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Abstract: It is reasonable to assume that emotional processes are involved in creative tasks and the
generation of creative ideas. In this pilot study, we investigate the emotional correlates in professional
drummers during different degrees of creative music playing. Ten participants performed three
tasks: repetitive rhythmic drum playing, pattern-based improvisation, and attention-intensive free
improvisation, while their EEG activity was recorded. Arousal and valence levels were estimated
from the EEG data at baseline and for the three tasks. Results show significantly increased levels of
valence (i.e., increased prefrontal right alpha power compared to prefrontal left alpha power) during
pattern-based and free improvisation relative to baseline, and significantly increased levels of valence
during free improvisation relative to pattern-based improvisation. These results seem to indicate that
positive emotion (characterized as increased valence) is associated with the creation of original ideas
in drum playing and that the freer the creative process, the greater the positive effect. The implication
of these results may be of particular relevance in the fields of music-based therapeutic interventions
and music pedagogy.
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1. Introduction

Creativity has played a central role throughout history. Progress and innovation have
been driven by our ability to change existing patterns, and create new things. Given the
importance of creative thinking, creativity has become an increasingly popular research
topic addressed by various scientific disciplines with a variety of perspectives and method-
ologies [1,2]. The emergence of new measuring techniques has stimulated research on
creativity from different perspectives. For instance, creativity has been studied in the
cognitive sciences [3], in pedagogy and education [4], and more recently in neuroscience,
(e.g., [5–9]). With a variety of approaches and neuroimaging techniques (e.g., fMRI, PET,
NIRS, EEG), neuroscientific studies have discovered correlates between brain activity and
underlying creative thinking (for an overview see [8]). For instance, brain-creativity corre-
lates have been investigated in response to divergent thinking [10,11], during insightful
problem solving [12] during creativity tasks such as the alternate or unusual uses test [13,14],
during match problem solving tasks [15], and during music [16] or visual art [17] imagery
and creation.

Neuroscientific research of creativity using Electroencephalography (EEG) techniques
has observed alpha band changes compared to control tasks when participants work on
divergent thinking tests evaluating the ability to generate multiple solutions to open-ended
problems [18,19]. However, there is no consensus among researchers about the direction
of such changes. Some investigators have reported frontal alpha increases in synchrony
associated with divergent thinking [20–24], as well as increased alpha power at frontal
sites [14,23,25–29]. However, the work of other researchers has not been able to replicate
these results and has reported decreases in frontal alpha [30–32], no significant increases
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in alpha power [33] or quite the opposite increases in theta, delta, and beta power but not
alpha power [10,24,30,31,34,35].

Music is one of the most remarkably creative domains of human activity, so it pro-
vides an interesting test case for studying creativity. Early studies on musical creativity
include the one by Petsche [16], an EEG study involving seven composers, and the one
by [36], a PET imaging study using vocalists. With respect to EEG analysis, Rahman and
Bhattacharya [37] perform fine-grain source localization, Petsche [16] focuses strictly on
coherence, and Dikaya and Skirtach [38] consider both coherence and power. Regarding the
type of participants some studies considered both musicians and non-musicians [39–41],
while others compared professional and amateur musicians [39], or music students [36], ad-
dressing professional and student composers [16,43] or professional freestyle rap artists [42].
Others compared professional pianists with varying degrees of classical vs. jazz train-
ing [43–46] or musicians with more vs. less creative flexibility [47]. Methodologies have
been similarly diverse. Bashwiner et al. [39] and Oikkonen et al. [41] used questionnaires
to gather information. Studies by Petsche [16] Dikaya and Skirtach [38], and Lu et al. [41]
employed mental composition tasks, while others employed a form of improvisation.
While composition tasks involved only mental creation (i.e., no motor execution), the
improvisation tasks additionally involved motor execution.

There have been several studies investigating music improvisation, both unaccompa-
nied improvisation, and improvisation accompanied by a recording [36,43,45], or another
musician [44]. Some studies restricted the set of pitches or rhythms to be used in the
improvisation [40,46,48–51], while in others participants had no restrictions other than the
music genre [45], or a particular emotion [51,52]. However, in most studies, the ecological
validity was somewhat compromised. For instance, in most piano-improvisation studies,
only the right hand was used, which is not representative of real-world performances and
affects lateralization and connectivity. Furthermore, with the exception of Rahman and
Bhattacharya [37], (which used a full-sized piano keyboard), all piano studies used smaller
keyboards of 35 keys [44,45,52], 12 keys [49], 5 keys [40,48], or 1 key [47]. More recent stud-
ies related to music improvisation or active playing are based on EEG data [53,54]. Rosen
et al. [53] present a study where 32 jazz guitarists improvised to novel chord sequences,
while 64-channel EEGs were recorded. Jazz experts rated each improvisation for creativity,
technical proficiency, and aesthetic appeal. Their results support a dual-process model of
creativity in which experience influences the balance between executive and associative
processes. In Sasaki et al., [54] 14 high-level improvisation guitar players played 32-s alter-
nating blocks of improvisation and scales on the guitar while EEG data was recorded. An
analysis of the EEG data suggested that improvisation was mediated by processes involved
in coordinating planned sequences of movement modulated in response to monitoring and
feedback of sensory states in relation to internal plans and goals.

There have been few studies investigating the neural correlates of intentional emotion
transfer by music performers. Ghodousi et al. [55] assessed brain activity patterns from
the EEG data while participants were performing with emotional intent. The authors
contrasted emotional playing with neutral playing to detect patterns of motor and sensory
activation related to the emotional aspects of the performance. Pousson et al. [56] recorded
EEG activity from musicians who were instructed to perform a simple piano score in an
emotional way and in a neutral way. In the emotional playing task, participants were
instructed to improvise variations in a manner by which the targeted emotion was commu-
nicated, while in the neutral playing task, participants were asked to play the same piece
precisely as written in the score. Spectral analysis of the signal was applied finding EEG
activity differences between the different conditions. In another study, McPherson et al. [52]
used fMRI to examine piano improvisation in response to emotional cues. Twelve pro-
fessional jazz pianists improvised music that they felt represented the emotion expressed
in photographs with a positive, negative, or ambiguous emotion. The authors show that
activity in prefrontal and other brain networks involved in creativity is highly modulated
by emotional context and that emotional intent directly modulated functional connectivity
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of limbic and paralimbic areas. Their findings suggest that emotion and creativity are
tightly linked. However, the brain activity implications of different degrees of musical
creative processes in the emotional state of musicians have not been studied. In particular,
to the best of our knowledge, there has been no research on the musicians’ emotional state
produced by creative improvisation using EEG data.

In this study, we focus on the musicians’ emotional state during a music creativity
task, i.e., music improvisation. With this aim, we asked 10 professional drummer partici-
pants to perform three tasks: repetitive drum playing, pattern-based improvisation, and
attention-intensive free improvisation. We recorded their EEG activity at baseline while
they performed these three tasks, and analyzed the EEG data to estimate instantaneous
arousal and valence values. Finally, we compared the estimated arousal and valence values
of the different conditions.

2. Material and Methods
2.1. Participants

Ten right-handed professional drummers (all male, mean = 34 years old, SD = 7),
participated in the study. Their average number of years of experience, and years of
improvising experience was 18.7 (SD = 5.2), and 12.9 (SD = 6.7), respectively. All participants
were trained in jazz improvisation (5.2 years of average training), were graduates of music
schools and conservatoires, and fluently read music scores. On average, participants
reported practicing 13 h a week, of which 47.5% of the time was dedicated to improvising.
Table 1 shows the participants’ information. Participants conceded their written consent
and procedures were approved by the Conservatoires UK Research Ethics committee on 4
April 2017, following the guidelines of the British Psychological Society.

Table 1. Participants’ drum playing experience (years), improvisation experience (years), practice
(hours/week), improvisation (% of the practice), and age.

Participant
Playing

Experience
(Years)

Improvisation
Experience

(Years)

Practice
(Hours/Week)

Improvisation
Practice % Age

P1 25 15 14 25 40

P2 14 11 8 60 29

P3 20 15 20 30 40

P4 12 2 4 25 34

P5 15 10 8 90 31

P6 15 8 20 25 31

P7 12 5 20 60 23

P8 21 10 10 30 35

P9 25 25 12 40 41

P10 28 28 14 90 46

Avg 18.7 12.9 13 47.5 35

SD 5.2 6.7 6 22.6 6.8

2.2. Materials
Data Acquisition and Processing

The Emotiv EPOC EEG system [57] was used for acquiring the participants’ EEG data.
It consists of 16 wet saline electrodes, providing 14 EEG channels, and a wireless amplifier.
The electrodes’ positions were located at AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, AF4 according to the international 10–20 system (see Figure 1). Reference electrodes
were placed at P3 and P4 (just above the subject’s ears). Data were digitized using the
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built-in 16-bit ADC with 128 Hz sampling frequency per channel and sent to the computer
via Bluetooth. The obtained EEG data were filtered using a Butterworth 8–12 Hz filter.
Data were segmented in windows of 1 s and hop size of 0.1 s (i.e., 90% overlapping 1-s
windows). For each window, data were squared and averaged. Normalized relative alpha
power (alpha = alpha/total_power) was computed. The electrode contact impedance to
the scalp was visually monitored using the Emotiv Control Panel software v1.0.0.4.
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Figure 1. Electrode positions in the Emotiv EPOC (shown in orange) according to the international
10–20 system.

The Emotiv EPOC EEG device is a low-cost EEG device, which has been mainly
marketed as a gaming device. It captures a lower-quality signal compared to the quality of
the signal captured by more expensive equipment. However, recent reports evaluating the
reliability of some low-cost EEG devices, such as the Emotiv Epoc EEG device, for research
purposes suggest that they can be reliable for measuring EEG signals [58–60]. A usability
review of the Emotiv EPOC EEG device as well as of other low-cost systems can be found
in [58]. For recording and processing the data, the OpenViBE platform [61] was used.

2.3. Methods

Participants were informed about the procedures and objectives of the study, and were
asked to sign the informed consent form. Each session was individual and consisted of three
randomly ordered tasks: rhythmic exercise, pattern improvisation, and free improvisation,
performed in drum pads. All drummers performed on the same drum kit arrangement
and same acoustically-isolated room. Table 2 describes the three tasks performed by the
participants. Figure 2 shows the rhythmic exercise task performed by the participants.
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Table 2. Tasks performed by participants.

Task Instruction Duration Eyes

Rhythmic exercise

Perform the same rhythmical pattern repetitively.
Participants were instructed to play a 4/4

time-signature pattern executed with both hands,
in which the right-hand plays eighth notes, the

left-hand plays quarter notes in beats 2 and 4, and
the right foot plays the first 4 rhythmic melodies

in the sixteenth note subdivision.

5 min Closed

Pattern improvisation

Improvise concatenating predefined drum
patterns (licks). Participants were instructed to

develop an improvisation based on the repetition
of mechanical patterns, based on muscle memory.

5 min Closed

Free improvisation

Improvise freely without resourcing to
predefined drum patterns. Participants were

instructed to develop a free improvisation where
the only requirement was to sing what is being
played at each moment, no matter, difficulty, or

performance, no judgement of good or bad
improvisation.

5 min Closed

EEG data were recorded before the session (2-min baseline recording) and during
the rhythmic exercise, pattern improvisation, and free improvisation tasks. In addition,
participants responded to 3 qualitative questions before and after the sessions. Before the
session and after being instructed about the details of the task, participants were asked
how easy/difficult they found the task and how well/badly they expected to perform
them. After the session, they were asked how easy/difficult they found the task and how
well/badly they had performed them, as well as what was the degree of their general
satisfaction with the session. Participants responded to the questions on a 1–7 Likert scale
where 1 = extremely difficult, 7 = extremely easy for the first 2 questions, and 1 = extremely
dissatisfied, 7 = extremely satisfied for the third question.

EEG Analysis

Using the participants’ EEG data, a coordinate in Thayer’s arousal-valence emotion
plane [62] was estimated (a representation of Thayer’s arousal-valence plane is shown in
Figure 3). The EEG data processing was inspired by Ramirez and Vamvakousis [63] where
it was shown that the computed arousal and valence values indeed contain meaningful
information about the user’s emotional state. Artifact detection/elimination was performed
by visual inspection of the signal. EEG data were normalized to avoid inter-participant
variability. Using the EEG signal of a participant, the arousal level was computed as the
inverse of the alpha (8–12 Hz) brainwaves (see Equation (1)). EEG data was recorded in 4
locations on the prefrontal cortex: AF3, AF4, F3, and F4 (see Figure 1). Alpha (α) waves are
associated with relaxed or brain inactivation states of mind. Thus, the 1/α ratio may be
considered an indicator of the arousal state of a person. More precisely, the instantaneous
arousal level of a participant was computed as specified by Equation (1) below:

Arousal = 1/(αF3 + αF4 + αAF3 + αAF4) (1)

A number of EEG studies [64–67] have shown that the right hemisphere is more
involved in negative emotion while the left frontal area is more associated with positive
affect and memories. Thus, for computing valence states, similarly to [63] in this study
we computed the activation levels of the two cortical hemispheres and compared them.
Positions F3 and F4 are the most commonly used positions for looking at this valence-
related activity, as they are located in the prefrontal lobe, which plays a central role in
emotion regulation. Valence values were obtained by computing the difference of alpha
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power α in channels F4 and F3. More precisely, the valence level was computed as specified
by Equation (2), as follows:

Valence = αF4 − αF3 (2)

While the 1/alpha ratio is a reasonable and common way to estimate the arousal state
of a person, valence computation is motivated by psychophysiological research, which
has shown the importance of the difference in activation between the cortical hemispheres.
Left frontal inactivation is an indicator of a withdrawal response, which is often linked to
negative emotion. On the other hand, right frontal inactivation may be associated with an
approach response or positive emotion. As mentioned above, AF3, F3, AF4, and F4 are the
most commonly used positions for computing arousal and valence, as they are located in
the prefrontal lobe, which plays a central role in emotion regulation. More details about the
way arousal and valence levels are computed can be found in [63,68].
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3. Results

Using the EEG data obtained, average valence and arousal values were computed
before and after the sessions as well as during the three music tasks, (Table 3). Average
valence values in Table 3 correspond to the average degree of relative alpha activity in
the left frontal lobe, thus larger values are associated with more positive emotional states.
Average arousal values on the other hand correspond to less alpha activity (or both) in the
frontal lobe, and thus larger values represent higher arousal states.

The normality of the data in all conditions was tested with the Shapiro–Wilk test for
normality (p ≤ 0.05); data did not differ from a normally distributed data set. A test for a
within-subjects, repeated measures study design was performed so as to verify whether
there was a significant difference through the conditions. A paired-samples ANOVA was
run, thus allowing us to contrast the scores for the different conditions.

Table 3 shows the average and standard deviation values for arousal and valence
for the baseline, rhythmic exercise, pattern improvisation, and free improvisation tasks.
The computed average arousal values (standard deviation) for these four tasks were 0.8
(0.34), 0.69 (0.31), 0.88 (0.26), and 0.81 (0.3), respectively. Computed average valence
values (standard deviation) were −0.24 (0.28), −0.21 (0.36), −0.09 (0.35), and 0.48 (0.27),
respectively. After the Bonferroni correction, no significant difference was found between
the arousal baseline values and those of the other three conditions. Similarly, no significant
difference was found between the valence values of the baseline condition and the rhythmic
exercise condition. However, a significant difference was found between the valence values
of the baseline condition and the pattern improvisation condition (p = 0.000017), the
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baseline condition and the free improvisation condition (p = 1.5 × 10−56), and the pattern
improvisation condition and the free improvisation condition (p = 4.9× 10−44).

Table 3. Average and standard deviation values for arousal and valence for baseline and the rhythmic
exercise, pattern improvisation and free improvisation tasks.

Indicators Baseline Rhythmic Pattern Impro Free Impro

Avg SD Avg SD Avg SD Avg SD

Arousal 0.8 0.34 0.69 0.31 0.88 0.26 0.81 0.3

Valence −0.24 0.28 −0.21 0.36 −0.09 0.35 0.48 0.27

Figure 4 shows the arousal values in box plots for the baseline, rhythmic exercise,
pattern improvisation, and free improvisation tasks. Similarly, Figure 5 shows the valence
values for the same five conditions.
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Table 4 shows the answers (from 1–7) to the qualitative self-assessment the participants
responded to before the session and at the end of the session. For the three questions: how
easy/difficult they considered the task and how well/badly they expected to perform them,
how easy/difficult they found the task and how well/badly they had performed it, and
how satisfied they were with their performance, the average (and standard deviation) of
their responses was 5.3 (1.25), 6.1 (0.73) and 6.4 (0.84), respectively.

Table 4. Participants’ qualitative self-evaluation of the session/tasks.

Participant Easiness of the Task
Pre-Session (1–7)

Easiness of the Task
Post-Session (1–7)

Degree of Overall
Satisfaction (1–7)

P1 7 6 7

P2 4 6 6

P3 4 6 7

P4 4 6 5

P5 4 4 7

P6 6 7 7

P7 6 5 6

P8 6 7 7

P9 5 6 5

P10 7 7 7

4. Discussion

Electroencephalography data obtained showed that overall valence level in the partic-
ipants was significantly higher during the pattern improvisation and free improvisation
tasks compared to the baseline level. In addition, the valence level was significantly higher
during free improvisation tasks than during pattern improvisation. No significant dif-
ference was found between the valence levels of the rhythmic exercise and the baseline
conditions. These results should be interpreted as a decrease of relative alpha activity in the
left frontal lobe during improvisation processes, which may be interpreted as an improve-
ment of mood or a lessening of negative mood [64,68,69]. This seems to indicate that music
improvisation has a “feel good” effect and that the more creative the improvisation process,
the more intense this effect. This can certainly have implications in improvisation-based
music interventions where the goal is to improve emotional conditions.

No significant differences in terms of arousal were found between the baseline, rhyth-
mic exercise, pattern improvisation, and free improvisation conditions. These results should
be interpreted as a non-significant difference in alpha activity in the frontal lobe during
improvisation processes compared to baseline activity. This may be consistent with the lack
of consensus about frontal increases of alpha power at frontal sites during creative tasks.

There is a broad field of research investigating how music playing and music listening
can improve the health and well-being of individuals. The unique characteristics of music
improvisation may have also unique health and well-being effects compared to other
musical activities [70]. As a therapeutic intervention, music improvisation has been used
to improve many conditions [71–74] including mental health conditions and to reduce
stress and anxiety [75–78] The results presented in this study support and provide a
ground for the empirical application of music improvisation in such therapeutic contexts.
Furthermore, although music improvisation in therapeutic interventions has a different
purpose than improvisation in other contexts, its processes can be seen as substantively
similar, suggesting that music improvisation can offer intrinsic benefits to the health or
well-being of broader populations outside the therapeutic context. The results presented in
this study may be interpreted in this direction and may open a more widespread practice
of music improvisation in educational and other contexts. Music improvisation and its
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associated emotional effect may be used as a tool to increase motivation in music students
which can lead to a lower abandonment rate.

An analysis of the qualitative self-reported data confirms that the tasks requested
to the drummer participants were indeed not too complex for them. The pre-session
evaluation of the easiness/difficulty of 5.3 out of 7 (1.25) indicates participants felt capable
and confident to perform the task as instructed, which was further confirmed by the post-
session evaluation of 6.1 out of 7 (0.73). Furthermore, post-session results showed a high
degree of satisfaction among participants (6.4 out of 7), which in turn is an indicator that
they understood the instructions well and they were able to execute the tasks correctly.
This was important since we wanted to make sure that the tasks were not too complex for
the participants so they could fully concentrate on the improvisation component of the
pattern and free improvisation tasks.

The presented study has several limitations which should be considered in future
research. One of these limitations is the small number of participants. Extending the number
of participants would very likely provide more reliable and significant results. Future
research could also include involving musicians with different improvisation training
experience in order to compare the role of training in the results. While most of the music
improvisation activity happens in the context of ensemble playing, most studies, including
the present study, consider solo improvisation performances. In this respect, it would be
interesting to extend the current study considering the more ecologically valid test case
of ensemble music performances, where the EEG data are recorded from musicians while
they interact with each other.

5. Conclusions

We have investigated the emotional correlates in the emotional state of professional
drummers during different degrees of creative music playing, i.e., music improvisation.
With this aim, ten participants performed three tasks: a repetitive rhythmic exercise, a
pattern-based improvisation, and an attention-intensive free improvisation task, while their
EEG activity was recorded. Arousal and valence levels were estimated from the EEG data
at baseline and for the three tasks. Results showed significantly increased levels of valence
(i.e., increased prefrontal right alpha power compared to prefrontal left alpha power) during
pattern-based and free improvisation relative to baseline, and significantly increased levels
of valence during free improvisation relative to pattern-based improvisation. These results
seem to indicate that positive emotion is associated with the creation of original ideas in
drum playing and that the freer the creative process, the greater the positive effect. The
implication of these results may be of particular relevance in the fields of music-based
therapeutic interventions and music pedagogy.
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