Cerebrospinal Fluid Biomarkers in Parkinson’s Disease: A Critical Overview of the Literature and Meta-Analyses
Abstract
:1. Introduction
2. Overview and Classification of the CSF Biomarkers of PD
3. Materials and Methods
4. Results
4.1. Neurotransmitters and Neuromodulators: Focusing on Dopamine and the Metabolites
4.2. Oxidative Stress Markers
4.3. Inflammatory and Immunological Markers
4.4. Growth Factors
4.5. Proteins Involved in PD Pathology
4.5.1. α-Synuclein and Its Related Molecules
4.5.2. Amyloid Beta, Tau, and Phosphorylated Tau as Predictors for Cognition
4.5.3. Neurofilament Light Chains for Discriminating PD from Other Neurological Disorders
4.5.4. Other Proteins
Others
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kalinderi, K.; Bostantjopoulou, S.; Fidani, L. The genetic background of Parkinson’s disease: Current progress and future prospects. Acta Neurol. Scand. 2016, 134, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Gilman, S.; Wenning, G.K.; Low, P.A.; Brooks, D.J.; Mathias, C.J.; Trojanowski, J.Q.; Wood, N.W.; Colosimo, C.; Dürr, A.; Fowler, C.J.; et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008, 71, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Höglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Müller, U.; Nilsson, C.; Whitwell, J.L.; et al. Movement Disorder Society-endorsed PSP Study Group. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria. Mov. Disord. 2017, 32, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.D.; Binzer, M.; Stenager, E.; Gramsbergen, J.B. Cerebrospinal fluid biomarkers for Parkinson’s disease-a systematic review. Acta Neurol. Scand. 2017, 135, 34–56. [Google Scholar] [CrossRef]
- Pisani, V.; Moschella, V.; Bari, M.; Fezza, F.; Galati, S.; Bernardi, G.; Stanzione, P.; Pisani, A.; Maccarrone, M. Dynamic changes of anandamide in the cerebrospinal fluid of Parkinson’s disease patients. Mov. Disord. 2010, 25, 920–924. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Holmes, C.; Sharabi, Y. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain 2012, 135, 1900–1913. [Google Scholar] [CrossRef]
- Sjögren, M.; Minthon, L.; Davidsson, P.; Granérus, A.-K.; Clarberg, A.; Vanderstichele, H.; Vanmechelen, E.; Wallin, A.; Blennow, K. CSF levels of tau, beta-amyloid(1-42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J. Neural. Transm. (Vienna) 2000, 107, 563–579. [Google Scholar]
- Lewitt, P.A.; Li, J.; Lu, M.; Beach, T.G.; Adler, C.H.; Guo, L.; Arizona Parkinson’s Disease Consortium. 3-hydroxykynurenine and other Parkinson’s disease biomarkers discovered by metabolomic analysis. Mov. Disord. 2013, 28, 1653–1660. [Google Scholar] [CrossRef]
- García-Moreno, J.M.; Martín de Pablos, A.; García-Sánchez, M.I.; Méndez-Lucena, C.; Damas-Hermoso, F.; Rus, M.; Chacón, J.; Fernández, E. May serum levels of advanced oxidized protein products serve as a prognostic marker of disease duration in patients with idiopathic Parkinson’s disease? Antioxid. Redox. Signal. 2013, 18, 1296–1302. [Google Scholar] [CrossRef]
- Boll, M.C.; Alcaraz-Zubeldia, M.; Montes, S.; Rios, C. Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases. Neurochem. Res. 2008, 33, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Isobe, C.; Murata, T.; Sato, C.; Terayama, Y. Increase of oxidized/total coenzyme Q-10 ratio in cerebrospinal fluid in patients with Parkinson’s disease. J. Clin. Neurosci. 2007, 14, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. Oxidative Stress in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front. Mol. Neurosci. 2018, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Liu, M.Y.; Zhong, X.; Wei, M.J. Decreased circulating Zinc levels in Parkinson’s disease: A meta-analysis study. Sci. Rep. 2017, 7, 3902. [Google Scholar] [CrossRef] [Green Version]
- Waragai, M.; Wei, J.; Fujita, M.; Nakai, M.; Ho, G.J.; Masliah, E.; Akatsu, H.; Yamada, T.; Hashimoto, M. Increased level of DJ-1 in the cerebrospinal fluids of sporadic Parkinson’s disease. Biochem. Biophys. Res. Commun. 2006, 345, 967–972. [Google Scholar] [CrossRef]
- Hong, Z.; Shi, M.; Chung, K.A.; Quinn, J.F.; Peskind, E.R.; Galasko, D.; Jankovic, J.; Zabetian, C.P.; Leverenz, J.B.; Baird, G.; et al. DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 2010, 133, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Herbert, M.K.; Eeftens, J.M.; Aerts, M.B.; Esselink, R.A.; Bloem, B.R.; Kuiperij, H.B.; Verbeek, M.M. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Park. Relat. Disord. 2014, 20, 112–115. [Google Scholar] [CrossRef]
- Maarouf, C.L.; Beach, T.G.; Adler, C.H.; Shill, H.A.; Sabbagh, M.N.; Wu, T.; Walker, D.G.; Kokjohn, T.A.; Roher, A.E.; Arizona PD Consortium. Cerebrospinal fluid biomarkers of neuropathologically diagnosed Parkinson’s disease subjects. Neurol. Res. 2012, 34, 669–676. [Google Scholar] [CrossRef]
- Yu, S.Y.; Zuo, L.J.; Wang, F.; Chen, Z.J.; Hu, Y.; Wang, Y.J.; Wang, X.M.; Zhang, W. Potential biomarkers relating pathological proteins, neuroinflammatory factors and free radicals in PD patients with cognitive impairment: A cross-sectional study. BMC Neurol. 2014, 14, 113. [Google Scholar] [CrossRef] [Green Version]
- Forte, G.; Bocca, B.; Senofonte, O.; Petrucci, F.; Brusa, L.; Stanzione, P.; Zannino, S.; Violante, N.; Alimonti, A.; Sancesario, G. Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J. Neural. Transm. (Vienna) 2004, 111, 1031–1040. [Google Scholar]
- LeWitt, P.; Schultz, L.; Auinger, P.; Lu, M.; Parkinson Study Group DATATOP Investigators. CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Res. 2011, 1408, 88–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, E.; García-Moreno, J.M.; Martín de Pablos, A.; Chacón, J. May the evaluation of nitrosative stress through selective increase of 3-nitrotyrosine proteins other than nitroalbumin and dominant tyrosine-125/136 nitrosylation of serum α-synuclein serve for diagnosis of sporadic Parkinson’s disease? Antioxid. Redox. Signal. 2013, 19, 912–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, T.; Isobe, C.; Murata, T.; Sato, C.; Tohgi, H. Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neurosci. Lett. 2003, 336, 105–108. [Google Scholar] [CrossRef]
- Crotty, G.F.; Ascherio, A.; Schwarzschild, M.A. Targeting urate to reduce oxidative stress in Parkinson disease. Exp. Neurol. 2017, 298, 210–224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sokal, I.; Peskind, E.R.; Quinn, J.F.; Jankovic, J.; Kenney, C.; Chung, K.A.; Millard, S.P.; Nutt, J.G.; Montine, T.J. CSF multianalyte profile distinguishes Alzheimer and Parkinson diseases. Am. J. Clin. Pathol. 2008, 129, 526–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisani, V.; Stefani, A.; Pierantozzi, M.; Natoli, S.; Stanzione, P.; Franciotta, D.; Pisani, A. Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson’s disease. J. Neuroinflamm. 2012, 9, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Hu, Y.; Cao, Z.; Liu, Q.; Cheng, Y. Cerebrospinal Fluid Inflammatory Cytokine Aberrations in Alzheimer’s Disease, Parkinson’s Disease and Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Front. Immunol. 2018, 9, 2122. [Google Scholar] [CrossRef] [Green Version]
- Olsson, B.; Constantinescu, R.; Holmberg, B.; Andreasen, N.; Blennow, K.; Zetterberg, H. The glial marker YKL-40 is decreased in synucleinopathies. Mov. Disord. 2013, 28, 1882–1885. [Google Scholar] [CrossRef]
- Jesse, S.; Lehnert, S.; Jahn, O.; Parnetti, L.; Soininen, H.; Herukka, S.K.; Steinacker, P.; Tawfik, S.; Tumani, H.; von Arnim, C.A.; et al. Differential sialylation of serpin A1 in the early diagnosis of Parkinson’s disease dementia. PLoS ONE 2012, 7, e48783. [Google Scholar] [CrossRef] [Green Version]
- Steinacker, P.; Fang, L.; Kuhle, J.; Petzold, A.; Tumani, H.; Ludolph, A.C.; Otto, M.; Brettschneider, J. Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis. PLoS ONE 2011, 6, e23600. [Google Scholar] [CrossRef] [Green Version]
- Sako, W.; Murakami, N.; Izumi, Y.; Kaji, R. Reduced alpha-synuclein in cerebrospinal fluid in synucleinopathies: Evidence from a meta-analysis. Mov. Disord. 2014, 29, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Tang, H.; Nie, K.; Wang, L.; Zhao, J.; Gan, R.; Huang, J.; Zhu, R.; Feng, S.; Duan, Z.; et al. Cerebrospinal fluid alpha-synuclein as a biomarker for Parkinson’s disease diagnosis: A systematic review and meta-analysis. Int. J. Neurosci. 2015, 125, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Han, Z.M.; Liu, Q.F.; Tang, W.; Ye, K.; Yao, Y.Y. Use of CSF α-synuclein in the differential diagnosis between Alzheimer’s disease and other neurodegenerative disorders. Int. Psychogeriatr. 2015, 27, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Eusebi, P.; Giannandrea, D.; Biscetti, L.; Abraha, I.; Chiasserini, D.; Orso, M.; Calabresi, P.; Parnetti, L. Diagnostic utility of cerebrospinal fluid α-synuclein in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2017, 32, 1389–1400. [Google Scholar] [CrossRef]
- Hu, X.; Yang, Y.; Gong, D. Changes of cerebrospinal fluid Aβ42, t-tau, and p-tau in Parkinson’s disease patients with cognitive impairment relative to those with normal cognition: A meta-analysis. Neurol. Sci. 2017, 38, 1953–1961. [Google Scholar] [CrossRef]
- Wennström, M.; Surova, Y.; Hall, S.; Nilsson, C.; Minthon, L.; Boström, F.; Hansson, O.; Nielsen, H.M. Low CSF levels of both α-synuclein and the α-synuclein cleaving enzyme neurosin in patients with synucleinopathy. PLoS ONE 2013, 8, e53250. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.M.; Hall, S.; Surova, Y.; Nägga, K.; Nilsson, C.; Londos, E.; Minthon, L.; Hansson, O.; Wennström, M. Low levels of soluble NG2 in cerebrospinal fluid from patients with dementia with Lewy bodies. J. Alzheimers. Dis. 2014, 40, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Süssmuth, S.D.; Uttner, I.; Landwehrmeyer, B.; Pinkhardt, E.H.; Brettschneider, J.; Petzold, A.; Kramer, B.; Schulz, J.B.; Palm, C.; Otto, M.; et al. Differential pattern of brain-specific CSF proteins tau and amyloid-β in Parkinsonian syndromes. Mov. Disord. 2010, 25, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Öhrfelt, A.; Constantinescu, R.; Andreasson, U.; Surova, Y.; Bostrom, F.; Nilsson, C.; Håkan, W.; Decraemer, H.; Någga, K.; et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 2012, 69, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Brettschneider, J.; Petzold, A.; Süssmuth, S.D.; Landwehrmeyer, G.B.; Ludolph, A.C.; Kassubek, J.; Tumani, H. Neurofilament heavy-chain NfH(SMI35) in cerebrospinal fluid supports the differential diagnosis of Parkinsonian syndromes. Mov. Disord. 2006, 21, 2224–2227. [Google Scholar] [CrossRef] [PubMed]
- Oeckl, P.; Steinacker, P.; von Arnim, C.A.; Straub, S.; Nagl, M.; Feneberg, E.; Weishaupt, J.H.; Ludolph, A.C.; Otto, M. Intact protein analysis of ubiquitin in cerebrospinal fluid by multiple reaction monitoring reveals differences in Alzheimer’s disease and frontotemporal lobar degeneration. J. Proteome. Res. 2014, 13, 4518–4525. [Google Scholar] [CrossRef]
- Mondello, S.; Constantinescu, R.; Zetterberg, H.; Andreasson, U.; Holmberg, B.; Jeromin, A. CSF α-synuclein and UCH-L1 levels in Parkinson’s disease and atypical parkinsonian disorders. Park. Relat. Disord. 2014, 20, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Alves, G.; Brønnick, K.; Aarsland, D.; Blennow, K.; Zetterberg, H.; Ballard, C.; Kurz, M.W.; Andreasson, U.; Tysnes, O.B.; Larsen, J.P.; et al. CSF amyloid-beta and tau proteins, and cognitive performance, in early and untreated Parkinson’s disease: The Norwegian ParkWest study. J. Neurol. Neurosurg. Psychiatry. 2010, 81, 1080–1086. [Google Scholar] [CrossRef]
- Hoshi, K.; Matsumoto, Y.; Ito, H.; Saito, K.; Honda, T.; Yamaguchi, Y.; Hashimoto, Y. A unique glycan-isoform of transferrin in cerebrospinal fluid: A potential diagnostic marker for neurological diseases. Biochim. Biophys. Acta. Gen. Subj. 2017, 1861, 2473–2478. [Google Scholar] [CrossRef] [PubMed]
- Abdo, W.F.; De Jong, D.; Hendriks, J.C.; Horstink, M.W.; Kremer, B.P.; Bloem, B.R.; Verbeek, M.M. Cerebrospinal fluid analysis differentiates multiple system atrophy from Parkinson’s disease. Mov. Disord. 2004, 19, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Parnetti, L.; Chiasserini, D.; Persichetti, E.; Eusebi, P.; Varghese, S.; Qureshi, M.M.; Dardis, A.; Deganuto, M.; De Carlo, C.; Castrioto, A.; et al. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson’s disease. Mov. Disord. 2014, 29, 1019–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trupp, M.; Jonsson, P.; Ohrfelt, A.; Zetterberg, H.; Obudulu, O.; Malm, L.; Wuolikainen, A.; Linder, J.; Moritz, T.; Blennow, K.; et al. Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J. Park. Dis. 2014, 4, 549–560. [Google Scholar] [CrossRef]
- Jiménez-Jiménez, F.J.; Molina, J.A.; Vargas, C.; Gómez, P.; De Bustos, F.; Zurdo, M.; Gómez-Escalonilla, C.; Barcenilla, B.; Berbel, A.; Camacho, A.; et al. Normal cerebrospinal fluid levels of insulin in patients with Parkinson’s disease. J. Neural. Transm. (Vienna) 2000, 107, 445–449. [Google Scholar] [CrossRef]
- Van den Berg, M.M.J.; Krauskopf, J.; Ramaekers, J.G.; Kleinjans, J.C.S.; Prickaerts, J.; Briedé, J.J. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2020, 185, 101732. [Google Scholar] [CrossRef]
- Schulz, J.; Takousis, P.; Wohlers, I.; Itua, I.O.G.; Dobricic, V.; Rücker, G.; Binder, H.; Middleton, L.; Ioannidis, J.P.A.; Perneczky, R.; et al. Meta-analyses identify differentially expressed micrornas in Parkinson’s disease. Ann. Neurol. 2019, 85, 835–851. [Google Scholar] [CrossRef]
- Gui, Y.; Liu, H.; Zhang, L.; Lv, W.; Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015, 6, 37043–37053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Anca, M.; Fenoglio, C.; Serpente, M.; Arosio, B.; Cesari, M.; Scarpini, E.A.; Galimberti, D. Exosome Determinants of Physiological Aging and Age-Related Neurodegenerative Diseases. Front. Aging. Neurosci. 2019, 11, 232. [Google Scholar] [CrossRef] [Green Version]
- Nagatsu, T. Prolyl oligopeptidase and dipeptidyl peptidase II/dipeptidyl peptidase IV ratio in the cerebrospinal fluid in Parkinson’s disease: Historical overview and future prospects. J. Neural. Transm. (Vienna) 2017, 124, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K.; Inoue, Y.; Kanbayashi, T.; Nomura, T.; Kusumi, M.; Nakashima, K. CSF orexin levels of Parkinson’s disease, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal degeneration. J. Neurol. Sci. 2006, 250, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, A.; Takeda, A.; Onodera, H.; Kimpara, T.; Hisanaga, K.; Sato, N.; Nunomura, A.; Castellani, R.J.; Perry, G.; Smith, M.A.; et al. Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiol. Dis. 2002, 9, 244–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Bradner, J.; Hancock, A.M.; Chung, K.A.; Quinn, J.F.; Peskind, E.R.; Galasko, D.; Jankovic, J.; Zabetian, C.P.; Kim, H.M.; et al. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann. Neurol. 2011, 69, 570–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sako, W.; Murakami, N.; Izumi, Y.; Kaji, R. Neurofilament light chain level in cerebrospinal fluid can differentiate Parkinson’s disease from atypical parkinsonism: Evidence from a meta-analysis. J. Neurol. Sci. 2015, 352, 84–87. [Google Scholar] [CrossRef]
- Hu, X.; Yang, Y.; Gong, D. Cerebrospinal fluid levels of neurofilament light chain in multiple system atrophy relative to Parkinson’s disease: A meta-analysis. Neurol. Sci. 2017, 38, 407–414. [Google Scholar] [CrossRef]
- Ge, F.; Ding, J.; Liu, Y.; Lin, H.; Chang, T. Cerebrospinal fluid NFL in the differential diagnosis of parkinsonian disorders: A meta-analysis. Neurosci. Lett. 2018, 685, 35–41. [Google Scholar] [CrossRef]
- Bridel, C.; van Wieringen, W.N.; Zetterberg, H.; Tijms, B.M.; Teunissen, C.E.; the NFL Group; Alvarez-Cermeño, J.C.; Andreasson, U.; Axelsson, M.; Bäckström, D.C.; et al. Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. JAMA Neurol. 2019, 76, 1035–1048. [Google Scholar] [CrossRef]
- Leverenz, J.B.; Watson, G.S.; Shofer, J.; Zabetian, C.P.; Zhang, J.; Montine, T.J. Cerebrospinal fluid biomarkers and cognitive performance in non-demented patients with Parkinson’s disease. Park. Relat. Disord. 2011, 17, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Bäckström, D.C.; Eriksson Domellöf, M.; Linder, J.; Olsson, B.; Öhrfelt, A.; Trupp, M.; Zetterberg, H.; Blennow, K.; Forsgren, L. Cerebrospinal Fluid Patterns and the Risk of Future Dementia in Early, Incident Parkinson Disease. JAMA Neurol. 2015, 72, 1175–1182. [Google Scholar] [CrossRef] [Green Version]
- Maetzler, W.; Stoycheva, V.; Schmid, B.; Schulte, C.; Hauser, A.K.; Brockmann, K.; Melms, A.; Gasser, T.; Berg, D. Neprilysin activity in cerebrospinal fluid is associated with dementia and amyloid-β42 levels in Lewy body disease. J. Alzheimers Dis. 2010, 22, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Mollenhauer, B.; El-Agnaf, O.M.; Marcus, K.; Trenkwalder, C.; Schlossmacher, M.G. Quantification of α-synuclein in cerebrospinal fluid as a biomarker candidate: Review of the literature and considerations for future studies. Biomark. Med. 2010, 4, 683–699. [Google Scholar] [CrossRef] [PubMed]
- Mollenhauer, B.; Caspell-Garcia, C.J.; Coffey, C.S.; Taylor, P.; Singleton, A.; Shaw, L.M.; Trojanowski, J.Q.; Frasier, M.; Simuni, T.; Iranzo, A.; et al. Longitudinal analyses of cerebrospinal fluid α-Synuclein in prodromal and early Parkinson’s disease. Mov. Disord. 2019, 34, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Katayama, T.; Sawada, J.; Kikuchi-Takeguchi, S.; Kano, K.; Takahashi, K.; Saito, T.; Okizaki, A.; Hasebe, N. Cerebrospinal fluid levels of alpha-synuclein, amyloid β, tau, phosphorylated tau, and neuron-specific enolase in patients with Parkinson’s disease, dementia with Lewy bodies or other neurological disorders: Their relationships with cognition and nuclear medicine imaging findings. Neurosci. Lett. 2020, 715, 134564. [Google Scholar] [CrossRef] [PubMed]
- Mollenhauer, B.; Batrla, R.; El-Agnaf, O.; Galasko, D.R.; Lashuel, H.A.; Merchant, K.M.; Shaw, L.M.; Selkoe, D.J.; Umek, R.; Vanderstichele, H.; et al. A user’s guide for α-synuclein biomarker studies in biological fluids: Perianalytical considerations. Mov. Disord. 2017, 32, 1117–1130. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef] [Green Version]
Biomarker | Putative Function/Role/Interpretation | PD vs. Control | Meta-Analysis | References |
---|---|---|---|---|
A. neurotransmitters and neuromodulators | ||||
anandamide | fatty acid neurotransmitter, endocannabinoid | ↑ | [6] | |
DA, DOPAC | dopamine and the metabolites | ↓ | [7] | |
DHPG, NE | norepinephrine and the metabolites | ↓ | [7] | |
Neuromodulin (GAP43) | presynaptic terminal component | ↓ | [8] | |
3-hydroxykynurenine | tryptophan metabolite, excitotoxin | ↑ | [9] | |
B. oxidative stress markers | ||||
advanced oxidized protein products (self-oxidized) | Protein and amine halogenation | ↓ | [10] | |
ceruloplasmin ferroxidase activity | copper-dependent oxidase activity | ↓ | [11] | |
oxidized Q10 | ubiquinone | ↑ | [12] | |
Cu/Zn-superoxide dismutase | associated with ALS1 | ↓ | [11] | |
copper | metal | → | ✓ | [13] |
zinc | metal | → | ✓ | [13,14] |
manganese | metal | → | ✓ | [13] |
DJ-1 | redox-sensitive chaperone, PARK7 | ↑↓? | [15,16,17] | |
glutathione S-transferase Pi | glutathione-associated detoxification | ↓ | [18] | |
glutathione (oxidized) | antioxidant | ↓ | [9] | |
hydroxy radical (OH) | reactive oxygen species | ↑ | [19] | |
lipid peroxidation | lipid redox | ↑ | [11] | |
nitrites, nitrates | NO metabolites | ↑ | [11] | |
silicic acid (si) | silicon compound | ↓ | [20] | |
xanthine | purine metabolite | ↑ | [21] | |
3-nitrotyrosine products | tyrosine nitration | ↑ | [22] | |
8-hydroxyguanosine (8-OHG) | RNA stress marker | ↑ | [23] | |
8-hydroxy-2’-deoxyguanosine (8-OHdG) | DNA stress marker | → | ✓ | [13] |
urate or uric acid | purine metabolite, antioxidant | ↓ | [24] | |
C. inflammatory and immunological markers | ||||
β2-microglobulin | detected by multiplex proteomics assays | ↑ | [25] | |
Immunoglobulin G (IgG) ratio (CSF/serum) | blood–brain barrier permeability | ↑ | [26] | |
cytokines (IL-1β, IL-6 and TGF-β) | identified by meta-analysis | ↑ | ✓ | [27] |
interferon (IFN)-γ | cytotoxic neuroinflammatory factor | ↓ | [19] | |
prostaglandin E2 | prostaglandin | → | [19] | |
soluble CD (cluster of differentiation) 14 | macrophage marker | → | [28] | |
tumor necrosis factor (TNF)-α | cytotoxic neuroinflammatory factor | ↓ | [19] | |
differentially sialylated isoforms of Serpin A1 | serine protease inhibitor | → | [29] | |
D. Growth factors | ||||
brain derived neurotrophic factor (BDNF) | detected by multiplex proteomics assays | ↓ | [25] | |
progranulin | associated with frontotemporal dementia | → | [30] | |
E. proteins involved in PD pathology | ||||
α-synuclein | Lewy body component | ↓ | ✓ | [31,32,33,34] |
α-synuclein oligomer, phosphorylated α-synuclein | α-synuclein subspecies | ↑ | ✓ | [34] |
amyloid β42 | Alzheimer’s pathology-related | ↓ | ✓ | [35] |
total tau, phosphrylated tau | Alzheimer’s pathology-related | ↑ | ✓ | [35] |
neurosin | alpha-synuclein cleaving enzyme | ↓→? | [36,37] | |
glial fibrillary acidic protein (GFAP) | glial damage | → | [38] | |
clusterin | clearance of cellular debris and apoptosis | ↑ | [18] | |
neurofilamant light chain | neuronal damage | → | [39] | |
neurofilament heavy chain | neuronal damage | → | [40] | |
YKL-40 (CHI3L1) | glial marker | ↓ | [28] | |
soluble neuron-glial antigen 2 (NG2) proteoglycan | proliferation/migration/differentiation of pericytes etc. | → | [37] | |
ubiquitin | ubiquitin-proteasome system | → | [41] | |
UCHL-1 | PARK5, deubiquitinating enzyme | ↓ | [42] | |
apolipoprotein A1 | detected by multiplex proteomics assays | ↓→? | [18,25] | |
apolipoprotein A2 | detected by multiplex proteomics assays | ↓ | [25] | |
apolipoprotein epsilon | risk factor of Alzheimer’s disease | ↑→↓? | [18,25,43] | |
transthyretin | post-mortem 2D-DIGE assays | ↑ | [18] | |
glycan isoforms of transferrin (serum-type/brain-type) | derived from choroid plexus | ↑ | [44] | |
neuron-specific enolase | neuronal damage | → | [45] | |
myelin basic protein | myelin damage | → | [45] | |
glucocerebrosidase activity | lysosomal enzyme | ↓ | [46] | |
F. others | ||||
albumin ratio (CSF/serum) | blood–brain barrier permeability | ↑ | [6] | |
corticosterone | post-mortem analysis | ↓ | [9] | |
creatinine | GC-TOFMS-based metabolomics and immunoassays | ↓ | [47] | |
fibrinogen | post-mortem 2D-DIGE assays | ↓ | [18] | |
haptoglobin | detected by multiplex proteomics assays | → | [25] | |
insulin | glucose regulator | → | [48] | |
vitamin-D binding protein | detected by multiplex proteomics assays | ↑ | [25] | |
xylitol | GC-TOFMS-based metabolomics and immunoassays | ↓ | [47] | |
3-hydroxyisovaleric acid | GC-TOFMS-based metabolomics and immunoassays | ↓ | [47] | |
tryptophan | GC-TOFMS-based metabolomics and immunoassays | ↓ | [47] | |
microRNAs | posttranscriptional regulators | → | ✓ | [49,50] |
exosomes | release and transfer of multiple molecules among cells | [51,52] | ||
miR-1 | “dopaminergic synapse” pathway | ↓ | [51,52] | |
miR-19b-3p | “dopaminergic synapse” pathway | ↓ | [51,52] | |
miR-153 | “neurotropin signaling” pathway | ↑ | [51,52] | |
miR-409-3p | “neurotropin signaling” pathway | ↑ | [51,52] | |
miR-10a-5p | “neurotropin signaling” pathway | ↑ | [51,52] | |
Let7g-3p | “neurotropin signaling” pathway | ↑ | [51,52] | |
Prolyl oligopeptidase (prolylendopeptidase) | promotion of α-synuclein oligomerization | ↓ | [53] |
Biomarker | PD vs. Non-PD | Meta-Analysis | References |
---|---|---|---|
A. neurotransmitters and neuromodulators | |||
DA, DOPAC | → | [7] | |
DHPG, NA | ↑(vs. PAF) | [7] | |
5-HIAA | ↑(vs. MSA) | [45] | |
Neuromodulin (GAP43) | ↓(vs. AD) | [8] | |
orexin | ↑(vs. CBD), ↓(vs. PSP) | [54] | |
B. oxidative stress markers | |||
ceruloplasmin ferroxidase activity | → | [11] | |
Cu/Zn-superoxide dismutase | → | [11] | |
copper | → | ✓ | [13] |
zinc | → | ✓ | [13,14] |
DJ-1 | ↓(vs. AD, MSA) | [15,16,17] | |
lipid peroxidation | → | [11] | |
nitrites, nitrates | → | [11] | |
8-hydroxyguanosine (8-OHG) | ↓(vs. MSA) | [55] | |
C. inflammatory and immunological markers | |||
β2-microglobulin | ↓(vs. PSP) | [25] | |
soluble CD (cluster of differentiation) 14 | → | [28] | |
Flt3 (Fms-related tyrosine kinase 3) ligand | ↑(vs. MSA) | [56] | |
D. Growth factors | |||
brain derived neurotrophic factor (BDNF) | → | [25] | |
E. proteins involved in PD pathology | |||
α-synuclein | ↓(vs. AD) | ✓ | [31,32,33,34] |
neurosin | → | [36,37] | |
glial fibrillary acidic protein (GFAP) | → | [38] | |
neurofilament light chain | ↓(vs. MSA, AD) | ✓ | [57,58,59,60] |
neurofilament heavy chain | ↓(vs. MSA, PSP) | [40] | |
YKL-40 (CHI3L1) | ↓(vs. PSP, CBD, MSA) | [28] | |
soluble NG2 proteoglycan | → | [37] | |
ubiquitin | ↓(vs. PSP) | [41] | |
UCHL-1 | ↓(vs. MSA, PSP, CBD) | [42] | |
apolipoprotein A1 | → | [25] | |
apolipoprotein A2 | → | [25] | |
apolipoprotein ε | ↓(vs. AD) | [18,25,43] | |
neuron-specific enolase | ↑(vs. MSA) | [45] | |
myelin basic protein | ↑(vs. MSA) | [45] | |
F. others | |||
haptoglobin | → | [25] | |
vitamin-D binding protein | → | [25] |
Biomarker | Cognition and Severity | Meta-Analysis | References |
---|---|---|---|
A. neurotransmitters and neuromodulators | |||
DHPG | ↓(with orthostatic hypotension) | [7] | |
B. oxidative stress markers | |||
advanced oxidized protein products (self-oxidized) | anti-halogenative capacity↓(HY1-2) | [10] | |
ceruloplasmin ferroxidase activity | positive correlation with onset time | [11] | |
oxidized Q10 | negative correlation with duration | [12] | |
copper | correlation with disease duration | [11] | |
zinc | → | ✓ | [13,14] |
DJ-1 | ↑ in HY1-2 vs. HY3-4 | [15] | |
lipid peroxidation | positive correlation with onset | [11] | |
3-nitrotyrosine products | correlated with HY | [22] | |
8-hydroxyguanosine (8-OHG) | negative correlation with duration | [55] | |
C. inflammatory and immunological markers | |||
β2-microglobulin | → | [25] | |
Immunoglobulin G (IgG) ratio (CSF/serum) | correlated with HY | [6] | |
cytokines (IL-1β, IL-6) | ↑ in cognitive impairment | [19] | |
differentially sialylated isoforms of Serpin A1 | ↑(in PDD) | [29] | |
D. Growth factors | |||
brain derived neurotrophic factor (BDNF) | → | [25] | |
E. proteins involved in PD pathology | |||
amyloid β42 | ↓(in cognitive impairment) | ✓ | [35] |
total tau, phosphorylated tau | ↑(in PDD) | ✓ | [35] |
neurofilament light chain | correlated with HY | [39] | |
UCHL-1 | correlated with HY | [42] | |
apolipoprotein A1 | → | [61] | |
apolipoprotein A2 | → | [61] | |
apolipoprotein ε | → | [61] | |
heart fatty acid-binding protein | ↑ | [62] | |
glucocerebrosidase activity | positive correlation with HY | [46] | |
neprilysin activity | ↓(in PDD) | [63] | |
F. others | |||
vitamin-D binding protein | →(in PDD) | [61] |
Biomarker | Marker Change | Sensitivity, Specificity or Effect Size | References |
---|---|---|---|
IL-6 | ↑(PD vs. Control) | Hedge’s g = 0.468 (95% CI 0.049–0.887, p = 0.031) | [27] |
IL-1β | ↑(PD vs. Control) | Hedge’s g = 0.370 (95% CI 0.033–0.707, p = 0.031) | |
TGF-β | ↑(PD vs. Control) | Hedges’ g = 0.472 (95% CI 0.147–0.798, p = 0.004) | |
α-synuclein | ↓(PD vs. Control) | SMD −0.67 (95% CI −0.83 to −0.50, p = 0.00001) | [31] |
↓(PD vs. Control) | Sensitivity 0.88 (95% CI 0.84–0.91) | [32] | |
Specificity 0.40 (95% CI 0.35–0.45) | |||
↓(PD vs. Control) | Sensitivity 0.72 (95% CI 0.60–0.81) | [34] | |
Specificity 0.65 (95% CI 0.51–0.77) | |||
α-synuclein | ↓(vs. PSP) | SMD −0.38 (95% CI −0.61 to −0.15, p = 0.001) | [31] |
↓(vs. AD) | WMD −0.18 (95% CI −0.26 to −0.10, p < 0.0001) | [32] | |
↓(vs. AD) | SMD 0.87 (95% CI 0.15–1.58, p < 0.05) (* AD vs. PD) | [33] | |
α-synuclein oligomer | ↑(PD vs. Control) | Sensitivity 0.71 (95% CI 0.49–0.86) | [34] |
Specificity 0.64 (95% CI 0.44–0.80) | |||
phosphorylated α-synuclein | ↑(PD vs. Control) | SMD 0.86 (95% CI 0.54-1.18, p < 0.001) | [34] |
amyloid β42 | ↓(PDCI vs. PDNC) | SMD −0.44 (95% CI −0.61 to −0.26, p < 0.00001) | [35] |
total tau | ↑(PDCI vs. PDNC) | SMD 0.21 (95% CI 0.06–0.35, p = 0.006) | [35] |
phosphorylated tau | ↑(PDCI vs. PDNC) | SMD 0.36 (95% CI 0.02–0.69, p = 0.04) | |
neurofilament light chain | ↓(vs. MSA) | SMD 1.60 (95% CI 1.22–1.98, p < 0.0001) | [57] |
↓(vs. PSP) | SMD 2.04 (95% CI 1.69–2.40, p < 0.0001) | [57] | |
↓(vs. MSA) | SMD 1.56 (95% CI 1.12–2.00, p < 0.00001) | [58] | |
↓(vs. APD) | Sensitivity 82% (95% CI 68–91%) | [59] | |
↓(vs. APD) | Specificity 85% (95% CI 79–89%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katayama, T.; Sawada, J.; Takahashi, K.; Yahara, O. Cerebrospinal Fluid Biomarkers in Parkinson’s Disease: A Critical Overview of the Literature and Meta-Analyses. Brain Sci. 2020, 10, 466. https://doi.org/10.3390/brainsci10070466
Katayama T, Sawada J, Takahashi K, Yahara O. Cerebrospinal Fluid Biomarkers in Parkinson’s Disease: A Critical Overview of the Literature and Meta-Analyses. Brain Sciences. 2020; 10(7):466. https://doi.org/10.3390/brainsci10070466
Chicago/Turabian StyleKatayama, Takayuki, Jun Sawada, Kae Takahashi, and Osamu Yahara. 2020. "Cerebrospinal Fluid Biomarkers in Parkinson’s Disease: A Critical Overview of the Literature and Meta-Analyses" Brain Sciences 10, no. 7: 466. https://doi.org/10.3390/brainsci10070466
APA StyleKatayama, T., Sawada, J., Takahashi, K., & Yahara, O. (2020). Cerebrospinal Fluid Biomarkers in Parkinson’s Disease: A Critical Overview of the Literature and Meta-Analyses. Brain Sciences, 10(7), 466. https://doi.org/10.3390/brainsci10070466