitive transcranial magnetic stimulation. Brain Stimul. 2013, 6, 922–924. [Google Scholar] [CrossRef]
- Hanaoka, N.; Aoyama, Y.; Kameyama, M.; Fukuda, M.; Mikuni, M. Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: A near-infrared spectroscopy study. Neurosci. Lett. 2007, 414, 99–104. [Google Scholar] [CrossRef]
- Aoyama, Y.; Hanaoka, N.; Kameyama, M.; Suda, M.; Sato, T.; Song, M.; Fukuda, M.; Mikuni, M. Stimulus intensity dependence of cerebral blood volume changes in left frontal lobe by low-frequency rTMS to right frontal lobe: A near-infrared spectroscopy study. Neurosci. Res. 2009, 63, 47–51. [Google Scholar] [CrossRef]
- Thomson, R.H.; Daskalakis, Z.J.; Fitzgerald, P.B. A near infra-red spectroscopy study of the effects of pre-frontal single and paired pulse transcranial magnetic stimulation. Clin. Neurophysiol. 2011, 122, 378–382. [Google Scholar] [CrossRef]
- Sutoh, C.; Koga, Y.; Kimura, H.; Kanahara, N.; Numata, N.; Hirano, Y.; Matsuzawa, D.; Iyo, M.; Nakazato, M.; Shimizu, E. Repetitive Transcranial Magnetic Stimulation Changes Cerebral Oxygenation on the Left Dorsolateral Prefrontal Cortex in Bulimia Nervosa: A Near-Infrared Spectroscopy Pilot Study. Eur. Eat. Disord. Rev. 2016, 24, 83–88. [Google Scholar] [CrossRef]
- Tupak, S.V.; Dresler, T.; Badewien, M.; Hahn, T.; Ernst, L.H.; Herrmann, M.J.; Deckert, J.; Ehlis, A.C.; Fallgatter, A.J. Inhibitory transcranial magnetic theta burst stimulation attenuates prefrontal cortex oxygenation. Hum. Brain Mapp. 2013, 34, 150–157. [Google Scholar] [CrossRef]
- Lisanby, S.H.; Gutman, D.; Luber, B.; Schroeder, C.; Sackeim, H.A. Sham TMS: Intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials. Biol. Psychiatry 2001, 49, 460–463. [Google Scholar] [CrossRef]
- Fantini, S.; Franceschini, M.-A.; Maier, J.S.; Walker, S.A.; Barbieri, B.B.; Gratton, E. Frequency-domain multichannel optical detector for noninvasive tissue spectroscopy and oximetry. Opt. Eng. 1995, 34, 32–42. [Google Scholar] [CrossRef]
- Fantini, S.; Franceschini, M.A.; Gratton, E. Semi-infinite-geometry boundary problem for light migration in highly scattering media: A frequency-domain study in the diffusion approximation. J. Opt. Soc. Am. B 1994, 11, 2128–2138. [Google Scholar] [CrossRef]
- Cohen, L.G.; Roth, B.J.; Nilsson, J.; Dang, N.; Panizza, M.; Bandinelli, S.; Friauf, W.; Hallett, M. Effects of coil design on delivery of focal magnetic stimulation. Technical considerations. Electroencephalogr. Clin. Neurophysiol. 1990, 75, 350–357. [Google Scholar] [CrossRef]
- Toronov, V.; Webb, A.; Choi, J.H.; Wolf, M.; Safonova, L.; Wolf, U.; Gratton, E. Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging. Opt. Express 2001, 9, 417–427. [Google Scholar] [CrossRef]
- Zhang, Z.; Qi, M.; Hügli, G.; Khatami, R. Quantitative Changes in Muscular and Capillary Oxygen Desaturation Measured by Optical Sensors during Continuous Positive Airway Pressure Titration for Obstructive Sleep Apnea. Biosensors 2022, 12, 3. [Google Scholar] [CrossRef]
- Zhang, Z.; Qi, M.; Hügli, G.; Khatami, R. Predictors of changes in cerebral perfusion and oxygenation during obstructive sleep apnea. Sci. Rep. 2021, 11, 23510. [Google Scholar] [CrossRef]
- Zhang, Z.; Qi, M.; Hugli, G.; Khatami, R. The Challenges and Pitfalls of Detecting Sleep Hypopnea Using a Wearable Optical Sensor: Comparative Study. J. Med. Internet Res. 2021, 23, e24171. [Google Scholar] [CrossRef]
- Zhang, Z.; Bolz, N.; Laures, M.; Oremek, M.; Schmidt, C.; Qi, M.; Khatami, R. Cerebral blood volume and oxygen supply uniformly increase following various intrathoracic pressure strains. Sci. Rep. 2017, 7, 8344. [Google Scholar] [CrossRef]
- Wolf, M.; Ferrari, M.; Quaresima, V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 2007, 12, 062104–062114. [Google Scholar]
- Dehaes, M.; Grant, P.E.; Sliva, D.D.; Roche-Labarbe, N.; Pienaar, R.; Boas, D.A.; Franceschini, M.A.; Selb, J. Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte Carlo simulations from neonate to adult. Biomed. Opt. Express 2011, 2, 552–567. [Google Scholar] [CrossRef]
- Vernieri, F.; Maggio, P.; Tibuzzi, F.; Filippi, M.M.; Pasqualetti, P.; Melgari, J.M.; Altamura, C.; Palazzo, P.; Di Giorgio, M.; Rossini, P.M. High frequency repetitive transcranial magnetic stimulation decreases cerebral vasomotor reactivity. Clin. Neurophysiol. 2009, 120, 1188–1194. [Google Scholar] [CrossRef]
- Vernieri, F.; Altamura, C.; Palazzo, P.; Altavilla, R.; Fabrizio, E.; Fini, R.; Melgari, J.M.; Paolucci, M.; Pasqualetti, P.; Maggio, P. 1-Hz repetitive transcranial magnetic stimulation increases cerebral vasomotor reactivity: A possible autonomic nervous system modulation. Brain Stimul. 2014, 7, 281–286. [Google Scholar] [CrossRef]
- Lauritzen, M.; Mathiesen, C.; Schaefer, K.; Thomsen, K.J. Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage 2012, 62, 1040–1050. [Google Scholar] [CrossRef]
- Beck, S.; Hallett, M. Surround inhibition in the motor system. Exp. Brain Res. 2011, 210, 165–172. [Google Scholar] [CrossRef]
- Fantini, S. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS). Neuroimage 2014, 85, 202–221. [Google Scholar] [CrossRef]
- Leodori, G.; Thirugnanasambandam, N.; Conn, H.; Popa, T.; Berardelli, A.; Hallett, M. Intracortical Inhibition and Surround Inhibition in the Motor Cortex: A TMS-EEG Study. Front. Neurosci. 2019, 13, 612. [Google Scholar] [CrossRef]
- Ilic, T.V.; Meintzschel, F.; Cleff, U.; Ruge, D.; Kessler, K.R.; Ziemann, U. Short-interval paired-pulse inhibition and facilitation of human motor cortex: The dimension of stimulus intensity. J. Physiol. 2002, 545, 153–167. [Google Scholar] [CrossRef]
- Ackerley, S.J.; Stinear, C.M.; Barber, P.A.; Byblow, W.D. Combining theta burst stimulation with training after subcortical stroke. Stroke 2010, 41, 1568–1572. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Rothwell, J.C.; Talelli, P.; Capone, F.; Ranieri, F.; Wallace, A.C.; Musumeci, G.; Dileone, M. Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: A proof of principle, sham-controlled study. Neurosci. Lett. 2013, 553, 148–152. [Google Scholar] [CrossRef]
- Ackerley, S.J.; Stinear, C.M.; Barber, P.A.; Byblow, W.D. Priming sensorimotor cortex to enhance task-specific training after subcortical stroke. Clin. Neurophysiol. 2014, 125, 1451–1458. [Google Scholar] [CrossRef]
- Hsu, W.Y.; Cheng, C.H.; Liao, K.K.; Lee, I.H.; Lin, Y.Y. Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: A meta-analysis. Stroke 2012, 43, 1849–1857. [Google Scholar] [CrossRef]
- Bakker, N.; Shahab, S.; Giacobbe, P.; Blumberger, D.M.; Daskalakis, Z.J.; Kennedy, S.H.; Downar, J. rTMS of the dorsomedial prefrontal cortex for major depression: Safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation. Brain Stimul. 2015, 8, 208–215. [Google Scholar] [CrossRef]
- Nyffeler, T.; Cazzoli, D.; Hess, C.W.; Muri, R.M. One session of repeated parietal theta burst stimulation trains induces long-lasting improvement of visual neglect. Stroke 2009, 40, 2791–2796. [Google Scholar] [CrossRef]
- Li, C.T.; Chen, M.H.; Juan, C.H.; Huang, H.H.; Chen, L.F.; Hsieh, J.C.; Tu, P.C.; Bai, Y.M.; Tsai, S.J.; Lee, Y.C.; et al. Efficacy of prefrontal theta-burst stimulation in refractory depression: A randomized sham-controlled study. Brain 2014, 137, 2088–2098. [Google Scholar] [CrossRef]
- Bolu, A.; Gundogmus, I.; Aydin, M.S.; Fadiloglu, D.; Erken, Y.; Uzun, O. Ten years’ data of Transcranial Magnetic Stimulation (TMS): A naturalistic, observational study outcome in clinical practice. Psychiatry Res. 2021, 301, 113986. [Google Scholar] [CrossRef]
TMS Frequency Type | TMS Protocol | TMS Intensity | NIRS Methodology | Results | Reference |
---|---|---|---|---|---|
High-Frequency rTMS | 3 trains of 120 s of QPS-5 (4 pulses ISI 5 ms) or QPS-50 (ISI 50 ms), ITI 5 s | 90% AMT | 20 s after each train onset until its end (avg), ipsilateral | QPS-5 trains: oxy-Hb ↑ | Groiss et al., 2013 [18] |
20 bursts of QPS-5/QPS-50, IBI 55 s | 90% AMT | 5 s to 20 s after each burst (avg), ipsilateral | QPS-5 burst: oxy-Hb ↓ | Groiss et al., 2013 [18] | |
Single-Pulse TMS | 20 spTMS at random ISI 24–26 s, repeated 2–3 times | 100% AMT | 5 s pre and 20 s post each spTMS, ipsilateral | Hb - | Mochizuki et al., 2006 [19] |
20 spTMS at random ISI 24–26 s, repeated 2–3 times | 120% AMT | 5 s pre and 20 s post each spTMS, ipsilateral | deoxy-Hb ↓ tHb ↓ oxy-Hb - | Mochizuki et al., 2006 [19] | |
20 spTMS at random ISI 24–26 s, repeated 2–3 times | 140% AMT | 5 s pre and 20 s post each spTMS, ipsilateral | deoxy-Hb ↓ tHb ↓ oxy-Hb - | Mochizuki et al., 2006 [19] | |
spTMS | 100–140% AMT | 3 s pre and 13.5 s post each spTMS, ipsilateral | oxy-Hb ↑ post-spTMS, peak at 3–6 s | Furubayaschi et al., 2013 [20] | |
Low-Frequency rTMS | 1 train of 10 pulses at 0.5 Hz | 120% RMT | 10 s before, during and 170 s after rTMS | oxy-Hb ↓ immediately after initiation of rTMS | Hada et al., 2006 [21] |
1 train of 10 pulses at 0.5 Hz | 80% RMT | 10 s before, during and 170 s after rTMS | oxy-Hb ↓ 5 s after initiation of rTMS | Hada et al., 2006 [21] | |
25 trains of 8 s at 0.5 Hz rTMS | 70% RMT | during rTMS and 20 s after rTMS, ipsilateral | during rTMS: oxy-Hb ↓ post-rTMS: oxy-Hb ↑ | Näsi et al., 2011 [22] | |
15 trains of 10s at 1 HZ (ITI 80 s) | 120% AMT | 1 min pre-, during, 1 min post-rTMS, bilateral | during rTMS: oxy-Hb ↓ bilateral and more contralateral | Kozel et al., 2009 [23] | |
25 trains of 8 s at 1 Hz rTMS | 70% RMT | during rTMS and 20 s after rTMS, ipsilateral | during rTMS: oxy-Hb ↓ post-rTMS: oxy-Hb ↑ | Näsi et al., 2011 [22] | |
1 train of 20 min at 1 Hz rTMS | 95% RMT | during and 4 min post-rTMS, ipsilateral | during rTMS: oxy-Hb ↑, CBF ↑ Plateau at ca. 15 min | Mesquita et al., 2013 [24] | |
500 pulses at 1 Hz rTMS | 90–120% RMT | during motor task before and after rTMS, bilateral | Hb - | Furukawa et al., 2021 [25] | |
1 train of 19 min at 1 Hz rTMS | 90% AMT | 19 min during and 20 min post-rTMS, contralateral | oxy-Hb ↑ continuously and was maintained for 20 min after | Park et al., 2017 [26] | |
1 train of 10 pulses at 2 Hz | 120% RMT | 10 s before, during and 170 s after rTMS | oxy-Hb ↓ immediately after initiation of rTMS | Hada et al., 2006 [21] | |
1 train of 10 pulses at 2 Hz | 80% RMT | 10 s before, during and 170 s after rTMS | oxy-Hb ↓ 5 s after initiation of rTMS | Hada et al., 2006 [21] | |
25 trains of 8 s at 2 Hz rTMS | 70% RMT | during rTMS and 20 s after rTMS, ipsilateral | during rTMS: oxy-Hb ↓ post-rTMS: oxy-Hb ↑ | Näsi et al., 2011 [22] |
TMS Frequency Type | TMS Protocol | TMS Intensity | NIRS Methodology | Results | Reference |
---|---|---|---|---|---|
Single-Pulse TMS | 1 train of 2 or 4 spTMS (ISI 5 s) | 130% AMT | 5 s period pre-, 15 s and 25 s period post-spTMS, ipsilateral | oxy-Hb ↓ | Thomson et al., 2012 [27] |
30 spTMS (ISI 25 s) | 130% RMT | 5 s interval at around 10 s post-rTMS, ipsilateral | oxy-Hb ↓ | Thomson et al., 2013 [28] | |
Low-Frequency rTMS | 30 trains of 20 s at 1 Hz rTMS (ITI 40 s) | 120% RMT | 10 s interval at around 20 s post-rTMS, ipsilateral | oxy-Hb ↑ | Thomson et al., 2013 [28] |
2 trains of 10 min at 1 Hz rTMS, ITI 20 min | 80% RMT | during rTMS, split in 5 blocks of 2 min, avg, ipsilateral | oxy-Hb ↓ during rTMS, returning to baseline in 5 min | Thomson et al., 2012 [29] | |
2 trains of 10 min at 1 Hz rTMS, ITI 20 min | 120% RMT | during rTMS, split in 5 blocks of 2 min, avg, ipsilateral | oxy-Hb ↓ during rTMS, returning to baseline in 10 min | Thomson et al., 2012 [29] | |
20 trains of 5 s at 1 Hz rTMS, ITI 25 s | 110% RMT | during rTMS and 20 s after rTMS, ipsilateral | during rTMS: oxy-Hb ↓ post-rTMS: oxy-Hb ↑ | Cao et al., 2013 [30] | |
1 train of 60 s at 1 Hz rTMS | 50% RMT | 20 s before, 60s during and 120 s after rTMS, ipsilateral | during rTMS: oxy-Hb ↓ post-rTMS: oxy-Hb ↑ | Hanaoka et al., 2007 [31] | |
1 train of 60 s at 1 Hz rTMS | 58–100% RMT | during and 120 s post-rTMS, contralateral | during rTMS: oxy-Hb ↓ post-rTMS: oxy-Hb ↑ | Aoyama et al., 2009 [32] | |
High-Frequency rTMS | 20 trains of 5 s at 5 Hz rTMS, ITI 25 s | 110% RMT | during rTMS and 20 s after rTMS, ipsilateral | during rTMS and post-rTMS: oxy-Hb ↑ | Cao et al., 2013 [30] |
20 SICI pulses (ISI 2 ms), 20 ICF pulses (ISI 15 ms), 20 spTMS (ISI 25 s) | 70% RMT | pre- and 25 s post-stimulus (averaged), ipsilateral | oxy-Hb ↓ | Thomson et al., 2011 [33] | |
15 trains of 5 s at 10 Hz rTMS, ITI 55 s (20 min) | 110% RMT | oxy-Hb 4 h after rTMS, during task | oxy-Hb ↓ during task, 4 h after rTMS | Sutoh et al., 2016 [34] | |
TBS | classic cTBS | 80% RMT | pre-cTBS and post-cTBS, contralateral | oxy-Hb ↓ (contralateral) | Tupak et al., 2013 [35] |
Nr. of Real Stimuli | Nr. of Sham Stimuli | |||
---|---|---|---|---|
Before cTBS | 395 | Total 797 | 256 | Total 610 |
Before iTBS | 402 | 354 | ||
After cTBS | 684 | 447 | ||
After iTBS | 702 | 647 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorban, C.; Zhang, Z.; Mensen, A.; Khatami, R. The Comparison of Early Hemodynamic Response to Single-Pulse Transcranial Magnetic Stimulation following Inhibitory or Excitatory Theta Burst Stimulation on Motor Cortex. Brain Sci. 2023, 13, 1609. https://doi.org/10.3390/brainsci13111609
Gorban C, Zhang Z, Mensen A, Khatami R. The Comparison of Early Hemodynamic Response to Single-Pulse Transcranial Magnetic Stimulation following Inhibitory or Excitatory Theta Burst Stimulation on Motor Cortex. Brain Sciences. 2023; 13(11):1609. https://doi.org/10.3390/brainsci13111609
Chicago/Turabian StyleGorban, Corina, Zhongxing Zhang, Armand Mensen, and Ramin Khatami. 2023. "The Comparison of Early Hemodynamic Response to Single-Pulse Transcranial Magnetic Stimulation following Inhibitory or Excitatory Theta Burst Stimulation on Motor Cortex" Brain Sciences 13, no. 11: 1609. https://doi.org/10.3390/brainsci13111609