Antidepressant-Like Properties of Fish Oil on Postpartum Depression-Like Rats Model: Involvement of Serotonergic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Animals
2.3. Construction of PPD-Like Rat Model and Menhaden FO Supplementation
2.4. Experimental Procedure
- PPD-like group (n = 6): received distilled water 2 mL/day for 10 days postpartum
- PPD-like +FO group (n = 6): received FO 9 g/kg/day for 10 days postpartum
- PPD-like + FLX group (n = 6): received FLX 15 mg/kg for 10 days postpartum.
- PPD-like + PCPA group (n = 6); received distilled water 2 mL/day for 10 days + PCPA 150 mg/kg on days 8, 9 and 10 postpartum.
- PPD-like + FO group (n = 6); received FO 9 g/kg/day for 10 days + PCPA 150 mg/kg on days 8, 9 and 10 postpartum.
- PPD-like + FLX group (n = 6); received FLX 15 mg/kg for 10 days + PCPA 150 mg/kg on days 8, 9 and 10 postpartum.
2.5. Behavioral Assessments
2.5.1. Open Field Test
2.5.2. Forced Swimming Test
2.6. Biochemical Assessments
2.6.1. Tissue Preparations
2.6.2. Assessment of 5HT, 5HIAA and Serotonin Turnover in Hippocampus and PFC
2.7. Statistical Analysis
3. Results
3.1. Effects of 10 Days FO Supplementation on Behaviors of PPD-Like Rats
3.1.1. Ten Days FO Supplementation Improved PPD-Like Rats’ Behaviors in FST
3.1.2. Three Days Administration of PCPA Blocked the Effect of 10 Days Administered FO and FLX on FST Behavior in PPD-Like Rats
3.1.3. Open Field Test
3.2. Effects of 10 Days Supplementation of FO on PPD-Like Rats’ Level of 5HT, 5HIAA and 5HIAA/5HT Concentration in Their Prefrontal Cortex and Hippocampus
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pawluski, J.L.; Lonstein, J.S.; Fleming, A.S. The Neurobiology of Postpartum Anxiety and Depression. Trends Neurosci. 2017, 40, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.; De Mello, M.C.; Patel, V.; Rahman, A.; Tran, T.D.; Holton, S.; Holmes, W. Prevalence and determinants of common perinatal mental disorders in women in low- and lower-middle-income countries: A systematic review. Bull. World Heal. Organ. 2011, 90, 139–149. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Maternal Mental Health. Available online: http://www.who.int/mental_health/maternal-child/maternal_mental_health/en/ (accessed on 18 June 2020).
- Palumbo, G.; Mirabella, F.; Gigantesco, A. Positive screening and risk factors for postpartum depression. Eur. Psychiatry 2017, 42, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Levant, B. Role of n-3 (Omega-3) Polyunsaturated Fatty Acids in Postpartum Depression: Mechanisms and Implications for Prevention and Treatment. In Omega-3 Fatty Acids; Springer: Cham, Switzerland, 2016; pp. 267–283. [Google Scholar]
- Abbasi-Maleki, S.; Kadkhoda, Z.; Taghizad-Farid, R. The antidepressant-like effects of Origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming test. J. Tradit. Complement. Med. 2019. [Google Scholar] [CrossRef]
- Köhler, S.; Cierpinsky, K.; Kronenberg, G.; Adli, M. The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants. J. Psychopharmacol. 2016, 30, 13–22. [Google Scholar] [CrossRef]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.L.; Bogomolova, S.; Villani, A.; Itsiopoulos, C.; Niyonsenga, T.; Blunden, S.; Meyer, B.; et al. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A randomized controlled trial (HELFIMED). Nutr. Neurosci. 2017, 22, 474–487. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.-H.; Kim, G. Systematic review and meta-analysis of omega-3-fatty acids in elderly patients with depression. Nutr. Res. 2018, 50, 1–9. [Google Scholar] [CrossRef]
- Shi, Z.; Ren, H.; Huang, Z.; Peng, Y.; He, B.; Yao, X.; Yuan, T.-F.; Su, H. Fish Oil Prevents Lipopolysaccharide-Induced Depressive-Like Behavior by Inhibiting Neuroinflammation. Mol. Neurobiol. 2016, 54, 7327–7334. [Google Scholar] [CrossRef]
- Dang, R.; Zhou, X.; Tang, M.; Xu, P.; Gong, X.; Liu, Y.; Jiao, H.; Jiang, P. Fish oil supplementation attenuates neuroinflammation and alleviates depressive-like behavior in rats submitted to repeated lipopolysaccharide. Eur. J. Nutr. 2017, 57, 893–906. [Google Scholar] [CrossRef]
- Hsu, M.-C.; Tung, C.-Y.; Chen, H.-E. Omega-3 polyunsaturated fatty acid supplementation in prevention and treatment of maternal depression: Putative mechanism and recommendation. J. Affect. Disord. 2018, 238, 47–61. [Google Scholar] [CrossRef]
- Arbabi, L.; Baharuldin, M.T.H.; Moklas, M.M.; Fakurazi, S.; Muhammad, S.I. Antidepressant-like effects of omega-3 fatty acids in postpartum model of depression in rats. Behav. Brain Res. 2014, 271, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Pudell, C.; Vicente, B.A.; Delattre, A.M.; Carabelli, B.; Mori, M.A.; Suchecki, D.; Machado, R.B.; Zanata, S.M.; Visentainer, J.V.; Santos, O.D.O.; et al. Fish oil improves anxiety-like, depressive-like and cognitive behaviors in olfactory bulbectomised rats. Eur. J. Neurosci. 2013, 39, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Vines, A.; Delattre, A.M.; Lima, M.M.S.; Rodrigues, L.S.; Suchecki, D.; Machado, R.B.; Tufik, S.; Pereira, S.I.; Zanata, S.M.; Ferraz, A.C. The role of 5-HT1A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: A possible antidepressant mechanism. Neuropharmacology 2012, 62, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Carabelli, B.; Delattre, A.M.; Pudell, C.; Mori, M.A.; Suchecki, D.; Machado, R.B.; Venancio, D.P.; Piazzetta, S.R.; Hammerschmidt, I.; Zanata, S.M.; et al. The Antidepressant-Like Effect of Fish Oil: Possible Role of Ventral Hippocampal 5-HT1A Post-synaptic Receptor. Mol. Neurobiol. 2014, 52, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Shukkoor, M.S.A.; Baharuldin, M.T.H.; Jais, A.M.M.; Moklas, M.M.; Fakurazi, S.; Basir, R. Antidepressant-Like Effect of Lipid Extract ofChanna striatusin Postpartum Model of Depression in Rats. Evid. Based Complement. Altern. Med. 2017, 2017, 1469209. [Google Scholar] [CrossRef] [Green Version]
- Detke, M.J.; Rickels, M.; Lucki, I. Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology 1995, 121, 66–72. [Google Scholar] [CrossRef]
- Hoge, A.; Tabar, V.; Donneau, A.-F.; Dardenne, N.; Degée, S.; Timmermans, M.; Nisolle, M.; Guillaume, M.; Castronovo, V. Hoge Imbalance between Omega-6 and Omega-3 Polyunsaturated Fatty Acids in Early Pregnancy Is Predictive of Postpartum Depression in a Belgian Cohort. Nutrients 2019, 11, 876. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, K. Omega-3 Fatty Acids for Treatment of Postpartum Depression. 2018. Available online: https://digitalcommons.murraystate.edu/scholarsweek/Fall2018/ClinicalHealthcare/8/ (accessed on 23 September 2020).
- Mohamed, N.; Khee, S.G.S.; Shuid, A.N.; Muhammad, N.; Suhaimi, F.; Othman, F.; Babji, A.S.; Soelaiman, I.-N. The Effects of Cosmos caudatus on Structural Bone Histomorphometry in Ovariectomized Rats. Evid.-Based Complement. Altern. Med. 2012, 2012, 817814. [Google Scholar] [CrossRef] [Green Version]
- Chiroma, S.M.; Moklas, M.M.; Taib, C.N.M.; Baharuldin, M.T.H.; Amon, Z. d-galactose and aluminium chloride induced rat model with cognitive impairments. Biomed. Pharmacother. 2018, 103, 1602–1608. [Google Scholar] [CrossRef]
- Jagadeesan, S.; Chiroma, S.M.; Baharuldin, M.T.H.; Taib, C.N.M.; Amom, Z.; Adenan, M.I.; Moklas, M.A.M. Centella asiatica prevents chronic unpredictable mild stress-induced behavioral changes in rats. Biomed. Res. Ther. 2019, 6, 3233–3243. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Le Pichon, M.; Jalfre, M. Depression: A new animal model sensitive to antidepressant treatments. Nature 1977, 266, 730–732. [Google Scholar] [CrossRef]
- Ozgur, B.G.; Aksu, H.; Birincioglu, M.; Dost, T. Antidepressant-like effects of the xanthine oxidase enzyme inhibitor allopurinol in rats. A comparison with fluoxetine. Pharmacol. Biochem. Behav. 2015, 138, 91–95. [Google Scholar] [CrossRef]
- Alvarez-Suarez, P.; Banqueri, M.; Vilella, M.; Méndez, M.; Arias, J.L. The effect of recording interval length on behavioral assessment using the forced swimming test. Revista Iberoamericana de Psicología y Salud 2015, 6, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Katz, R.; Roth, K.A.; Carroll, B. Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neurosci. Biobehav. Rev. 1981, 5, 247–251. [Google Scholar] [CrossRef] [Green Version]
- Cryan, J.F.; Valentino, R.J.; Lucki, I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci. Biobehav. Rev. 2005, 29, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Azmitia, E.C. Evolution of serotonin: Sunlight to suicide. In Handbook of the Behavioral Neurobiology of Serotonin; Muller, C.P., Jacobs, B.L., Eds.; Academic Press: Burlington, MA, USA, 2010. [Google Scholar]
- Chiroma, S.M.; Baharuldin, M.T.H.; Taib, C.N.M.; Amom, Z.; Jagadeesan, S.; Adenan, M.I.; Moklas, M.M. Protective effect of Centella asiatica against D-galactose and aluminium chloride induced rats: Behavioral and ultrastructural approaches. Biomed. Pharmacother. 2019, 109, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Kaundal, M.R.; Deshmukh, M. Akhtar, Protective effect of betulinic acid againstintracerebroventricular streptozotocin induced cognitive impairment and neuronal damage in rats: Possible neurotransmitters and neuroinflammatory mechanism. Pharmacol. Rep. 2018, 70, 540–548. [Google Scholar] [CrossRef]
- Redivo, D.D.; Schreiber, A.K.; Adami, E.R.; Ribeiro, D.E.; Joca, S.R.L.; Zanoveli, J.M.; Da Cunha, J.M. Effect of omega-3 polyunsaturated fatty acid treatment over mechanical allodynia and depressive-like behavior associated with experimental diabetes. Behav. Brain Res. 2016, 298, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Bohár, Z.; Martos, D.; Telegdy, G.; Vécsei, L. Antidepressant-like effects of kynurenic acid in a modified forced swim test. Pharmacol. Rep. 2020, 72, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Payne, J.L.; Maguire, J. Pathophysiological mechanisms implicated in postpartum depression. Front. Neuroendocr. 2019, 52, 165–180. [Google Scholar] [CrossRef]
- Charnay, Y.; Léger, L. Brain serotonergic circuitries. Dialog Clin. Neurosci. 2010, 12, 471–487. [Google Scholar]
- Bai, Y.; Song, L.; Dai, G.; Xu, M.; Zhu, L.; Zhang, W.; Jing, W.; Ju, W. Antidepressant effects of magnolol in a mouse model of depression induced by chronic corticosterone injection. Steroids 2018, 135, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, G.; Senturk, M.B.; Yildiz, P.; Cakmak, Y.; Budak, M.S.; Cakar, E. Serum serotonin, leptin, and adiponectin changes in women with postpartum depression: Controlled study. Arch. Gynecol. Obstet. 2017, 295, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Ji, E.-S.; Lee, J.-M.; Kim, T.-W.; Kim, Y.-M.; Kim, Y.-S.; Kim, K.-J. Treadmill exercise ameliorates depressive symptoms through increasing serotonin expression in postpartum depression rats. J. Exerc. Rehabil. 2017, 13, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Xie, H.; Krewski, D.; He, G. Plasma concentrations of neurotransmitters and postpartum depression. Cent. South Univ. Med Sci. 2018, 43, 274–281. [Google Scholar]
- Diamantopoulou, A.; Kalpachidou, T.; Aspiotis, G.; Gampierakis, I.; Stylianopoulou, F.; Stamatakis, A. An early experience of mild adversity involving temporary denial of maternal contact affects the serotonergic system of adult male rats and leads to a depressive-like phenotype and inability to adapt to a chronic social stress. Physiol. Behav. 2018, 184, 46–54. [Google Scholar] [CrossRef]
- Bortolotto, V.C.; Pinheiro, F.C.; Araujo, S.M.; Poetini, M.R.; Bertolazi, B.S.; De Paula, M.T.; Meichtry, L.B.; De Almeida, F.P.; Couto, S.D.F.; Jesse, C.R.; et al. Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine. Eur. J. Pharmacol. 2018, 822, 78–84. [Google Scholar] [CrossRef]
- Overgaard, A.; Lieblich, S.E.; Richardson, R.; Galea, L.A.; Frokjaer, V.G. Paroxetine blunts the corticosterone response to swim-induced stress and increases depressive-like behavior in a rat model of postpartum depression. Psychoneuroendocrinology 2018, 89, 223–228. [Google Scholar] [CrossRef]
- Aishwarya, S.; Rajendiren, S.; Kattimani, S.; Dhiman, P.; Haritha, S.; Ananthanarayanan, P. Homocysteine and serotonin: Association with postpartum depression. Asian J. Psychiatry 2013, 6, 473–477. [Google Scholar] [CrossRef]
- De Gomes, M.G.; Souza, L.C.; Goes, A.R.; Del Fabbro, L.; Filho, C.B.; Donato, F.; Prigol, M.; Luchese, C.; Roman, S.S.; Puntel, R.L.; et al. Fish oil ameliorates sickness behavior induced by lipopolysaccharide in aged mice through the modulation of kynurenine pathway. J. Nutr. Biochem. 2018, 58, 37–48. [Google Scholar] [CrossRef]
Composition | Amount/Percentage |
---|---|
Crude protein | 21–23% |
Crude fiber (max) | 5.0% |
Crude fat (min) | 3.0% |
Moisture (max) | 3.0% |
Calcium | 0.8–1.2% |
Phosphorus | 0.6–1.0% |
Nitrogen free extract | 49.0% |
Vitamin A | 10 M.I.U. |
Vitamin D3 | 2.5 M.I.U |
Vitamin E | 15 g |
Vitamin K | trace |
Vitamin B12 | trace |
Thiamine | trace |
Riboflavin | trace |
Pantothenic acid | trace |
Niacin | trace |
Pyridoxine | trace |
Choline | trace |
Santoquin | trace |
Microminerals | trace |
Groups | PPD | PPD + FO | PPD + FLX | PPD + PCPA | PPD + FO + PCPA | PPD + FLX + PCPA |
---|---|---|---|---|---|---|
Prefrontal Cortex | ||||||
5HT | 45.03 ± 2.1 | 48.60 ± 3.6 | 48.40 ± 4.7 | 47.98 ± 5.3 | 40.02 ± 2.1 | 42.42 ± 4.6 |
5HIAA | 13.18 ± 1.2 | 12.63 ± 1.9 | 10.68 ± 0.7 | 10.92 ± 0.9 | 10.60 ± 1.1 | 10.35 ± 1.0 |
5HIAA/5HT | 29.78 ± 3.3 | 27.30 ± 5.2 | 23.31 ± 2.9 | 15.53 ± 1.9 | 26.85 ± 3.1 | 25.77 ± 3.4 |
Hippocampus | ||||||
5HT | 42.80 ± 2.1 | 49.98 ± 3.4 | 49.48 ± 4.0 | 44.25 ± 2.4 | 43.77 ± 4.5 | 44.7 ± 0.8 |
5HIAA | 12.67 ± 1.9 | 6.02 ± 0.3 # | 5.78 ± 0.6 # | 10.97 ± 1.1 | 9.85 ± 1.1 | 11.067 ± 0.7 |
5HIAA/5HT | 19.57 ± 2.9 | 12.7 ± 1.1 # | 11.7 ± 0.9 # | 26.24 ± 2.7 | 25.26 ± 5.5 | 26.23 ± 1.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Aziz, N.U.; Chiroma, S.M.; Mohd Moklas, M.A.; Adenan, M.I.; Ismail, A.; Hidayat Baharuldin, M.T. Antidepressant-Like Properties of Fish Oil on Postpartum Depression-Like Rats Model: Involvement of Serotonergic System. Brain Sci. 2020, 10, 733. https://doi.org/10.3390/brainsci10100733
Abdul Aziz NU, Chiroma SM, Mohd Moklas MA, Adenan MI, Ismail A, Hidayat Baharuldin MT. Antidepressant-Like Properties of Fish Oil on Postpartum Depression-Like Rats Model: Involvement of Serotonergic System. Brain Sciences. 2020; 10(10):733. https://doi.org/10.3390/brainsci10100733
Chicago/Turabian StyleAbdul Aziz, Nurul Uyun, Samaila Musa Chiroma, Mohamad Aris Mohd Moklas, Mohd Ilham Adenan, Amin Ismail, and Mohamad Taufik Hidayat Baharuldin. 2020. "Antidepressant-Like Properties of Fish Oil on Postpartum Depression-Like Rats Model: Involvement of Serotonergic System" Brain Sciences 10, no. 10: 733. https://doi.org/10.3390/brainsci10100733
APA StyleAbdul Aziz, N. U., Chiroma, S. M., Mohd Moklas, M. A., Adenan, M. I., Ismail, A., & Hidayat Baharuldin, M. T. (2020). Antidepressant-Like Properties of Fish Oil on Postpartum Depression-Like Rats Model: Involvement of Serotonergic System. Brain Sciences, 10(10), 733. https://doi.org/10.3390/brainsci10100733