The Creative Drummer: An EEG-Based Pilot Study on the Correlates of Emotions and Creative Drum Playing
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Materials
Data Acquisition and Processing
2.3. Methods
EEG Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simonton, D.K. Creative development as acquired expertise: Theoretical issues and empirical test. Dev. Rev. 2000, 20, 283–318. [Google Scholar] [CrossRef] [Green Version]
- Runco, M.A. Creativity. Annu. Rev. Psychol. 2004, 55, 657–687. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.B. Creative cognition as a window on creativity. Methods 2007, 42, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, R.K. Educating for innovation. Think. Ski. Creat. 2006, 1, 41–48. [Google Scholar] [CrossRef]
- Bowden, E.M.; Jung-Beeman, M. Methods for investigating the neural components of insight. Methods 2007, 42, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Bowden, E.M.; Jung-Beeman, M.; Fleck, J.; Kounios, J. New approaches to demystifying insight. Trends Cogn. Sci. 2005, 9, 322–328. [Google Scholar] [CrossRef]
- Dietrich, A. The cognitive neuroscience of creativity. Psychon. Bull. Rev. 2004, 11, 1011–1026. [Google Scholar] [CrossRef] [Green Version]
- Fink, A.; Benedek, M.; Grabner, R.H.; Staudt, B.; Neubauer, A.C. Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods 2007, 42, 68–76. [Google Scholar] [CrossRef]
- Kounios, J.; Frymiare, J.L.; Bowden, E.M.; Fleck, J.I.; Subramaniam, K.; Parrish, T.B.; Jung-Beeman, M. The prepared mind. Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychol. Sci. 2006, 17, 882–890. [Google Scholar] [CrossRef]
- Mölle, M.; Marshall, L.; Wolf, B.; Fehm, H.L.; Born, J. EEG complexity and performance measures of creative thinking. Psychophysiology 1999, 36, 95–104. [Google Scholar] [CrossRef]
- Razumnikova, O.M. Functional organization of different brain areas during convergent and divergent thinking: An EEG investigation. Cogn. Brain Res. 2000, 10, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Jung-Beeman, M.; Bowden, E.M.; Haberman, J.; Frymiare, J.L.; Arambel-Liu, S.; Greenblatt, R.; Reber, P.J.; Kounios, J. Neural activity when people solve verbal problems with insight. PLoS Biol. 2004, 2, 500–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folley, B.S.; Park, S. Verbal creativity and schizotypal personality in relation to prefrontal hemispheric laterality: A behavioral and near-infrared optical imaging study. Schizophr. Res. 2005, 80, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martindale, C.; Hines, D. Creativity and cortical activation during creative, intellectual, and EEG feedback tasks. Biol. Psychol. 1975, 3, 71–80. [Google Scholar] [CrossRef]
- Goel, V.; Vartanian, O. Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cereb. Cortex 2005, 15, 1170–1177. [Google Scholar] [CrossRef] [Green Version]
- Petsche, H. Approaches to verbal, visual and musical creativity by EEG coherence analysis. Int. J. Psychophysiol. 1996, 24, 145–159. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Petsche, H. Drawing on mind’s canvas: Differences in cortical integration patterns between artists and non-artists. Hum. Brain Mapp. 2005, 26, 1–14. [Google Scholar] [CrossRef]
- Martindale, C. The Biological Basis of Creativity. In Handbook of creativity; Sternberg, R.J., Ed.; Cambridge University Press: Cambridge, UK, 1999; pp. 137–152. [Google Scholar]
- Mendelsohn, G.A. Associative and attentional processes in creative performance. J. Personal. 1976, 44, 341–369. [Google Scholar] [CrossRef]
- Davies, M.; Béné, C.; Arnall, A.; Tanner, T.; Newsham, A.; Coirolo, C. Short communication: Divergent thinking training is related to frontal electroencephalogram alpha synchronization. Eur. J. Neurosci. 2006, 23, 2241–2246. [Google Scholar] [CrossRef]
- Fink, A.; Grabner, R.H.; Benedek, M.; Reishofer, G.; Hauswirth, V.; Fally, M.; Neuper, C.; Ebner, F.; Neubauer, A.C. The creative brain: Investigation of brain activity during creative problem solving by means of EEG and FMRI. Hum. Brain Mapp. 2009, 30, 734–748. [Google Scholar] [CrossRef]
- Grabner, R.H.; Fink, A.; Neubauer, A.C. Brain correlates of self-rated originality of ideas: Evidence from event-related power and phase locking changes in the EEG. Behav. Neurosci. 2007, 121, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jausovec, N. Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence 2000, 28, 213–237. [Google Scholar] [CrossRef]
- Razumnikova, O.M. Gender differences in hemispheric organization during divergent thinking: An EEG investigation in human subjects. Neurosci. Lett. 2004, 362, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Bazanova, O.M.; Aftanas, L.I. Individual measures of electroencephalogram alpha activity and non-verbal creativity. Neurosci. Behav. Physiol. 2008, 42, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Fink, A.; Neubauer, A. EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. Int. J. Psychophysiol. 2006, 62, 46–53. [Google Scholar] [CrossRef]
- Fink, A.; Neubauer, A. Eysenck meets Martindale: The relationship between extraversion and originality from a neuroscientific perspective. Personal. Individ. Differ. 2006, 44, 299–310. [Google Scholar] [CrossRef]
- Krug, R.; Mölle, M.; Dodt, C.; Fehm, H.L.; Born, J. Acute influences of estrogen and testosterone on divergent and convergent thinking in postmenopausal women. Neuropsychopharmacology 2003, 28, 1538–1545. [Google Scholar] [CrossRef]
- Martindale, C.; Hines, D.; Mitchell, L.; Covello, E. EEG alpha asymmetry and creativity. Personal. Individ. Differ. 1984, 5, 77–86. [Google Scholar] [CrossRef]
- Razumnikova, O.M. Hemispheric activity during creative thinking: Role of gender factor. In Proceedings of the KORUS 2005: Proceedings of the 9th Russian–Korean International Symposium on Science and Technology, Novosibirsk, Russia, 26 June–2 July 2005; pp. 1027–1031. Available online: https://ieeexplore.ieee.org/xpl/conhome/10074/proceeding (accessed on 31 December 2022).
- Razumnikova, O.M. Creativity related cortex activity in the remote associates task. Brain Res. Bull. 2007, 73, 96–102. [Google Scholar] [CrossRef]
- Razumnikova, O.; Volf, N.V.; Tarasova, I.V. Strategy and results: Sex differences in electrographic correlates of verbal and figural creativity. Hum. Physiol. 2009, 35, 285–294. [Google Scholar] [CrossRef]
- Martindale, C.; Hasenfus, N. EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biol. Psychol. 1978, 6, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Danko, S.G.; Shemyakina, N.V.; Nagornova, Z.V.; Starchenko, M.G. Comparison of the effects of the subjective complexity and verbal creativity on the EEG spectral power parameters. Hum. Physiol. 2009, 35, 381–383. [Google Scholar] [CrossRef]
- Shemyakina, N.; Danko, S. Changes in the power and coherence of the _2 EEG band in subjects performing creative tasks using emotionally significant and emotionally neutral words. Hum. Physiol. 2007, 33, 20–26. [Google Scholar] [CrossRef]
- Brown, S.; Martinez, M.J.; Hodges, D.A.; Fox, P.T.; Parsons, L.M. The song system of the human brain. Cogn. Brain Res. 2004, 20, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Bhattacharya, J. Neurocognitive Aspects of Musical Improvisation and Performance. In Multidisciplinary Contributions to the Science of Creative Thinking; Springer: Singapore, 2016; pp. 261–279. [Google Scholar]
- Dikaya, L.A.; Skirtach, I.A. Neurophysiological correlates of musical creativity: The example of improvisation. Psychol. Russ. 2015, 8, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Bashwiner, D.M.; Wertz, C.J.; Flores, R.A.; Jung, R.E. Musical Creativity “Revealed” in Brain Structure: Interplay between Motor, Default Mode, and Limbic Networks. Sci. Rep. 2016, 6, 20482. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, A.L.; Ansari, D. Expertise-related deactivation of the right temporoparietal junction during musical improvisation. Neuroimage 2010, 49, 712–719. [Google Scholar] [CrossRef]
- Oikkonen, J.; Kuusi, T.; Peltonen, P.; Raijas, P.; Ukkola-Vuoti, L.; Karma, K.; Onkamo, P.; Järvelä, I. Creative Activities in Music–A Genome-Wide Linkage Analysis. PLoS ONE 2016, 11, e0148679. [Google Scholar] [CrossRef]
- Lu, J.; Yang, H.; Zhang, X.; He, H.; Luo, C.; Yao, D. The brain functional state of music creation: An fMRI study of composers. Sci. Rep. 2015, 5, 12277. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chow, H.M.; Xu, Y.; Erkkinen, M.G.; Swett, K.E.; Eagle, M.W.; Rizik-Baer, D.A.; Braun, A.R. Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Sci. Rep. 2012, 2, 834. [Google Scholar] [CrossRef] [Green Version]
- Donnay, G.F.; Rankin, S.; Lopez-Gonzalez, M.; Jiradejvong, P.; Limb, C.J. Neural substrates of interactive musical improvisation: An FMRI study of ‘trading fours’ in jazz. PLoS ONE 2014, 9, e88665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limb, C.J.; Braun, A.R. Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE 2008, 3, e1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, A.L.; De Manzano, Ö; Fransson, P.; Eriksson, H.; Ullén, F. Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. J. Neurosci. 2014, 34, 6156–6163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarreal, M.F.; Cerquetti, D.; Caruso, S.; Aranguren, V.S.L.; Gerschcovich, E.R.; Frega, A.L.; Leiguarda, R.C. Neural correlates of musical creativity: Differences between high and low creative subjects. PLoS ONE 2013, 8, e75427. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, A.L.; Ansari, D. Generation of novel motor sequences: The neural correlates of musical improvisation. Neuroimage 2008, 41, 535–543. [Google Scholar] [CrossRef]
- De Manzano, Ö.; Ullén, F. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. Neuroimage 2012, 63, 272–280. [Google Scholar] [CrossRef] [Green Version]
- De Manzano, Ö.; Ullén, F. Goal-independent mechanisms for free response generation: Creative and pseudo-random performance share neural substrates. Neuroimage 2012, 59, 772–780. [Google Scholar] [CrossRef]
- Pinho, A.L.; Ullén, F.; Castelo-Branco, M.; Fransson, P.; de Manzano, Ö. Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cereb. Cortex 2016, 26, 3052–3063. [Google Scholar] [CrossRef] [Green Version]
- McPherson, M.J.; Barrett, F.; Lopez-Gonzalez, M.; Jiradejvong, P.; Limb, C.J. Emotional intent modulates the neural substrates of creativity: An fMRI study of emotionally targeted improvisation in Jazz musicians. Sci. Rep. 2016, 6, 18460. [Google Scholar] [CrossRef] [Green Version]
- Rosen, D.S.; Oh, Y.; Erickson, B.; Zhang, F.; Kim, Y.E.; Kounios, J. Dual-process contributions to creativity in jazz improvisations: An SPM-EEG study. Neuroimage 2020, 213, 116632. [Google Scholar] [CrossRef]
- Sasaki, M.; Iversen, J.; Callan, D.E. Music Improvisation Is Characterized by Increase EEG Spectral Power in Prefrontal and Perceptual Motor Cortical Sources and Can be Reliably Classified from Non-improvisatory Performance. Front. Hum. Neurosci. 2019, 13, 435. [Google Scholar] [CrossRef] [PubMed]
- Ghodousi, M.; Pousson, J.E.; Voicikas, A.; Bernhofs, V.; Pipinis, E.; Tarailis, P.; Burmistrova, L.; Lin, Y.-P.; Griškova-Bulanova, I. EEG Connectivity during Active Emotional Musical Performance. Sensors 2022, 22, 4064. [Google Scholar] [CrossRef] [PubMed]
- Pousson, J.E.; Voicikas, A.; Bernhofs, V.; Pipinis, E.; Burmistrova, L.; Lin, Y.-P.; Griškova-Bulanova, I. Spectral Characteristics of EEG during Active Emotional Musical Performance. Sensors 2021, 21, 7466. [Google Scholar] [CrossRef] [PubMed]
- Emotiv Systems Inc. Researchers. 2014. Available online: http://www.emotiv.com (accessed on 31 December 2022).
- Badcock, N.A.; Mousikou, P.; Mahajan, Y.; de Lissa, P.; Thie, J.; McArthur, G. Validation of the emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs. PeerJ 2013, 1, e38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debener, S.; Minow, F.; Emkes, R.; Gandras, K.; de Vos, M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 2012, 49, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Thie, J.; Klistorner, A.; Graham, S.L. Biomedical signal acquisition with streaming wireless communication for recording evoked potentials. Doc. Ophthalmol. 2012, 125, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Renard, Y.; Lotte, F.; Gibert, G.; Congedo, M.; Maby, E.; Delannoy, V.; Bertrand, O.; Lécuyer, A. An open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence Teleoperators Virtual Environ. 2010, 19, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Thayer, R.E. The Biopsychology of Mood and Arousal; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Ramirez, R.; Vamvakousis, Z. Detecting emotion from EEG signals using the emotive Epoc device. In Proceedings of the 2012 International Conference on Brain Informatics, Macau, China, 4–7 December 2012; LNCS 7670. pp. 175–184. [Google Scholar]
- Henriques, J.B.; Davidson, R.J. Left frontal hypoactivation in depression. J. Abnorm. Psychol. 1991, 100, 535–545. [Google Scholar] [CrossRef]
- Davidson, R.J. Emotion and affective style: Hemispheric substrates. Psychol. Sci. 1992, 3, 39–43. [Google Scholar] [CrossRef]
- Davidson, R.J. Cerebral Asymmetry, Emotion and Affective Style. In Brain Asymmetry; Davidson, R.J., Hugdahl, K., Eds.; MIT Press: Boston, MA, USA, 1995; pp. 361–387. [Google Scholar]
- Davidson, R.J. Affective style and affective disorders: Perspectives from affective neuroscience. Cogn. Emot. 1998, 12, 307–330. [Google Scholar] [CrossRef]
- Ramirez, R.; Palencia-Lefler, M.; Giraldo, S.; Vamvakousis, Z. Musical neurofeedback for treating depression in elderly people. Front. Neurosci. 2015, 9, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotlib, I.H.; Ranganath, C.; Rosenfeld, J.P. EEG alpha asymmetry, depression, and cognitive functioning. Cogn. Emot. 1999, 12, 449–478. [Google Scholar] [CrossRef]
- MacDonald, R.A.; Wilson, G.B. Musical improvisation and health: A review. Psychol. Well-Being 2014, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Aigen, K. Verticality and containment in song and improvisation: An application of schema theory to Nordoff-Robbins music therapy. J. Music. Ther. 2009, 46, 238–267. [Google Scholar] [CrossRef]
- Albornoz, Y. The effects of group improvisational music therapy on depression in adolescents and adults with substance abuse: A randomized controlled trial. Nord. J. Music. Ther. 2011, 20, 208–224. [Google Scholar] [CrossRef]
- Pavlicevic, M.; Ansdell, G. Community Music Therapy; Jessica Kingsley Publishers: London, UK, 2004. [Google Scholar]
- Pothoulaki, M.; MacDonald, R.A.R.; Flowers, P. An interpretative phenomenological analysis of an improvisational music therapy program for cancer patients. J. Music. Ther. 2012, 49, 45–67. [Google Scholar] [CrossRef]
- Erkkilä, J.; Punkanen, M.; Fachner, J.; Ala-Ruona, E.; Pöntiö, I.; Tervaniemi, M.; Vanhala, M.; Gold, C. Individual music therapy for depression: Randomised controlled trial. Br. J. Psychiatry 2011, 199, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Erkkilä, J.; Ala-Ruona, E.; Punkanen, M.; Fachner, J. Perspectives on Creativity in Improvisational, Psychodynamic Music Therapy. In Musical Imaginations: Multidisciplinary Perspectives on Creativity, Performance and Perception; Oxford University Press: Oxford, UK, 2012; pp. 414–428. [Google Scholar]
- Gold, C.; Mössler, K.; Grocke, D.; Heldal, T.O.; Tjemsland, L.; Aarre, T.; Aarø, L.E.; Rittmannsberger, H.; Stige, B.; Assmus, J.; et al. Individual music therapy for mental health care clients with Low therapy motivation: Multicentre randomised controlled trial. Psychother. Psychosom. 2013, 82, 319–331. [Google Scholar] [CrossRef]
- Pavlicevic, M. Music Therapy in Context: Music, Meaning and Relationship; Jessica Kingsley Publishers: London, UK, 1997. [Google Scholar]
Participant | Playing Experience (Years) | Improvisation Experience (Years) | Practice (Hours/Week) | Improvisation Practice % | Age |
---|---|---|---|---|---|
P1 | 25 | 15 | 14 | 25 | 40 |
P2 | 14 | 11 | 8 | 60 | 29 |
P3 | 20 | 15 | 20 | 30 | 40 |
P4 | 12 | 2 | 4 | 25 | 34 |
P5 | 15 | 10 | 8 | 90 | 31 |
P6 | 15 | 8 | 20 | 25 | 31 |
P7 | 12 | 5 | 20 | 60 | 23 |
P8 | 21 | 10 | 10 | 30 | 35 |
P9 | 25 | 25 | 12 | 40 | 41 |
P10 | 28 | 28 | 14 | 90 | 46 |
Avg | 18.7 | 12.9 | 13 | 47.5 | 35 |
SD | 5.2 | 6.7 | 6 | 22.6 | 6.8 |
Task | Instruction | Duration | Eyes |
---|---|---|---|
Rhythmic exercise | Perform the same rhythmical pattern repetitively. Participants were instructed to play a 4/4 time-signature pattern executed with both hands, in which the right-hand plays eighth notes, the left-hand plays quarter notes in beats 2 and 4, and the right foot plays the first 4 rhythmic melodies in the sixteenth note subdivision. | 5 min | Closed |
Pattern improvisation | Improvise concatenating predefined drum patterns (licks). Participants were instructed to develop an improvisation based on the repetition of mechanical patterns, based on muscle memory. | 5 min | Closed |
Free improvisation | Improvise freely without resourcing to predefined drum patterns. Participants were instructed to develop a free improvisation where the only requirement was to sing what is being played at each moment, no matter, difficulty, or performance, no judgement of good or bad improvisation. | 5 min | Closed |
Indicators | Baseline | Rhythmic | Pattern Impro | Free Impro | ||||
---|---|---|---|---|---|---|---|---|
Avg | SD | Avg | SD | Avg | SD | Avg | SD | |
Arousal | 0.8 | 0.34 | 0.69 | 0.31 | 0.88 | 0.26 | 0.81 | 0.3 |
Valence | −0.24 | 0.28 | −0.21 | 0.36 | −0.09 | 0.35 | 0.48 | 0.27 |
Participant | Easiness of the Task Pre-Session (1–7) | Easiness of the Task Post-Session (1–7) | Degree of Overall Satisfaction (1–7) |
---|---|---|---|
P1 | 7 | 6 | 7 |
P2 | 4 | 6 | 6 |
P3 | 4 | 6 | 7 |
P4 | 4 | 6 | 5 |
P5 | 4 | 4 | 7 |
P6 | 6 | 7 | 7 |
P7 | 6 | 5 | 6 |
P8 | 6 | 7 | 7 |
P9 | 5 | 6 | 5 |
P10 | 7 | 7 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Melendez, R.; Reija, X. The Creative Drummer: An EEG-Based Pilot Study on the Correlates of Emotions and Creative Drum Playing. Brain Sci. 2023, 13, 88. https://doi.org/10.3390/brainsci13010088
Ramirez-Melendez R, Reija X. The Creative Drummer: An EEG-Based Pilot Study on the Correlates of Emotions and Creative Drum Playing. Brain Sciences. 2023; 13(1):88. https://doi.org/10.3390/brainsci13010088
Chicago/Turabian StyleRamirez-Melendez, Rafael, and Xavier Reija. 2023. "The Creative Drummer: An EEG-Based Pilot Study on the Correlates of Emotions and Creative Drum Playing" Brain Sciences 13, no. 1: 88. https://doi.org/10.3390/brainsci13010088
APA StyleRamirez-Melendez, R., & Reija, X. (2023). The Creative Drummer: An EEG-Based Pilot Study on the Correlates of Emotions and Creative Drum Playing. Brain Sciences, 13(1), 88. https://doi.org/10.3390/brainsci13010088