Noise Induced Hearing Loss and Tinnitus—New Research Developments and Remaining Gaps in Disease Assessment, Treatment, and Prevention
Abstract
:1. Introduction
2. Overview of Current Knowledge
3. Hearing Loss Assessment
4. Current Treatment Methods
4.1. Cochlear Implants
4.2. Pharmacologic Therapy
4.3. Antioxidants
4.4. Tinnitus Management
5. Treatments in Development
5.1. Genetic and Acquired Hearing Loss
5.1.1. Molecular Therapies
5.1.2. Stem Cell Therapy
5.2. Tinnitus
5.2.1. Central Auditory Plasticity
5.2.2. Neural Plasticity
5.2.3. Modulation of Potassium Channels
6. Screening and Prevention Strategies
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Olusanya, B.O.; Davis, A.C.; Hoffman, H.J. Hearing loss: Rising prevalence and impact. Bull. World Health Organ. 2019, 97, 646–646A. [Google Scholar]
- Chadha, S.; Cieza, A. Promoting global action on hearing loss: World hearing day. Int. J. Audiol. 2017, 56, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Kerns, E.; Masterson, E.A.; Themann, C.L.; Calvert, G.M. Cardiovascular conditions, hearing difficulty, and occupational noise exposure within US industries and occupations. Am. J. Ind. Med. 2018, 61, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Masterson, E.A.; Themann, C.L.; Calvert, G.M. Prevalence of hearing loss among noise-exposed workers within the agriculture, forestry, fishing, and hunting sector, 2003–2012. Am. J. Ind. Med. 2018, 61, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Feder, K.; Michaud, D.; McNamee, J.; Fitzpatrick, E.; Davies, H.; Leroux, T. Prevalence of Hazardous Occupational Noise Exposure, Hearing Loss, and Hearing Protection Usage Among a Representative Sample of Working Canadians. J. Occup. Environ. Med. 2017, 59, 92–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addressing the Rising Prevalence of Hearing Loss; World Health Organization: Geneva, Switzerland. 2018. Available online: http:%20www.who.int/pbd/deafness/estimates/en (accessed on 6 June 2020).
- Lie, A.; Skogstad, M.; Johannessen, H.A.; Tynes, T.; Mehlum, I.S.; Nordby, K.C.; Engdahl, B.; Tambs, K. Occupational noise exposure and hearing: A systematic review. Int. Arch. Occup. Environ. Health 2016, 89, 351–372. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.J.; Chang, C.K. Prevalence and risk factors of noise-induced hearing loss among liquefied petroleum gas (LPG) cylinder infusion workers in Taiwan. Ind. Health 2009, 47, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.J.; Chen, C.J.; Lien, C.H.; Sung, F.C. Hearing loss in workers exposed to toluene and noise. Environ. Health Perspect. 2006, 114, 1283–1286. [Google Scholar] [CrossRef]
- Chen, J.D.; Tsai, J.Y. Hearing loss among workers at an oil refinery in Taiwan. Arch. Environ. Health 2003, 58, 55–58. [Google Scholar] [CrossRef]
- Chiu, K.W.; Lu, L.S.; Wu, C.K. High pressure air jet in the endoscopic preparation room: Risk of noise exposure on occupational health. Biomed. Res. Int. 2015, 2015, 610582. [Google Scholar] [CrossRef]
- Myers, J.; John, A.B.; Kimball, S.; Fruits, T. Prevalence of tinnitus and noise-induced hearing loss in dentists. Noise Health 2016, 18, 347–354. [Google Scholar] [PubMed]
- Weier, M.H. The Association Between Occupational Exposure to Hand–Arm Vibration and Hearing Loss: A Systematic Literature Review. Saf. Heal. Work. 2020, 11, 249–261. [Google Scholar] [CrossRef]
- Government of Canada. Canada Occupational Health and Safety Regulations; SOR/86-304; Department of Justice: Ottawa, ON, Canada, 2008. [Google Scholar]
- Industrial Safety and Health Act. Japan. 2006. Available online: https://www.jisha.or.jp/english/act/index.html (accessed on 9 October 2020).
- Occupational Safety and Health Act of 1970; Public Law 91-596; 1970. Department of Labor, USA. 1970. Available online: https://www.osha.gov/laws-regs/oshact/toc (accessed on 9 October 2020).
- Occupational Safety and Health Act. 2019 Amendments. Ministry of Labor, Taiwan. 2019. Available online: https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=N0060001 (accessed on 9 October 2020).
- Imam, L.; Hannan, S.A. Noise-induced hearing loss: A modern epidemic? Br. J. Hosp. Med. 2017, 78, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Warner-Czyz, A.D.; Cain, S. Age and gender differences in children and adolescents’ attitudes toward noise. Int. J. Audiol. 2016, 55, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Gong, R.; Hu, X.; Gong, C.; Long, M.; Han, R.; Zhou, L.; Wang, F.; Zheng, X. Hearing loss prevalence and risk factors among older adults in China. Int. J. Audiol. 2018, 57, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Shore, S.E.; Roberts, L.E.; Langguth, B. Maladaptive plasticity in tinnitus—Triggers, mechanisms and treatment. Nat. Rev. Neurol. 2016, 12, 150–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanneste, S.; De Ridder, D. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front. Syst. Neurosci. 2012, 6, 31–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauschecker, J.P.; Leaver, A.M.; Muhlau, M. Tuning out the noise: Limbic-auditory interactions in tinnitus. Neuron 2010, 66, 819–826. [Google Scholar] [CrossRef] [Green Version]
- Leaver, A.M.; Turesky, T.K.; Seydell-Greenwald, A.; Morgan, S.; Kim, H.J.; Rauschecker, J.P. Intrinsic network activity in tinnitus investigated using functional MRI. Hum. Brain Mapp. 2016, 37, 2717–2735. [Google Scholar] [CrossRef]
- Kujawa, S.G.; Liberman, M.C. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear. Res. 2015, 330, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Roberts, L.E.; Eggermont, J.J.; Caspary, D.M.; Shore, S.E.; Melcher, J.R.; Kaltenbach, J.A. Ringing ears: The neuroscience of tinnitus. J. Neurosci. 2010, 30, 14972–14979. [Google Scholar] [CrossRef] [PubMed]
- Landgrebe, M.; Zeman, F.; Koller, M.; Eberl, Y.; Mohr, M.; Reiter, J.; Staudinger, S.; Hajak, G.; Langguth, B. The Tinnitus Research Initiative (TRI) database: A new approach for delineation of tinnitus subtypes and generation of predictors for treatment outcome. BMC Med. Inform. Decis Mak. 2010, 10, 42–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisz, N.; Moratti, S.; Meinzer, M.; Dohrmann, K.; Elbert, T. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2005, 2, e153. [Google Scholar] [CrossRef] [PubMed]
- Lanting, C.P.; de Kleine, E.; van Dijk, P. Neural activity underlying tinnitus generation: Results from PET and fMRI. Hear. Res. 2009, 255, 1–13. [Google Scholar] [CrossRef]
- Dos Santos Filha, V.A.; Samelli, A.G.; Matas, C.G. Middle Latency Auditory Evoked Potential (MLAEP) in Workers with and without Tinnitus who are Exposed to Occupational Noise. Med. Sci. Monit. 2015, 21, 2701–2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.F.; Lin, M.C.; Lin, H.T.; Lin, C.L.; Wang, T.C.; Kao, C.H. Increased risk of tinnitus in patients with temporomandibular disorder: A retrospective population-based cohort study. Eur. Arch. Otorhinolaryngol. 2016, 273, 203–208. [Google Scholar] [CrossRef]
- Wang, T.C.; Tyler, R.S.; Chang, T.Y.; Chen, J.C.; Lin, C.D.; Chung, H.K.; Tsou, Y.A. Effect of Transcranial Direct Current Stimulation in Patients With Tinnitus: A Meta-Analysis and Systematic Review. Ann. Otol. Rhinol. Laryngol. 2018, 127, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Tyler, R.S.; Aran, J.M.; Dauman, R. Recent Advances in Tinnitus. Am. J. Audiol. 1992, 1, 36–44. [Google Scholar] [CrossRef]
- Salvi, R.; Boettcher, F.A. Animal Models of Noise-Induced Hearing Loss. In Sourcebook of Models for Biomedical Research; Springer: New York, NY, USA, 2008; pp. 289–301. [Google Scholar]
- Shulman, A.; Goldstein, B.; Strashun, A.M. Final common pathway for tinnitus: Theoretical and clinical implications of neuroanatomical substrates. Int. Tinnitus J. 2009, 15, 5–50. [Google Scholar]
- Ding, T.; Yan, A.; Liu, K. What is noise-induced hearing loss? Br. J. Hosp. Med. 2019, 80, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Martin, W.H.; Sobel, J.; Griest, S.E.; Howarth, L.; Yongbing, S.H.I. Noise induced hearing loss in children: Preventing the silent epidemic. J. Otol. 2006, 1, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Shore, S.E.; Wu, C. Mechanisms of Noise-Induced Tinnitus: Insights from Cellular Studies. Neuron 2019, 103, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Ralli, M.; Gilardi, A.; Stadio, A.D.; Severini, C.; Salzano, F.A.; Greco, A.; de Vincentiis, M. Hearing loss and Alzheimer’s disease: A review. Int. Tinnitus J. 2019, 23, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.J.; Cleveland, L.M.; Davis, J.L.; Seales, J.S. Audiometry screening and interpretation. Am. Fam. Physician 2013, 87, 41–47. [Google Scholar] [PubMed]
- Cueva, R.A. Auditory brainstem response versus magnetic resonance imaging for the evaluation of asymmetric sensorineural hearing loss. Laryngoscope 2004, 114, 1686–1692. [Google Scholar] [CrossRef] [PubMed]
- Ratnanather, J.T. Structural neuroimaging of the altered brain stemming from pediatric and adolescent hearing loss-Scientific and clinical challenges. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1469. [Google Scholar]
- Vos, S.B.; Haakma, W.; Versnel, H.; Froeling, M.; Speleman, L.; Dik, P.; Viergever, M.A.; Leemans, A.; Grolman, W. Diffusion tensor imaging of the auditory nerve in patients with long-term single-sided deafness. Hear. Res. 2015, 323, 1–8. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Wu, C.; Wai, Y.; Yu, J.; Ng, S. Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: Changes in radial diffusivity and diffusion anisotropy. J. Magn. Reson. Imaging 2008, 28, 598–603. [Google Scholar] [CrossRef]
- Zhang, K.D.; Coate, T.M. Recent advances in the development and function of type II spiral ganglion neurons in the mammalian inner ear. Semin. Cell Dev. Biol. 2017, 65, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Grandi, F.C.; De Tomasi, L.; Mustapha, M. Single-Cell RNA Analysis of Type I Spiral Ganglion Neurons Reveals a Lmx1a Population in the Cochlea. Front. Mol. Neurosci. 2020, 13, 83. [Google Scholar] [CrossRef]
- Tyler, R.S.; Conrad-Armes, D. The determination of tinnitus loudness considering the effects of recruitment. J. Speech Hear. Res. 1983, 26, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Tyler, R.S.; Oleson, J.; Noble, W.; Coelho, C.; Ji, H. Clinical trials for tinnitus: Study populations, designs, measurement variables, and data analysis. Prog. Brain Res. 2007, 166, 499–509. [Google Scholar] [PubMed]
- Tyler, R.S. The psychoacoustical measurement of tinnitus. In Tinnitus Handbook; Tyler, R.S., Ed.; Singular: San Diego, CA, USA, 2000; pp. 149–179. [Google Scholar]
- Vernon, J.A.; Meikle, M.B. Tinnitus: Clinical measurement. Otolaryngol. Clin. N. Am. 2003, 36, 293–305. [Google Scholar] [CrossRef]
- Tyler, R.; Ji, H.; Perreau, A.; Witt, S.; Noble, W.; Coelho, C. Development and validation of the tinnitus primary function questionnaire. Am. J. Audiol. 2014, 23, 260–272. [Google Scholar] [CrossRef]
- Bakay, W.M.H.; Anderson, L.A.; Garcia-Lazaro, J.A.; McAlpine, D.; Schaette, R. Hidden hearing loss selectively impairs neural adaptation to loud sound environments. Nat. Commun. 2018, 9, 4298. [Google Scholar] [CrossRef] [Green Version]
- Galazyuk, A.; Hebert, S. Gap-Prepulse Inhibition of the Acoustic Startle Reflex (GPIAS) for Tinnitus Assessment: Current Status and Future Directions. Front. Neurol. 2015, 6, 88. [Google Scholar] [CrossRef] [Green Version]
- Lambriks, L.J.G.; van Hoof, M.; Debruyne, J.A.; Janssen, M.; Chalupper, J.; van der Heijden, K.A.; Hof, J.R.; Hellingman, C.A.; George, E.L.J.; Devocht, E.M.J. Evaluating hearing performance with cochlear implants within the same patient using daily randomization and imaging-based fitting—The ELEPHANT study. Trials 2020, 21, 564. [Google Scholar] [CrossRef]
- Sanderson, A.P.; Rogers, E.T.F.; Verschuur, C.A.; Newman, T.A. Exploiting Routine Clinical Measures to Inform Strategies for Better Hearing Performance in Cochlear Implant Users. Front. Neurosci. 2018, 12, 1048. [Google Scholar] [CrossRef]
- Nishad, R.K.; Jain, A.K.; Singh, M.; Verma, R.; Jain, S. Randomised Controlled Clinical Study of Injection Caroverine and Ginkgo Biloba Extract in Cochlear Synaptic Tinnitus. Indian J. Otolaryngol. Head Neck Surg. 2019, 71, 1523–1528. [Google Scholar] [CrossRef]
- Elzayat, S.; Ragab, S.; Eisa, M.; Amer, M.; Mandour, M.F.; Mehraz, M. Evaluation of Adding Lidocaine to Dexamethasone in the Intra-tympanic Injection for Management of Tinnitus: A Prospective, Randomized, Controlled Double-blinded Trial. Int. Tinnitus J. 2018, 22, 54–59. [Google Scholar] [CrossRef]
- Kumral, T.L.; Yildirim, G.; Berkiten, G.; Salturk, Z.; Atac, E.; Atar, Y.; Uyar, Y. Efficacy of Trimetazidine Dihydrochloride for Relieving Chronic Tinnitus: A Randomized Double-Blind Study. Clin. Exp. Otorhinolaryngol. 2016, 9, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Honkura, Y.; Matsuo, H.; Murakami, S.; Sakiyama, M.; Mizutari, K.; Shiotani, A.; Yamamoto, M.; Morita, I.; Shinomiya, N.; Kawase, T.; et al. NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea. Sci. Rep. 2016, 6, 19329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentler, R.A.; Tyler, R.S. Tinnitus management. ASHA 1987, 29, 27–32. [Google Scholar]
- Jastreboff, P.J. 25 years of tinnitus retraining therapy. HNO 2015, 63, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Tunkel, D.E.; Bauer, C.A.; Sun, G.H.; Rosenfeld, R.M.; Chandrasekhar, S.S.; Cunningham, E.R., Jr.; Archer, S.M.; Blakley, B.W.; Carter, J.M.; Granieri, E.C.; et al. Clinical practice guideline: Tinnitus. Otolaryngol. Head Neck Surg. 2014, 151, S1–S40. [Google Scholar] [CrossRef] [PubMed]
- Kochkin, S.; Tyler, R.S. Tinnitus Treatment and the Effectiveness of Hearing Aids: Hearing Care Professional Perceptions. Hear. Rev. 2008, 15, 14–18. [Google Scholar]
- Tyler, R.S.; Perreau, A.; Powers, T.; Watts, A.; Owen, R.; Ji, H.; Mancini, P.C. Tinnitus Sound Therapy Trial Shows Effectiveness for Those with Tinnitus. J. Am. Acad. Audiol. 2020, 31, 6–16. [Google Scholar] [CrossRef]
- Rojas-Roncancio, E.; Tyler, R.; Jun, H.J.; Wang, T.C.; Ji, H.; Coelho, C.; Witt, S.; Hansen, M.R.; Gantz, B.J. Manganese and Lipoflavonoid Plus((R)) to Treat Tinnitus: A Randomized Controlled Trial. J. Am. Acad. Audiol. 2016, 27, 661–668. [Google Scholar] [CrossRef]
- Coelho, C.; Tyler, R.; Ji, H.; Rojas-Roncancio, E.; Witt, S.; Tao, P.; Jun, H.J.; Wang, T.C.; Hansen, M.R.; Gantz, B.J. Survey on the Effectiveness of Dietary Supplements to Treat Tinnitus. Am. J. Audiol. 2016, 25, 184–205. [Google Scholar] [CrossRef]
- Tyler, R.; Coelho, C.; Tao, P.; Ji, H.; Noble, W.; Gehringer, A.; Gogel, S. Identifying tinnitus subgroups with cluster analysis. Am. J. Audiol. 2008, 17, S176–S184. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Wise, A.K.; Shepherd, R.K.; Richardson, R.T. New molecular therapies for the treatment of hearing loss. Pharmacol. Ther. 2019, 200, 190–209. [Google Scholar] [CrossRef] [PubMed]
- Dufner-Almeida, L.G.; da Cruz, D.B.; Mingroni Netto, R.C.; Batissoco, A.C.; Oiticica, J.; Salazar-Silva, R. Stem-cell therapy for hearing loss: Are we there yet? Braz. J. Otorhinolaryngol. 2019, 85, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Engineer, C.T.; Engineer, N.D.; Riley, J.R.; Seale, J.D.; Kilgard, M.P. Pairing Speech Sounds With Vagus Nerve Stimulation Drives Stimulus-specific Cortical Plasticity. Brain Stimul. 2015, 8, 637–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, K.L.; Martel, D.T.; Wu, C.; Basura, G.J.; Roberts, L.E.; Schvartz-Leyzac, K.C.; Shore, S.E. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci. Transl. Med. 2018, 10, eaal3175. [Google Scholar] [CrossRef] [Green Version]
- Langguth, B.; Elgoyhen, A.B. Current pharmacological treatments for tinnitus. Expert Opin. Pharmacother. 2012, 13, 2495–2509. [Google Scholar] [CrossRef]
- Jentsch, T.J. Neuronal KCNQ potassium channels: Physiology and role in disease. Nat. Rev. Neurosci. 2000, 1, 21–30. [Google Scholar] [CrossRef]
- Li, S.; Choi, V.; Tzounopoulos, T. Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus. Proc. Natl. Acad. Sci. USA 2013, 110, 9980–9985. [Google Scholar] [CrossRef] [Green Version]
- Eichwald, J.; Scinicariello, F.; Telfer, J.L.; Carroll, Y.I. Use of personal hearing protection at athletic or entertainment events among adults—United States, 2018. CDC Wkly. 2018, 67, 1151–1155. [Google Scholar] [CrossRef]
- Dobie, R.A.; Humes, L.E. Commentary on the regulatory implications of noise-induced cochlear neuropathy. Int. J. Audiol. 2017, 56, 74–78. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.-C.; Chang, T.-Y.; Tyler, R.; Lin, Y.-J.; Liang, W.-M.; Shau, Y.-W.; Lin, W.-Y.; Chen, Y.-W.; Lin, C.-D.; Tsai, M.-H. Noise Induced Hearing Loss and Tinnitus—New Research Developments and Remaining Gaps in Disease Assessment, Treatment, and Prevention. Brain Sci. 2020, 10, 732. https://doi.org/10.3390/brainsci10100732
Wang T-C, Chang T-Y, Tyler R, Lin Y-J, Liang W-M, Shau Y-W, Lin W-Y, Chen Y-W, Lin C-D, Tsai M-H. Noise Induced Hearing Loss and Tinnitus—New Research Developments and Remaining Gaps in Disease Assessment, Treatment, and Prevention. Brain Sciences. 2020; 10(10):732. https://doi.org/10.3390/brainsci10100732
Chicago/Turabian StyleWang, Tang-Chuan, Ta-Yuan Chang, Richard Tyler, Ying-Ju Lin, Wen-Miin Liang, Yio-Wha Shau, Wei-Yong Lin, Yi-Wen Chen, Chia-Der Lin, and Ming-Hsui Tsai. 2020. "Noise Induced Hearing Loss and Tinnitus—New Research Developments and Remaining Gaps in Disease Assessment, Treatment, and Prevention" Brain Sciences 10, no. 10: 732. https://doi.org/10.3390/brainsci10100732