Emotion-Attention Interaction in the Right Hemisphere
Abstract
:1. Introduction
2. Brain Lateralization and Hemispheric Specialization
3. The Right Hemisphere in Emotion, Attention, and Arousal
3.1. Right Hemisphere Lesion—Aprosodia and Other Emotional Deficits
3.2. Right Hemisphere Lesion—Anosognosia and Neglect
3.3. Right Hemisphere Lesion—Hypoarousal
4. Attention Capture by Negative Emotional Stimuli in the Right Hemisphere
4.1. Electrophysiological Evidence
4.2. Emotional Stimuli Overcome Neglect
4.3. Emotional Stimuli May Cause a Neglect-Like Phenomena in Healthy Subjects
5. Attentional Competition in the Right Hemisphere
5.1. Competition between Negative Emotional Stimuli and Global Visual Stimuli
5.2. Interaction between Negative Emotional Stimuli and Response Inhibition
5.3. Interference of Task Performance Due to Emotional Distractors
6. Clinical Applications
6.1. Task-Induced Frontal Alpha Asymmetry (FAA)
6.2. Emotional Modulation of FAA—A Novel Biomarker for RH Emotion-Attention Interaction
7. Technological Applications
8. Conclusions
Funding
Conflicts of Interest
References
- Desimone, R.; Duncan, J. Neural Mechanisms of Selective Visual Attention. Ann. Rev. Neurosci. 1995, 18, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, K.M.; Ogawa, K.H.; Knight, R.T. Transient Interference of Right Hemispheric Function Due to Automatic Emotional Processing. Neuropsychologia 2000, 38, 1576–1580. [Google Scholar] [CrossRef]
- Beck, D.M.; Kastner, S. Top-down and Bottom-up Mechanisms in Biasing Competition in the Human Brain. Vis. Res. 2009, 49, 1154–1165. [Google Scholar] [CrossRef] [Green Version]
- Hartikainen, K.M.; Ogawa, K.H.; Soltani, M.; Knight, R.T. Emotionally Arousing Stimuli Compete for Attention with Left Hemispace. NeuroReport 2007, 18, 1929–1933. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, K.M.; Siiskonen, A.R.; Ogawa, K.H. Threat Interferes with Response Inhibition. NeuroReport 2012, 23, 447–450. [Google Scholar] [CrossRef]
- Hartikainen, K.M.; Ogawa, K.H.; Knight, R.T. Trees over Forest: Unpleasant Stimuli Compete for Attention with Global Features. NeuroReport 2010, 21, 344. [Google Scholar] [CrossRef]
- Gainotti, G. Emotions and the Right Hemisphere: Can New Data Clarify Old Models? Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2019, 25, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Corballis, M.C. The Evolution of Lateralized Brain Circuits. Front. Psychol. 2017, 8, 1021. [Google Scholar] [CrossRef] [PubMed]
- Gazzaniga, M.S. Cerebral Specialization and Interhemispheric CommunicationDoes the Corpus Callosum Enable the Human Condition? Brain 2000, 123, 1293–1326. [Google Scholar] [CrossRef] [Green Version]
- Riès, S.K.; Dronkers, N.F.; Knight, R.T. Choosing Words: Left Hemisphere, Right Hemisphere, or Both? Perspective on the Lateralization of Word Retrieval. Ann. N. Y. Acad. Sci. 2016, 1369, 111–131. [Google Scholar] [CrossRef]
- Weintraub, S.; Mesulam, M.; Kramer, L. Disturbances in Prosody. A Right-Hemisphere Contribution to Language. Arch. Neurol. 1981, 38, 742–744. [Google Scholar] [CrossRef]
- Peräkylä, J.; Järventausta, K.; Haapaniemi, P.; Camprodon, J.A.; Hartikainen, K.M. Threat-Modulation of Executive Functions -A Novel Biomarker of Depression? Front. Psychiatry 2021, 12, 797. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Sinigaglia, C. The Functional Role of the Parieto-Frontal Mirror Circuit: Interpretations and Misinterpretations. Nat. Rev. Neurosci. 2010, 11, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Bisazza, A.; Rogers, L.J.; Vallortigara, G. The Origins of Cerebral Asymmetry: A Review of Evidence of Behavioural and Brain Lateralization in Fishes, Reptiles and Amphibians. Neurosci. Biobehav. Rev. 1998, 22, 411–426. [Google Scholar] [CrossRef]
- Leliveld, L.M.C.; Langbein, J.; Puppe, B. The Emergence of Emotional Lateralization: Evidence in Non-Human Vertebrates and Implications for Farm Animals. Appl. Anim. Behav. Sci. 2013, 145, 1–14. [Google Scholar] [CrossRef]
- Shamay-Tsoory, S.G.; Tomer, R.; Aharon-Peretz, J. The Neuroanatomical Basis of Understanding Sarcasm and Its Relationship to Social Cognition. Neuropsychology 2005, 19, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.L.C. Right Hemisphere Language Functions and Schizophrenia: The Forgotten Hemisphere? Brain 2005, 128, 963–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalandadze, T.; Norbury, C.; Nærland, T.; Næss, K.A.B. Figurative Language Comprehension in Individuals with Autism Spectrum Disorder: A Meta-Analytic Review. Autism 2018, 22, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Ribolsi, M.; Koch, G.; Magni, V.; Di Lorenzo, G.; Rubino, I.A.; Siracusano, A.; Centonze, D. Abnormal Brain Lateralization and Connectivity in Schizophrenia. Rev. Neurosci. 2009, 20, 61–70. [Google Scholar] [CrossRef]
- David, A.S. Spatial and Selective Attention in the Cerebral Hemispheres in Depression, Mania, and Schizophrenia. Brain Cogn. 1993, 23, 166–180. [Google Scholar] [CrossRef]
- Floris, D.L.; Lai, M.C.; Auer, T.; Lombardo, M.V.; Ecker, C.; Chakrabarti, B.; Wheelwright, S.J.; Bullmore, E.T.; Murphy, D.G.M.; Baron-Cohen, S.; et al. Atypically Rightward Cerebral Asymmetry in Male Adults with Autism Stratifies Individuals with and without Language Delay. Hum. Brain Mapp. 2016, 37, 230–253. [Google Scholar] [CrossRef] [Green Version]
- Heilman, K.M.; Scholes, R.; Watson, R.T. Auditory Affective Agnosia. Disturbed Comprehension of Affective Speech. J. Neurol. Neurosurg. Psychiatry 1975, 38, 69–72. [Google Scholar] [CrossRef]
- Ross, E.D.; Monnot, M. Affective Prosody: What Do Comprehension Errors Tell Us about Hemispheric Lateralization of Emotions, Sex and Aging Effects, and the Role of Cognitive Appraisal. Neuropsychologia 2011, 49, 866–877. [Google Scholar] [CrossRef]
- Weed, E.; Fusaroli, R. Acoustic Measures of Prosody in Right-Hemisphere Damage: A Systematic Review and Meta-Analysis. J. Speech Lang. Hear. Res. 2020, 63, 1762–1775. [Google Scholar] [CrossRef]
- Guranski, K.; Podemski, R. Emotional Prosody Expression in Acoustic Analysis in Patients with Right Hemisphere Ischemic Stroke. Neurol. I Neurochir. Pol. 2015, 49, 113–120. [Google Scholar] [CrossRef]
- Gorelick, P.B.; Rosst, E.D. The Aprosodias: Further Functional-Anatomical Evidence for the Organisation of Affective Language in the Right Hemisphere. Neurosurg. Psychiatry 1987, 50, 553–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahern, G.L.; Schomer, D.L.; Kleefield, J.; Blume, H.; Cosgrove, G.R.; Weintraub, S.; Mesulam, M.M. Right Hemisphere Advantage for Evaluating Emotional Facial Expressions. Cortex 1991, 27, 193–202. [Google Scholar] [CrossRef]
- DeKosky, S.T.; Heilman, K.M.; Bowers, D.; Valenstein, E. Recognition and Discrimination of Emotional Faces and Pictures. Brain Lang. 1980, 9, 206–214. [Google Scholar] [CrossRef]
- Blonder, L.X.; Bowers, D.; Heilman, K.M. The Role of the Right Hemisphere in Emotional Communication. Brain 1991, 114, 1115–1127. [Google Scholar] [CrossRef] [PubMed]
- Borod, J.C.; Obler, L.K.; Erhan, H.M.; Grunwald, I.S.; Cicero, B.A.; Welkowitz, J.; Santschi, C.; Agosti, R.M.; Whalen, J.R. Right Hemisphere Emotional Perception: Evidence across Multiple Channels. Neuropsychology 1998, 12, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Gainotti, G. Emotional Behavior and Hemispheric Side of the Lesion. Cortex 1972, 8, 41–55. [Google Scholar] [CrossRef]
- Rosen, H.J.; Perry, R.J.; Murphy, J.; Kramer, J.H.; Mychack, P.; Schuff, N.; Weiner, M.; Levenson, R.W.; Miller, B.L. Emotion Comprehension in the Temporal Variant of Frontotemporal Dementia. Brain 2002, 125, 2286–2295. [Google Scholar] [CrossRef]
- Gainotti, G. The Role of the Right Hemisphere in Emotional and Behavioral Disorders of Patients With Frontotemporal Lobar Degeneration: An Updated Review. Front. Aging Neurosci. 2019, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, C.R.; Hardy, C.J.D.; Russell, L.L.; Clark, C.N.; Bond, R.L.; Dick, K.M.; Brotherhood, E.V.; Mummery, C.J.; Schott, J.M.; Rohrer, J.D.; et al. Motor Signatures of Emotional Reactivity in Frontotemporal Dementia. Sci. Rep. 1952, 8, 1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, M.F.; McMurtray, A.; Licht, E.; Shapira, J.S.; Sau, R.E.; Miller, B.L. The Scale for Emotional Blunting in Patients with Frontotemporal Dementia. Neurocase 2006, 12, 242–246. [Google Scholar] [CrossRef]
- Rosen, H.J.; Hartikainen, K.M.; Jagust, W.; Kramer, J.H.; Reed, B.R.; Cummings, J.L.; Boone, K.; Ellis, W.; Miller, C.; Miller, B.L. Utility of Clinical Criteria in Differentiating Frontotemporal Lobar Degeneration (FTLD) from AD. Neurology 2002, 58, 1608–1615. [Google Scholar] [CrossRef]
- Eckart, J.A.; Sturm, V.E.; Miller, B.L.; Levenson, R.W. Diminished Disgust Reactivity in Behavioral Variant Frontotemporal Dementia. Neuropsychologia 2012, 50, 786–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, E.A.; Izquierdo, A. Orbitofrontal Cortex and Amygdala Contributions to Affect and Action in Primates. In Annals of the New York Academy of Sciences; Blackwell Publishing Inc.: Hoboken, NJ, USA, 2007; Volume 1121, pp. 273–296. [Google Scholar]
- Paradiso, S.; Ostedgaard, K.; Vaidya, J.; Ponto, L.B.; Robinson, R. Emotional Blunting Following Left Basal Ganglia Stroke: The Role of Depression and Fronto-Limbic Functional Alterations. Psychiatry Res. Neuroimaging 2013, 211, 148–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douven, E.; Köhler, S.; Rodriguez, M.M.F.; Staals, J.; Verhey, F.R.J.; Aalten, P. Imaging Markers of Post-Stroke Depression and Apathy: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2017, 27, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Langer, K.G.; Levine, D.N.; Babinski, J. Contribution to the Study of the Mental Disorders in Hemiplegia of Organic Cerebral Origin (Anosognosia). Translated by K.G. Langer & D.N. Levine. Translated from the Original Contribution à l’Étude Des Troubles Mentaux Dans l’hémiplégie Organique Cérébrale (Anosognosie). Cortex 2014, 61, 5–8. [Google Scholar] [CrossRef]
- Gainotti, G. Anosognosia in Degenerative Brain Diseases: The Role of the Right Hemisphere and of Its Dominance for Emotions. Brain Cogn. 2018, 127, 13–22. [Google Scholar] [CrossRef]
- Mesulam, M.-M. A Cortical Network for Directed Attention and Unilateral Neglect. Ann. Neurol. 1981, 10, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Mangun, G.R.; Luck, S.J.; Plager, R.; Loftus, W.; Hillyard, S.A.; Handy, T.; Clark, V.P.; Gazzaniga, M.S. Monitoring the Visual World: Hemispheric Asymmetries and Subcortical Processes in Attention. J. Cogn. Neurosci. 1994, 6, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Heilman, K.M.; Schwartz, H.D.; Watson, R.T. Hypoarousal in Patients with the Neglect Syndrome and Emotional Indifference. Neurology 1978, 28, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Morrow, L.; Vrtunski, P.B.; Kim, Y.; Boller, F. Arousal Responses to Emotional Stimuli and Laterality of Lesion. Neuropsychologia 1981, 19, 65–71. [Google Scholar] [CrossRef]
- Zoccolotti, P.; Scabini, D.; Violani, C. Electrodermal Responses in Patients with Unilateral Brain Damage. J. Clin. Neuropsychol. 1982, 4, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Davidson, R.A.; Fedio, P.; Smith, B.D.; Aureille, E.; Martin, A. Lateralized Mediation of Arousal and Habituation: Differential Bilateral Electrodermal Activity in Unilateral Temporal Lobectomy Patients. Neuropsychologia 1992, 30, 1053–1063. [Google Scholar] [CrossRef]
- Gläscher, J.; Adolphs, R. Processing of the Arousal of Subliminal and Supraliminal Emotional Stimuli by the Human Amygdala. J. Neurosci. 2003, 23, 10274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnow, B.A.; Desmond, J.E.; Banner, L.L.; Glover, G.H.; Solomon, A.; Polan, M.L.; Lue, T.F.; Atlas, S.W. Brain Activation and Sexual Arousal in Healthy, Heterosexual Males. Brain 2002, 125, 1014–1023. [Google Scholar] [CrossRef] [Green Version]
- Spence, S.; Shapiro, D.; Zaidel, E. The Role of the Right Hemisphere in the Physiological and Cognitive Components of Emotional Processing. Psychophysiology 1996, 33, 112–122. [Google Scholar] [CrossRef]
- Wegener, S.P.; Johnston, K.; Everling, S. Microstimulation of Monkey Dorsolateral Prefrontal Cortex Impairs Antisaccade Performance. Exp. Brain Res. 2008, 190, 463–473. [Google Scholar] [CrossRef]
- Johnsen, B.H.; Hugdahl, K. Hemispheric Asymmetry in Conditioning to Facial Emotional Expressions. Psychophysiology 1991, 28, 154–162. [Google Scholar] [CrossRef]
- Paul, L.K.; Lautzenhiser, A.; Brown, W.S.; Hart, A.; Neumann, D.; Spezio, M.; Adolphs, R. Emotional Arousal in Agenesis of the Corpus Callosum. Int. J. Psychophysiol. 2006, 61, 47–56. [Google Scholar] [CrossRef]
- Lee, T.-H.; Greening, S.G.; Ueno, T.; Clewett, D.; Ponzio, A.; Sakaki, M.; Mather, M. Arousal Increases Neural Gain via the Locus Coeruleus–Noradrenaline System in Younger Adults but Not in Older Adults. Nat. Hum. Behav. 2018, 2, 356–366. [Google Scholar] [CrossRef]
- Yerkes, R.M.; Dodson, J.D. The Relation of Strength of Stimulus to Rapidity of Habit-Formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef] [Green Version]
- Robertson, I.H. A Right Hemisphere Role in Cognitive Reserve. Neurobiol. Aging 2014, 35, 1375–1385. [Google Scholar] [CrossRef]
- Downar, J.; Crawley, A.P.; Mikulis, D.J.; Davis, K.D. A Multimodal Cortical Network for the Detection of Changes in the Sensory Environment. Nat. Neurosci. 2000, 3, 277–283. [Google Scholar] [CrossRef]
- Shulman, G.L.; Pope, D.L.W.; Astafiev, S.V.; McAvoy, M.P.; Snyder, A.Z.; Corbetta, M. Right Hemisphere Dominance during Spatial Selective Attention and Target Detection Occurs Outside the Dorsal Frontoparietal Network. J. Neurosci. 2010, 30, 3640–3651. [Google Scholar] [CrossRef] [Green Version]
- Corbetta, M.; Shulman, G.L. Control of Goal-Directed and Stimulus-Driven Attention in the Brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Van Strien, J.W.; Van der Peijl, M.K. Enhanced Early Visual Processing in Response to Snake and Trypophobic Stimuli. BMC Psychol. 2018, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Öhman, A.; Flykt, A.; Esteves, F. Emotion Drives Attention: Detecting the Snake in the Grass. J. Exp. Psychol. Gen. 2001, 130, 466–478. [Google Scholar] [CrossRef]
- Lettieri, G.; Handjaras, G.; Ricciardi, E.; Leo, A.; Papale, P.; Betta, M.; Pietrini, P.; Cecchetti, L. Emotionotopy in the Human Right Temporo-Parietal Cortex. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Schore, A.N. The Interpersonal Neurobiology of Intersubjectivity. Front. Psychol. 2021, 12, 1366. [Google Scholar] [CrossRef]
- Dumas, G.; Nadel, J.; Soussignan, R.; Martinerie, J.; Garnero, L. Inter-Brain Synchronization during Social Interaction. PLoS ONE 2010, 5, e12166. [Google Scholar] [CrossRef] [Green Version]
- J, D.; C, L. The Role of the Right Temporoparietal Junction in Social Interaction: How Low-Level Computational Processes Contribute to Meta-Cognition. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2007, 13, 580–593. [Google Scholar] [CrossRef]
- Bowlby, J. Attachment and Loss Volume I Attachment; Basic Books Inc.: New York, NY, USA, 1969; ISBN 0465005438. [Google Scholar]
- Vrtička, P.; Vuilleumier, P. Neuroscience of Human Social Interactions and Adult Attachment Style. Front. Hum. Neurosci. 2012, 6, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartikainen, K.M.; Ogawa, K.H.; Knight, R.T. Orbitofrontal Cortex Biases Attention to Emotional Events. J. Clin. Exp. Neuropsychol. 2012, 34, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Mäki-Marttunen, V.; Kuusinen, V.; Peräkylä, J.; Ogawa, K.; Brause, M.; Brander, A.; Hartikainen, K. Greater Attention to Task-Relevant Threat Due to Orbitofrontal Lesion. J. Neurotrauma 2017, 34, 400–413. [Google Scholar] [CrossRef]
- Hartikainen, K.M.; Knight, R.T. Lateral and Orbital Prefrontal Cortex Contributions to Attention. In Detection of Change; Springer: New York, NY, USA, 2003; pp. 99–116. [Google Scholar]
- Fredrickson, B.L.; Mancuso, R.A.; Branigan, C.; Tugade, M.M. The Undoing Effect of Positive Emotions. Motiv. Emot. 2000, 24, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Beraha, E.; Eggers, J.; Attar, C.H.; Gutwinski, S.; Schlagenhauf, F.; Stoy, M.; Sterzer, P.; Kienast, T.; Heinz, A.; Bermpohl, F. Hemispheric Asymmetry for Affective Stimulus Processing in Healthy Subjects–A FMRI Study. PLoS ONE 2012, 7, e46931. [Google Scholar] [CrossRef] [PubMed]
- Lang, P.J.; Bradley, M.M.; Fitzsimmons, J.R.; Cuthbert, B.N.; Scott, J.D.; Moulder, B.; Nangia, V. Emotional Arousal and Activation of the Visual Cortex: An FMRI Analysis. Psychophysiology 1998, 35, 199–210. [Google Scholar] [CrossRef]
- Canli, T.; Desmond, J.E.; Zhao, Z.; Glover, G.; Gabrieli, J.D.E. Hemispheric Asymmetry for Emotional Stimuli Detected with FMRI. NeuroReport 1998, 9, 3233–3239. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; Placentino, A.; Carletti, F.; Allen, P.; Landi, P.; Abbamonte, M.; Barale, F.; Perez, J.; McGuire, P.; Politi, P. Laterality Effect on Emotional Faces Processing: ALE Meta-Analysis of Evidence. Neurosci. Lett. 2009, 452, 262–267. [Google Scholar] [CrossRef]
- Pizzagalli, D.; Regard, M.; Lehmann, D. Rapid Emotional Face Processing in the Human Right and Left Brain Hemispheres: An ERP Study. NeuroReport 1999, 10, 2691–2698. [Google Scholar] [CrossRef]
- Wright, C.I.; Fischer, H.; Whalen, P.J.; McInerney, S.C.; Shin, L.M.; Rauch, S.L. Differential Prefrontal Cortex and Amygdala Habituation to Repeatedly Presented Emotional Stimuli. NeuroReport 2001, 12, 379–383. [Google Scholar] [CrossRef]
- Keil, A.; Müller, M.M.; Gruber, T.; Wienbruch, C.; Stolarova, M.; Elbert, T. Effects of Emotional Arousal in the Cerebral Hemispheres: A Study of Oscillatory Brain Activity and Event-Related Potentials. Clin. Neurophysiol. 2001, 112, 2057–2068. [Google Scholar] [CrossRef] [Green Version]
- Keil, A.; Gruber, T.; Müller, M.M.; Moratti, S.; Stolarova, M.; Bradley, M.M.; Lang, P.J. Early Modulation of Visual Perception by Emotional Arousal: Evidence from Steady-State Visual Evoked Brain Potentials. Cogn. Affect. Behav. Neurosci. 2003, 3, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Keil, A.; Moratti, S.; Sabatinelli, D.; Bradley, M.M.; Lang, P.J. Additive Effects of Emotional Content and Spatial Selective Attention on Electrocortical Facilitation. Cereb. Cortex 2005, 15, 1187–1197. [Google Scholar] [CrossRef]
- Keil, A.; Bradley, M.M.; Hauk, O.; Rockstroh, B.; Elbert, T.; Lang, P.J. Large-Scale Neural Correlates of Affective Picture Processing. Psychophysiology 2002, 39, 641–649. [Google Scholar] [CrossRef]
- Kuusinen, V.; Cesnaite, E.; Peräkylä, J.; Ogawa, K.H.; Hartikainen, K.M. Orbitofrontal Lesion Alters Brain Dynamics of Emotion-Attention and Emotion-Cognitive Control Interaction in Humans. Front. Hum. Neurosci. 2018, 12, 437. [Google Scholar] [CrossRef] [Green Version]
- Daffner, K.R.; Mesulam, M.M.; Scinto, L.F.M.; Cohen, L.G.; Kennedy, B.P.; West, W.C.; Holcomb, P.J. Regulation of Attention to Novel Stimuli by Frontal Lobes: An Event- Related Potential Study. NeuroReport 1998, 9, 787–791. [Google Scholar] [CrossRef]
- Mäki-Marttunen, V.; Kuusinen, V.; Brause, M.; Peräkylä, J.; Polvivaara, M.; Dos Santos Ribeiro, R.; Öhman, J.; Hartikainen, K.M. Enhanced Attention Capture by Emotional Stimuli in Mild Traumatic Brain Injury. J. Neurotrauma 2015, 32, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Gable, P.A.; Adams, D.L. Nonaffective Motivation Modulates the Sustained LPP (1,000-2,000ms). Psychophysiology 2013, 50, 1251–1254. [Google Scholar] [CrossRef]
- Vanderploeg, R.D.; Brown, W.S.; Marsh, J.T. Judgements of Emotion in Words and Faces: ERP Correlates. Int. J. Psychophysiol. 1987, 5, 193–205. [Google Scholar] [CrossRef]
- Vuilleumier, P.; Schwartz, S. Beware and Be Aware: Capture of Spatial Attention by Fear-Related Stimuli in Neglect. NeuroReport 2001, 12, 1119–1122. [Google Scholar] [CrossRef]
- Grabowska, A.; Marchewka, A.; Seniów, J.; Polanowska, K.; Jednoróg, K.; Królicki, L.; Kossut, M.; Członkowska, A. Emotionally Negative Stimuli Can Overcome Attentional Deficits in Patients with Visuo-Spatial Hemineglect. Neuropsychologia 2011, 49, 3327–3337. [Google Scholar] [CrossRef]
- Lucas, N.; Vuilleumier, P. Effects of Emotional and Non-Emotional Cues on Visual Search in Neglect Patients: Evidence for Distinct Sources of Attentional Guidance. Neuropsychologia 2008, 46, 1401–1414. [Google Scholar] [CrossRef]
- Banks, S.J.; Eddy, K.T.; Angstadt, M.; Nathan, P.J.; Phan, K.L. Amygdala–Frontal Connectivity during Emotion Regulation. Soc. Cogn. Affect. Neurosci. 2007, 2, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Morris, J.S.; Ohrnan, A.; Dolan, R.J. Conscious and Unconscious Emotional Learning in the Human Amygdala. Nature 1998, 393, 467–470. [Google Scholar] [CrossRef]
- Morris, J.S.; Öhman, A.; Dolan, R.J. A Subcortical Pathway to the Right Amygdala Mediating “Unseen” Fear. Proc. Natl. Acad. Sci. USA 1999, 96, 1680–1685. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, J. The Emotional Brain: The Mysterious Underpinnings of Emotional Life; Simon & Schuster: New York, NY, USA, 1998. [Google Scholar]
- Mather, M.; Clewett, D.; Sakaki, M.; Harley, C.W. Norepinephrine Ignites Local Hotspots of Neuronal Excitation: How Arousal Amplifies Selectivity in Perception and Memory. Behav. Brain Sci. 2016, 39, e200. [Google Scholar] [CrossRef] [Green Version]
- Heber, I.A.; Valvoda, J.T.; Kuhlen, T.; Fimm, B. Low Arousal Modulates Visuospatial Attention in Three-Dimensional Virtual Space. J. Int. Neuropsychol. Soc. 2008, 14, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Raymond, J.E.; Vuilleumier, P. Priming by Motivationally Salient Distractors Produces Hemispheric Asymmetries in Visual Processing. Psychol. Res. 1234, 83, 1798–1807. [Google Scholar] [CrossRef]
- Chen, J.; Lee, A.C.H.; O’Neil, E.B.; Abdul-Nabi, M.; Niemeier, M. Mapping the Anatomy of Perceptual Pseudoneglect. A Multivariate Approach. NeuroImage 2020, 207, 116402. [Google Scholar] [CrossRef]
- Buschman, T.J.; Siegel, M.; Roy, J.E.; Miller, E.K. Neural Substrates of Cognitive Capacity Limitations. Proc. Natl. Acad. Sci. USA 2011, 108, 11252–11255. [Google Scholar] [CrossRef] [Green Version]
- Bekhtereva, V.; Craddock, M.; Müller, M.M. Affective Bias without Hemispheric Competition: Evidence for Independent Processing Resources in Each Cortical Hemisphere. J. Cogn. Neurosci. 2019, 32, 963–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, M.R.; Robertson, L.C.; Knight, R.T. Attention and Interference in the Processing of Global and Local Information: Effects of Unilateral Temporal-Parietal Junction Lesions. Neuropsychologia 1989, 27, 471–483. [Google Scholar] [CrossRef]
- Sergent, J. The Cerebral Balance of Power: Confrontation or Cooperation? J. Exp. Psychol. Hum. Percept. Perform. 1982, 8, 253–272. [Google Scholar] [CrossRef]
- Beeman, M.J.; Chiarello, C. Complementary Right- and Left-Hemisphere Language Comprehension. Curr. Dir. Psychol. Sci. 1998, 7, 2–8. [Google Scholar] [CrossRef]
- Ivry, R.B.; Lebby, P.C. Hemispheric Differences in Auditory Perception Are Similar to Those Found in Visual Perception. Psychol. Sci. 1993, 4, 41–45. [Google Scholar] [CrossRef]
- Navon, D. Forest before Trees: The Precedence of Global Features in Visual Perception. Cogn. Psychol. 1977, 9, 353–383. [Google Scholar] [CrossRef]
- De Fockert, J.W.; Cooper, A. Higher Levels of Depression Are Associated with Reduced Global Bias in Visual Processing. Cogn. Emot. 2014, 28, 541–549. [Google Scholar] [CrossRef]
- Gasper, K.; Clore, G.L. Attending to the Big Picture: Mood and Global versus Local Processing of Visual Information. Psychol. Sci. 2002, 13, 34–40. [Google Scholar] [CrossRef]
- Bezdek, M.A.; Gerrig, R.J.; Wenzel, W.G.; Shin, J.; Pirog Revill, K.; Schumacher, E.H. Neural Evidence That Suspense Narrows Attentional Focus. Neuroscience 2015, 303, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Lux, S.; Marshall, J.C.; Thimm, M.; Fink, G.R. Differential Processing of Hierarchical Visual Stimuli in Young and Older Healthy Adults: Implications for Pathology. Cortex 2008, 44, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Kalanthroff, E.; Naparstek, S.; Henik, A. Spatial Processing in Adults with Attention Deficit Hyperactivity Disorder. Neuropsychology 2013, 27, 546–555. [Google Scholar] [CrossRef]
- Wang, L.; Mottron, L.; Peng, D.; Berthiaume, C.; Dawson, M. Local Bias and Local-to-Global Interference without Global Deficit: A Robust Finding in Autism under Various Conditions of Attention, Exposure Time, and Visual Angle. Cogn. Neuropsychol. 2007, 24, 550–574. [Google Scholar] [CrossRef]
- Fredrickson, B.L.; Branigan, C. Positive Emotions Broaden the Scope of Attention and Thought-Action Repertoires. Cogn. Emot. 2005, 19, 313. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.J.; Yap, S.; Best, M.W.; McGeorge, K. Global Processing Makes People Happier than Local Processing. Front. Psychol. 2019, 10, 670. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Meng, T.; Yang, Y.; Hu, Y. Experience-Dependent Counselor-Client Brain Synchronization during Psychological Counseling. eNeuro 2020, 7, 1–10. [Google Scholar] [CrossRef]
- Pessoa, L. How Do Emotion and Motivation Direct Executive Control? Trends Cogn. Sci. 2009, 13, 160–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banich, M.T.; Depue, B.E. Recent Advances in Understanding Neural Systems That Support Inhibitory Control. Curr. Opin. Behav. Sci. 2015, 1, 17–22. [Google Scholar] [CrossRef]
- Lang, P.J.; Bradley, M.M.; Cuthbert, B.N.; Greenwald, M.; Dhman, A.; Vaid, D.; Hamm, A.; Cook, E.; Bertron, A.; Petry, M.; et al. International Affective Picture System (IAPS): Technical Manual and Affective Ratings; National Institute of Mental Health: Gainesville, FL, USA, 1997.
- Lindström, B.R.; Bohlin, G. Threat-Relevance Impairs Executive Functions: Negative Impact on Working Memory and Response Inhibition. Emotion 2012, 12, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, G. The Weight of Emotions in Decision-Making: How Fearful and Happy Facial Stimuli Modulate Action Readiness of Goal-Directed Actions. Front. Psychol. 2018, 9, 1334. [Google Scholar] [CrossRef] [PubMed]
- Gladwin, T.E.; Möbius, M.; Vink, M. Threat-Induced Impulsivity in Go/Nogo Tasks: Relationships to Task-Relevance of Emotional Stimuli and Virtual Proximity. Conscious. Cogn. 2019, 74, 102795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon-Thomas, E.R.; Role, K.O.; Knight, R.T. Behavioral and Electrophysiological Evidence of a Right Hemisphere Bias for the Influence of Negative Emotion on Higher Cognition. J. Cogn. Neurosci. 2005, 17, 518–529. [Google Scholar] [CrossRef]
- Choi, J.M.; Cho, Y.S. Beneficial Effect of Task-Irrelevant Threat on Response Inhibition. Acta Psychol. 2020, 202, 102980. [Google Scholar] [CrossRef]
- Aron, A.R.; Fletcher, P.C.; Bullmore, E.T.; Sahakian, B.J.; Robbins, T.W. Stop-Signal Inhibition Disrupted by Damage to Right Inferior Frontal Gyrus in Humans. Nat. Neurosci. 2003, 6, 115–116. [Google Scholar] [CrossRef]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the Right Inferior Frontal Cortex: One Decade On. Trends Cogn. Sci. 2014, 18, 177–185. [Google Scholar] [CrossRef]
- D’Alberto, N.; Funnell, M.; Potter, A.; Garavan, H. A Split-Brain Case Study on the Hemispheric Lateralization of Inhibitory Control. Neuropsychologia 2017, 99, 24–29. [Google Scholar] [CrossRef]
- Gotlib, I.H.; Ranganath, C.; Rosenfeld, J.P. Frontal EEG Alpha Asymmetry, Depression, and Cognitive Functioning. Cogn. Emot. 1998, 12, 449–478. [Google Scholar] [CrossRef]
- Simmonds, D.J.; Pekar, J.J.; Mostofsky, S.H. Meta-Analysis of Go/No-Go Tasks Demonstrating That FMRI Activation Associated with Response Inhibition Is Task-Dependent. Neuropsychologia 2008, 46, 224–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampshire, A.; Chamberlain, S.R.; Monti, M.M.; Duncan, J.; Owen, A.M. The Role of the Right Inferior Frontal Gyrus: Inhibition and Attentional Control. NeuroImage 2010, 50, 1313–1319. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.W.; Dewitt, M.; Hudgens-Haney, M.; Schaeffer, D.J.; Ball, B.H.; Schwarz, N.F.; Hussein, A.A.; Smart, L.M.; Sabatinelli, D. Emotion Regulation: Quantitative Meta-Analysis of Functional Activation and Deactivation. Neurosci. Biobehav. Rev. 2014, 45, 202–211. [Google Scholar] [CrossRef]
- Spagna, A.; Kim, T.H.; Wu, T.; Fan, J. Right Hemisphere Superiority for Executive Control of Attention. Cortex 2020, 122, 263–276. [Google Scholar] [CrossRef]
- Patterson, T.K.; Lenartowicz, A.; Berkman, E.T.; Ji, D.; Poldrack, R.A.; Knowlton, B.J. Putting the Brakes on the Brakes: Negative Emotion Disrupts Cognitive Control Network Functioning and Alters Subsequent Stopping Ability. Exp. Brain Res. 2016, 234, 3107–3118. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, F.; De Houwer, J. Do Emotional Stimuli Interfere with Response Inhibition? Evidence from the Stop Signal Paradigm. Cogn. Emot. 2007, 21, 391–403. [Google Scholar] [CrossRef]
- Xu, M.; Li, Z.; Ding, C.; Zhang, J.; Fan, L.; Diao, L.; Yang, D. The Divergent Effects of Fear and Disgust on Inhibitory Control: An ERP Study. PLoS ONE 2015, 10, e0128932. [Google Scholar] [CrossRef] [PubMed]
- De Wit, H. Impulsivity as a Determinant and Consequence of Drug Use: A Review of Underlying Processes. Addict. Biol. 2009, 14, 22–31. [Google Scholar] [CrossRef]
- Jones, A.; Christiansen, P.; Nederkoorn, C.; Houben, K.; Field, M. Fluctuating Disinhibition: Implications for the Understanding and Treatment of Alcohol and Other Substance Use Disorders. Front. Psychiatry 2013, 4, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, K.; Lindh, A.U.; Waern, M.; Stromsten, L.; Renberg, E.S.; Runeson, B.; Dahlin, M. Impulsive Suicide Attempts among Young People–A Prospective Multicentre Cohort Study in Sweden. J. Affect. Disord. 2019, 243, 421–426. [Google Scholar] [CrossRef]
- Lavie, N. Perceptual Load as a Necessary Condition for Selective Attention. J. Exp. Psychol. Hum. Percept. Perform. 1995, 21, 451–468. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, L.; McKenna, M.; Gutierrez, E.; Ungerleider, L.G. Neural Processing of Emotional Faces Requires Attention. Proc. Natl. Acad. Sci. USA 2002, 99, 11458–11463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäki-Marttunen, V.; Pickard, N.; Solbakk, A.-K.; Ogawa, K.H.; Knight, R.T.; Hartikainen, K.M. Low Attentional Engagement Makes Attention Network Activity Susceptible to Emotional Interference. NeuroReport 2014, 25, 1038. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.G.; Fragopanagos, N.F. The Interaction of Attention and Emotion. Neural Netw. 2005, 18, 353–369. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea-Penna, G.M.; Frank, S.M.; Heatherton, T.F.; Tse, P.U. Distracting Tracking: Interactions between Negative Emotion and Attentional Load in Multiple-Object Tracking. Emotion 2017, 17, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Peräkylä, J.; Hartikainen, K.M. Frontal Alpha Asymmetry, a Potential Biomarker for the Effect of Neuromodulation on Brain’s Affective Circuitry-Preliminary Evidence from a Deep Brain Stimulation Study. Front. Hum. Neurosci. 2017, 11, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kuusinen, V.; Peräkylä, J.; Sun, L.; Ogawa, K.; Hartikainen, K.M. Emotional Modulation of Frontal Alpha Asymmetry - A Novel Biomarker of Mild Traumatic Brain Injury. Front. Hum. Neurosci. 2021, 15, 391. [Google Scholar] [CrossRef]
- Davidson, R.J. Anterior Cerebral Asymmetry and the Nature of Emotion. Brain Cogn. 1992, 20, 125–151. [Google Scholar] [CrossRef]
- Davidson, R.J.; Ekman, P.; Saron, C.D.; Senulis, J.A.; Friesen, W.V. Approach-Withdrawal and Cerebral Asymmetry: Emotional Expression and Brain Physiology I. J. Personal. Soc. Psychol. 1990, 58, 330–341. [Google Scholar] [CrossRef]
- Davidson, R.J. Emotion and Affective Style: Hemispheric Substrates. Psychol. Sci. 1992, 3, 39–43. [Google Scholar] [CrossRef]
- Van der Vinne, N.; Vollebregt, M.A.; van Putten, M.J.A.M.; Arns, M. Frontal Alpha Asymmetry as a Diagnostic Marker in Depression: Fact or Fiction? A Meta-Analysis. NeuroImage Clin. 2017, 16, 79–87. [Google Scholar] [CrossRef]
- Hartikainen, K.M.; Waljas, M.; Isoviita, T.; Dastidar, P.; Liimatainen, S.; Solbakk, A.-K.; Ogawa, K.H.; Soimakallio, S.; Ylinen, A.; Öhman, J. Persistent Symptoms in Mild to Moderate Traumatic Brain Injury Associated with Executive Dysfunction. J. Clin. Exp. Neuropsychol. 2010, 32, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhong, M.; Yao, S.; Jin, X.; Liu, Y.; Tan, C.; Zhu, X.; Yi, J. Hemispheric Asymmetry of the Frontolimbic Cortex in Young Adults with Borderline Personality Disorder. Acta Psychiatr. Scand. 2017, 136, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Keune, P.M.; Wiedemann, E.; Schneidt, A.; Schönenberg, M. Frontal Brain Asymmetry in Adult Attention-Deficit/Hyperactivity Disorder (ADHD): Extending the Motivational Dysfunction Hypothesis. Clin. Neurophysiol. 2015, 126, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Peräkylä, J.; Holm, K.; Haapasalo, J.; Lehtimäki, K.; Ogawa, K.H.; Peltola, J.; Hartikainen, K.M. Vagus Nerve Stimulation Improves Working Memory Performance. J. Clin. Exp. Neuropsychol. 2017, 39, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Lipsman, N.; Sankar, T.; Downar, J.; Kennedy, S.H.; Lozano, A.M.; Giacobbe, P. Neuromodulation for Treatment-Refractory Major Depressive Disorder. Can. Med. Assoc. 2014, 186, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.; Salanova, V.; Witt, T.; Worth, R.; Henry, T.; Gross, R.; Oommen, K.; Osorio, I.; Nazzaro, J.; Labar, D.; et al. Electrical Stimulation of the Anterior Nucleus of Thalamus for Treatment of Refractory Epilepsy. Epilepsia 2010, 51, 899–908. [Google Scholar] [CrossRef]
- Guo, F.; Li, M.; Qu, Q.; Duffy, V.G. The Effect of a Humanoid Robot’s Emotional Behaviors on Users’ Emotional Responses: Evidence from Pupillometry and Electroencephalography Measures. Int. J. Hum. Comput. Interact. 2019, 35, 1947–1959. [Google Scholar] [CrossRef]
- Palatinus, Z.; Volosin, M.; Csábi, E.; Hajnal, E.; Prónay, S.; Ujházi, T.; Szabó, B.; Majo-Petri, Z. Physiological Measurements in Social Acceptance of Self Driving Technologies. Sci. Rep. 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartikainen, K.M. Emotion-Attention Interaction in the Right Hemisphere. Brain Sci. 2021, 11, 1006. https://doi.org/10.3390/brainsci11081006
Hartikainen KM. Emotion-Attention Interaction in the Right Hemisphere. Brain Sciences. 2021; 11(8):1006. https://doi.org/10.3390/brainsci11081006
Chicago/Turabian StyleHartikainen, Kaisa M. 2021. "Emotion-Attention Interaction in the Right Hemisphere" Brain Sciences 11, no. 8: 1006. https://doi.org/10.3390/brainsci11081006