Occupational Burnout Is Linked with Inefficient Executive Functioning, Elevated Average Heart Rate, and Decreased Physical Activity in Daily Life - Initial Evidence from Teaching Professionals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bergen Burnout Indicator 15 (BBI-15)
2.2. Beck’s Depression Inventory 21 (BDI)
2.3. Behavioral Rating Inventory of Executive Functions—Adult Version (BRIEF-A)
2.4. Firstbeat® Well-Being Survey
2.5. Statistical Analyses
3. Results
3.1. Groups and BBI-15
3.2. BDI
3.3. BRIEF-A
3.4. Firstbeat® Recording
3.5. Spearman´s Partial Rank Correlation for Burnout, BRIEF-A Indices, and Firstbeat® Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salvagioni, D.A.J.; Melanda, F.N.; Mesas, A.E.; González, A.D.; Gabani, F.L.; De Andrade, S.M. Physical, psychological and occupational consequences of job burnout: A systematic review of prospective studies. PLoS ONE 2017, 12, e0185781. [Google Scholar] [CrossRef] [Green Version]
- Maslach, C.; Schaufeli, W.B.; Leiter, M.P. Job burnout. Annu. Rev. Psychol. 2001, 52, 397–422. [Google Scholar] [CrossRef] [Green Version]
- Danhof-Pont, M.B.; van Veen, T.; Zitman, F.G. Biomarkers in burnout: A systematic review. J. Psychosom. Res. 2011, 70, 505–524. [Google Scholar] [CrossRef]
- Föhr, T.; Tolvanen, A.; Myllymäki, T.; Järvelä-Reijonen, E.; Rantala, S.; Korpela, R.; Peuhkuri, K.; Kolehmainen, M.; Puttonen, S.; Lappalainen, R.; et al. Subjective stress, objective heart rate variability-based stress, and recovery on workdays among overweight and psychologically distressed individuals: A cross-sectional study. J. Occup. Med. Toxicol. 2015, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- De Vente, W.; Olff, M.; Van Amsterdam, J.G.C.; Kamphuis, J.H.; Emmelkamp, P.M.G. Physiological differences between burnout patients and healthy controls: Blood pressure, heart rate, and cortisol responses. Occup. Environ. Med. 2003, 60, i54–i61. [Google Scholar] [CrossRef]
- Lennartsson, A.K.; Jonsdottir, I.; Sjörs, A. Low heart rate variability in patients with clinical burnout. Int. J. Psychophysiol. 2016, 110, 171–178. [Google Scholar] [CrossRef]
- Olsson, E.M.G.; Roth, W.T.; Melin, L. Psychophysiological characteristics of women suffering from stress-related fatigue. Stress Health 2010, 26, 113–126. [Google Scholar] [CrossRef]
- Armon, G.; Shirom, A.; Shapira, I.; Melamed, S. On the nature of burnout-insomnia relationships: A prospective study of employed adults. J. Psychosom. Res. 2008, 65, 5–12. [Google Scholar] [CrossRef]
- Armon, G. Do burnout and insomnia predict each other’s levels of change over time independently of the job demand control–support (JDC–S) model? Stress Health 2009, 25, 333–342. [Google Scholar] [CrossRef]
- Ahola, K.; Hakanen, J. Job strain, burnout, and depressive symptoms: A prospective study among dentists. J. Affect. Disord. 2007, 104, 103–110. [Google Scholar] [CrossRef]
- Armon, G.; Melamed, S.; Toker, S.; Berliner, S.; Shapira, I. Joint effect of chronic medical illness and burnout on depressive symptoms among employed adults. Health Psychol. 2014, 33, 264–272. [Google Scholar] [CrossRef]
- Toker, S.; Biron, M. Job burnout and depression: Unraveling their temporal relationship and considering the role of physical activity. J. Appl. Psychol. 2012, 97, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Madsen, I.E.H.; Lange, T.; Borritz, M.; Rugulies, R. Burnout as a risk factor for antidepressant treatment—A repeated measures time-to-event analysis of 2936 Danish human service workers. J. Psychiatr. Res. 2015, 65, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Leiter, M.P.; Hakanen, J.J.; Ahola, K.; Toppinen-Tanner, S.; Koskinen, A.; Väänänen, A. Organizational predictors and health consequences of changes in burnout: A 12-year cohort study. J. Organ. Behav. 2012, 34, 959–973. [Google Scholar] [CrossRef]
- Toppinen-Tanner, S.; Ahola, K.; Koskinen, A.; Väänänen, A. Burnout predicts hospitalization for mental and cardiovascular disorders: 10-year prospective results from industrial sector. Stress Health 2009, 25, 287–296. [Google Scholar] [CrossRef]
- de Beer, L.T.; Pienaar, J.; Rothmann, S. Work overload, burnout, and psychological ill-health symptoms: A three-wave mediation model of the employee health impairment process. Anxiety Stress Coping 2016, 29, 387–399. [Google Scholar] [CrossRef]
- Kitaoka-Higashiguchi, K.; Morikawa, Y.; Miura, K.; Sakurai, M.; Ishizaki, M.; Kido, T.; Naruse, Y.; Nakagawa, H. Burnout and Risk Factors for Arteriosclerotic Disease: Follow-up Study. J. Occup. Health 2009, 51, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Melamed, S.; Shirom, A.; Toker, S.; Shapira, I. Burnout and risk of type 2 diabetes: A prospective study of apparently healthy employed persons. Psychosom. Med. 2006, 68, 863–869. [Google Scholar] [CrossRef]
- Toker, S.; Melamed, S.; Berliner, S.; Zeltser, D.; Shapira, I. Burnout and risk of coronary heart disease: A prospective study of 8838 employees. Psychosom. Med. 2012, 74, 840–847. [Google Scholar] [CrossRef]
- Melamed, S. Burnout and risk of regional musculoskeletal pain—A prospective study of apparently healthy employed adults. Stress Health 2009, 25, 313–321. [Google Scholar] [CrossRef]
- Kim, H.; Ji, J.; Kao, D. Burnout and physical health among social workers: A three-year longitudinal study. Soc. Work 2011, 56, 258–268. [Google Scholar] [CrossRef]
- Ahola, K.; Salminen, S.; Toppinen-Tanner, S.; Koskinen, A.; Väänänen, A. Occupational burnout and severe injuries: An eight-year prospective cohort study among Finnish forest industry workers. J. Occup. Health 2013, 55, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Leone, S.S.; Huibers, M.J.H.; Knottnerus, J.A.; Kant, I. The temporal relationship between burnout and prolonged fatigue: A 4-year prospective cohort study. Stress Health 2009, 25, 365–374. [Google Scholar] [CrossRef]
- Ahola, K.; Väänänen, A.; Koskinen, A.; Kouvonen, A.; Shirom, A. Burnout as a predictor of all-cause mortality among industrial employees: A 10-year prospective register-linkage study. J. Psychosom. Res. 2010, 69, 51–57. [Google Scholar] [CrossRef]
- Dyrbye, L.N.; Satele, D.; Shanafelt, T.D. Healthy exercise habits are associated with lower risk of burnout and higher quality of life among U.S. Medical Students. Acad. Med. 2017, 92, 1006–1011. [Google Scholar] [CrossRef]
- Wolf, M.R.; Rosenstock, J.B. Inadequate Sleep and Exercise Associated with Burnout and Depression Among Medical Students. Acad. Psychiatry 2016, 41, 174–179. [Google Scholar] [CrossRef]
- Föhr, T.; Tolvanen, A.; Myllymäki, T.; Järvelä-Reijonen, E.; Peuhkuri, K.; Rantala, S.; Kolehmainen, M.; Korpela, R.; Lappalainen, R.; Ermes, M.; et al. Physical activity, heart rate variability-based stress and recovery, and subjective stress during a 9-month study period. Scand. J. Med. Sci. Sports 2017, 27, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Pantzar, M.; Ruckenstein, M.; Mustonen, V. Social rhythms of the heart. Health Sociol. Rev. 2016, 26, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Föhr, T.; Pietilä, J.; Helander, E.; Myllymäki, T.; Lindholm, H.; Rusko, H.; Kujala, U.M. Physical activity, body mass index and heart rate variability-based stress and recovery in 16 275 Finnish employees: A cross-sectional study. BMC Public Health 2016, 16, 701. [Google Scholar] [CrossRef] [Green Version]
- Allan, J.L.; McMinn, D.; Daly, M. A bidirectional relationship between executive function and health behavior: Evidence, implications, and future directions. Front. Neurosci. 2016, 10, 386. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Wiehler, A.; Branzoli, F.; Adanyeguh, I.; Mochel, F.; Pessiglione, M. A neuro-metabolic account of why daylong cognitive work alters the control of economic decisions. Curr. Biol. 2022, 32, 3564–3575.e5. [Google Scholar] [CrossRef]
- Deligkaris, P.; Panagopoulou, E.; Montgomery, A.J.; Masoura, E. Job burnout and cognitive functioning: A systematic review. Work Stress 2014, 28, 107–123. [Google Scholar] [CrossRef]
- Erkkilä, M.; Peräkylä, J.; Hartikainen, K.M. Executive functions and emotion-attention interaction in assessment of brain health: Reliability of repeated testing with executive RT test and correlation with BRIEF-A questionnaire. Front. Psychol. 2018, 9, 2556. [Google Scholar] [CrossRef]
- Hartikainen, K.M.; Waljas, M.; Isoviita, T.; Dastidar, P.; Liimatainen, S.; Solbakk, A.-K.; Ogawa, K.H.; Soimakallio, S.; Ylinen, A.; Öhman, J. Persistent symptoms in mild to moderate traumatic brain injury associated with executive dysfunction. J. Clin. Exp. Neuropsychol. 2010, 32, 767–774. [Google Scholar] [CrossRef]
- Parak, J.; Korhonen, I. Accuracy of Firstbeat Bodyguard 2 Heart Rate Monitor—Firstbeat White Paper—Firstbeat; Tampere University of Technology: Tampere, Finland, 2015. [Google Scholar]
- Näätänen, P.; Aro, A.; Matthiesen, S.; Salmela-Aro, K. Bergen Burnout Indicator-15; Edita Publishing: Helsinki, Finland, 2003. [Google Scholar]
- Beck, A.; Steer, R.; Assessment, G.B.-P.U. Beck Depression Inventory–II. 1996. Available online: https://psycnet.apa.org (accessed on 1 August 2022).
- Roth, R.; Isquith, P.; Gioia, G. Behavior Rating Inventory of Executive Function—Adult Version (BRIEF-A); Science of Behavior Change; Columbia University: New York, NY, USA, 2005; Volume 20. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 2 December 2022).
- Kim, S. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Commun. Stat. Appl. Methods 2015, 22, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Gavelin, H.M.; Domellöf, M.E.; Åström, E.; Nelson, A.; Launder, N.H.; Neely, A.S.; Lampit, A. Cognitive function in clinical burnout: A systematic review and meta-analysis. Work Stress 2021, 36, 86–104. [Google Scholar] [CrossRef]
- Van Der Linden, D.; Keijsers, G.P.J.; Eling, P.; Van Schaijk, R. Work stress and attentional difficulties: An initial study on burnout and cognitive failures. Work Stress 2005, 19, 23–36. [Google Scholar] [CrossRef]
- Jonsdottir, I.H.; Nordlund, A.; Ellbin, S.; Ljung, T.; Glise, K.; Währborg, P.; Wallin, A. Cognitive impairment in patients with stress-related exhaustion. Stress 2013, 16, 181–190. [Google Scholar] [CrossRef]
- Feuerhahn, N.; Stamov-Roßnagel, C.; Wolfram, M.; Bellingrath, S.; Kudielka, B.M. Emotional exhaustion and cognitive performance in apparently healthy teachers: A longitudinal multi-source study. Stress Health 2013, 29, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Österberg, K.; Karlson, B.; Hansen, Å.M. Cognitive performance in patients with burnout, in relation to diurnal salivary cortisol. Stress 2009, 12, 70–81. [Google Scholar] [CrossRef]
- McInerney, S.; Rowan, M.; Lawlor, B. Burnout and its Effect on Neurocognitive Performance. Ir. J. Psychol. Med. 2012, 29, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Österberg, K.; Karlson, B.; Malmberg, B.; Hansen, Å.M. A follow-up of cognitive performance and diurnal salivary cortisol changes in former burnout patients. Stress 2012, 15, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Blix, E.; Perski, A.; Berglund, H.; Savic, I. Long-Term Occupational Stress Is Associated with Regional Reductions in Brain Tissue Volumes. PLoS ONE 2013, 8, e64065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golkar, A.; Johansson, E.; Kasahara, M.; Osika, W.; Perski, A.; Savic, I. The influence of work-related chronic stress on the regulation of emotion and on functional connectivity in the brain. PLoS ONE 2014, 9, e104550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savic, I. Structural changes of the brain in relation to occupational stress. Cereb. Cortex 2015, 25, 1554–1564. [Google Scholar] [CrossRef] [Green Version]
- Belanoff, J.K.; Gross, K.; Yager, A.; Schatzberg, A.F. Corticosteroids and cognition. J. Psychiatr. Res. 2001, 35, 127–145. [Google Scholar] [CrossRef]
- Beck, J.; Gerber, M.; Brand, S.; Pühse, U.; Holsboer-Trachsler, E. Executive function performance is reduced during occupational burnout but can recover to the level of healthy controls. J. Psychiatr. Res. 2013, 47, 1824–1830. [Google Scholar] [CrossRef]
- Naczenski, L.M.; De Vries, J.D.; Van Hooff, M.L.M.; Kompier, M.A.J. Systematic review of the association between physical activity and burnout. J. Occup. Health 2017, 59, 477–494. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Erickson, K.I.; Hillman, C.H.; Kramer, A.F. Physical activity, brain, and cognition This review comes from a themed issue on Cognitive enhancement. Curr. Opin. Behav. Sci. 2015, 4, 27–32. [Google Scholar] [CrossRef]
- de Greeff, J.W.; Bosker, R.J.; Oosterlaan, J.; Visscher, C.; Hartman, E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: A meta-analysis. J. Sci. Med. Sport 2018, 21, 501–507. [Google Scholar] [CrossRef]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235. [Google Scholar] [CrossRef] [Green Version]
- Hartikainen, K.M.; Siiskonen, A.R.; Ogawa, K.H. Threat interferes with response inhibition. Neuroreport. 2012, 23, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Critchley, H.D. Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. Int. J. Psychophysiol. 2009, 73, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Parasuraman, R.; Jiang, Y. Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches. Neuroimage 2011, 59, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Peräkylä, J.; Holm, K.; Haapasalo, J.; Lehtimäki, K.; Ogawa, K.H.; Peltola, J.; Hartikainen, K.M. Vagus nerve stimulation improves working memory performance. J. Clin. Exp. Neuropsychol. 2017, 39, 954–964. [Google Scholar] [CrossRef]
- Pihlaja, M.; Failla, L.; Peräkylä, J.; Hartikainen, K.M. Reduced Frontal Nogo-N2 With Uncompromised Response Inhibition During Transcutaneous Vagus Nerve Stimulation—More Efficient Cognitive Control? Front. Hum. Neurosci. 2020, 14, 391. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef]
- Forte, G.; Favieri, F.; Casagrande, M. Heart rate variability and cognitive function: A systematic review. Front. Neurosci. 2019, 13, 710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutsimani, P.; Montgomery, A.; Georganta, K. The relationship between burnout, depression, and anxiety: A systematic review and meta-analysis. Front. Psychol. 2019, 10, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, R.; Schonfeld, I.S.; Laurent, E. Burnout-depression overlap: A review. Clin. Psychol. Rev. 2015, 36, 28–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, H.R. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychol. Bull. 2013, 139, 81–132. [Google Scholar] [CrossRef] [Green Version]
- Rock, P.L.; Roiser, J.P.; Riedel, W.J.; Blackwell, A.D. Cognitive impairment in depression: A systematic review and meta-analysis. Psychol. Med. 2014, 44, 2029–2040. [Google Scholar] [CrossRef] [Green Version]
- Peräkylä, J.; Järventausta, K.; Haapaniemi, P.; Camprodon, J.A.; Hartikainen, K.M. Threat-modulation of executive functions -A novel biomarker of depression? Front. Psychiatry 2021, 12, 797. [Google Scholar] [CrossRef]
- Peräkylä, J.; Sun, L.; Lehtimäki, K.; Peltola, J.; Öhman, J.; Möttönen, T.; Ogawa, K.H.; Hartikainen, K.M. Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory. J. Cogn. Neurosci. 2017, 29, 2090–2102. [Google Scholar] [CrossRef]
- Kuusinen, V.; Cesnaite, E.; Peräkylä, J.; Ogawa, K.H.; Hartikainen, K.M. Orbitofrontal lesion alters brain dynamics of emotion-attention and emotion-cognitive control interaction in humans. Front. Hum. Neurosci. 2018, 12, 437. [Google Scholar] [CrossRef] [Green Version]
- Hartikainen, K.M.; Ogawa, K.H.; Knight, R.T. Orbitofrontal cortex biases attention to emotional events. J. Clin. Exp. Neuropsychol. 2012, 34, 588–597. [Google Scholar] [CrossRef]
- Hartikainen, K.M.; Knight, R.T. Lateral and Orbital Prefrontal Cortex Contributions to Attention. In Detection of Change; Springer: New York, NY, USA, 2003; pp. 99–116. [Google Scholar]
Group | Mean (SD) | t | df | p | |
---|---|---|---|---|---|
GEC | Non-burnout | 43.71 (7.76) | −4.77 | 26 | <0.001 *** |
Burnout | 59.14 (9.29) | ||||
MI | Non-burnout | 45.36 (9.09) | −4.38 | 26 | <0.001 *** |
Burnout | 60.14 (8.77) | ||||
Initiate | Non-burnout | 46.29 (9.01) | −3.06 | 26 | 0.005 ** |
Burnout | 59.07 (12.75) | ||||
Working memory | Non-burnout | 48.43 (8.95) | −4.65 | 26 | <0.001 *** |
Burnout | 63.14 (7.74) | ||||
Plan/ Organize | Non-burnout | 43.5 (9.43) | −3.79 | 26 | 0.001 ** |
Burnout | 55.93 (7.85) | ||||
Task monitor | Non-burnout | 45.07 (7.95) | −4.12 | 26 | <0.001 *** |
Burnout | 58.71 (9.50) | ||||
Organization of materials | Non-burnout | 47.36 (9.56) | −2.39 | 26 | 0.025 * |
Burnout | 56.71 (11.13) | ||||
BRI | Non-burnout | 42.5 (7.29) | −3.92 | 26 | 0.001 ** |
Burnout | 56.71 (11.43) | ||||
Inhibit | Non-burnout | 43.86 (5.70) | −2.96 | 18 | 0.008 ** |
Burnout | 54.86 (12.71) | ||||
Shift | Non-burnout | 42.86 (4.27) | −5.55 | 26 | <0.001 *** |
Burnout | 55.29 (7.15) | ||||
Emotional control | Non-burnout | 45.57 (8.25) | −2.97 | 26 | 0.006 ** |
Burnout | 57.71 (12.81) | ||||
Self-monitoring | Non-burnout | 41.43 (7.11) | −3.41 | 26 | 0.002 ** |
Burnout | 52.07 (9.27) |
Group | Mean (SD) | t | Df | p | |
---|---|---|---|---|---|
MinHR (min−1) | Non-burnout | 50.98 (3.86) | −1.91 | 26 | 0.068 |
Burnout | 54.10 (4.76) | ||||
MaxHR (min−1) | Non-burnout | 143.74 (11.77) | −0.19 | 26 | 0.860 |
Burnout | 144.62 (14.29) | ||||
AvHR (min−1) | Non-burnout | 73.12 (5.08) | −2.72 | 26 | 0.032 * |
Burnout | 78.40 (7.07) | ||||
HRV-Awake (ms) | Non-burnout | 36.31 (14.48) | 2.04 | 18 | 0.057 |
Burnout | 27.67 (6.51) | ||||
HRV-Sleep (ms) | Non-burnout | 47.86 (23.14) | 1.72 | 17.8 | 0.100 |
Burnout | 36.24 (10.18) | ||||
Steps | Non-burnout | 7527.19 (2427.99) | 2.22 | 26 | 0.035 * |
Burnout | 5323.88 (2811.73) | ||||
Sleep Total Time (min) | Non-burnout | 480.40 (38.20) | 1.02 | 19.5 | 0.320 |
Burnout | 457.60 (74.10) |
n = 28 | BBI−15 | BDI | BRI | MI | GEC |
---|---|---|---|---|---|
BDI | 0.83 (<0.001 ***) | ||||
BRI | 0.61 (<0.001 ***) | 0.68 (<0.001 ***) | |||
MI | 0.75 (<0.001 ***) | 0.68 (<0.001 ***) | 0.69 (<0.001 ***) | ||
GEC | 0.73 (<0.001 ***) | 0.72 (<0.001 ***) | 0.88 (<0.001 ***) | 0.94 (<0.001 ***) | |
MinHR (min−1) | 0.38 (0.052) | 0.38 (0.052) | 0.15 (0.447) | 0.38 (0.053) | 0.29 (0.144) |
AvHR (min−1) | 0.25 (0.208) | 0.17 (0.385) | 0.15 (0.463) | 0.30 (0.123) | 0.24 (0.225) |
HRV-Sleep (ms) | −0.36 (0.065) | −0.41 (0.034 *) | −0.32 (0.106) | −0.54 (0.004 **) | −0.49 (0.009 **) |
HRV-Awake (ms) | −0.44 (0.021 *) | −0.48 (0.011 *) | −0.36 (0.068) | −0.57 (0.002 **) | −0.52 (0.005 **) |
Steps | −0.45 (0.020 *) | −0.28 (0.159) | −0.31 (0.120) | −0.42 (0.031 *) | −0.37 (0.059) |
Sleep (min) | −0.26 (0.190) | −0.32 (0.108) | −0.15 (0.444) | −0.37 (0.058) | −0.28 (0.152) |
n = 28 | BBI-15 | BRI | MI | GEC |
---|---|---|---|---|
BRI | 0.11 (0.589) | |||
MI | 0.47 (0.016 *) | 0.43 (0.027 *) | ||
GEC | 0.34 (0.094) | 0.77 (<0.001 ***) | 0.88 (<0.001 ***) | |
MinHR (min−1) | 0.13 (0.542) | −0.15 (0.456) | 0.18 (0.383) | 0.03 (0.896) |
AvHR (min−1) | 0.19 (0.346) | 0.04 (0.845) | 0.26 (0.205) | 0.17 (0.407) |
HRV-Sleep (ms) | −0.04 (0.841) | −0.06 (0.774) | −0.39 (0.049 *) | −0.31 (0.120) |
HRV-Awake (ms) | −0.09 (0.673) | −0.05 (0.822) | −0.38 (0.055) | −0.29 (0.153) |
Steps | −0.40 (0.042 *) | −0.17 (0.417) | −0.32 (0.110) | −0.25 (0.215) |
Sleep (min) | 0.00 (0.98) | 0.09 (0.670) | −0.22 (0.277) | −0.08 (0.681) |
n = 28 | BDI | BRI | MI | GEC |
---|---|---|---|---|
BRI | 0.39 (0.047 *) | |||
MI | 0.14 (0.503) | 0.45 (0.021 *) | ||
GEC | 0.30 (0.133) | 0.81 (<0.001 ***) | 0.86 (<0.001 ***) | |
MinHR (min−1) | 0.12 (0.546) | −0.11 (0.607) | 0.15 (0.461) | 0.02 (0.914) |
AvHR (min−1) | −0.06 (0.764) | −0.01 (0.975) | 0.18 (0.373) | 0.09 (0.663) |
HRV-Sleep (ms) | −0.21 (0.300) | −0.13 (0.519) | −0.44 (0.026 *) | −0.36 (0.071) |
HRV-Awake (ms) | −0.23 (0.262) | −0.12 (0.550) | −0.40 (0.041 *) | −0.33 (0.105) |
Steps | 0.18 (0.371) | −0.05 (0.813) | −0.13 (0.511) | −0.07 (0.729) |
Sleep (min) | −0.19 (0.362) | 0.01 (0.976) | −0.27 (0.179) | −0.14 (0.489) |
n = 28 | BRI | MI | GEC |
---|---|---|---|
MI | 0.43 (0.030 *) | ||
GEC | 0.79 (<0.001 ***) | 0.87 (<0.001 ***) | |
MinHR (min−1) | −0.17 (0.419) | 0.14 (0.515) | −0.02 (0.938) |
AvHR (min−1) | 0.02 (0.927) | 0.19 (0.356) | 0.11 (0.587) |
HRV-Sleep (ms) | −0.05 (0.794) | −0.42 (0.037 *) | −0.32 (0.122) |
HRV-Awake (ms) | −0.04 (0.860) | −0.39 (0.057) | −0.28 (0.182) |
Steps | −0.13 (0.525) | −0.16 (0.432) | 0.14 (0.519) |
Sleep (min) | 0.09 (0.676) | −0.25 (0.222) | −0.09 (0.664) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pihlaja, M.; Tuominen, P.P.A.; Peräkylä, J.; Hartikainen, K.M. Occupational Burnout Is Linked with Inefficient Executive Functioning, Elevated Average Heart Rate, and Decreased Physical Activity in Daily Life - Initial Evidence from Teaching Professionals. Brain Sci. 2022, 12, 1723. https://doi.org/10.3390/brainsci12121723
Pihlaja M, Tuominen PPA, Peräkylä J, Hartikainen KM. Occupational Burnout Is Linked with Inefficient Executive Functioning, Elevated Average Heart Rate, and Decreased Physical Activity in Daily Life - Initial Evidence from Teaching Professionals. Brain Sciences. 2022; 12(12):1723. https://doi.org/10.3390/brainsci12121723
Chicago/Turabian StylePihlaja, Mia, Pipsa P. A. Tuominen, Jari Peräkylä, and Kaisa M. Hartikainen. 2022. "Occupational Burnout Is Linked with Inefficient Executive Functioning, Elevated Average Heart Rate, and Decreased Physical Activity in Daily Life - Initial Evidence from Teaching Professionals" Brain Sciences 12, no. 12: 1723. https://doi.org/10.3390/brainsci12121723
APA StylePihlaja, M., Tuominen, P. P. A., Peräkylä, J., & Hartikainen, K. M. (2022). Occupational Burnout Is Linked with Inefficient Executive Functioning, Elevated Average Heart Rate, and Decreased Physical Activity in Daily Life - Initial Evidence from Teaching Professionals. Brain Sciences, 12(12), 1723. https://doi.org/10.3390/brainsci12121723