Nucleus Accumbens Functional Connectivity with the Frontoparietal Network Predicts Subsequent Change in Body Mass Index for American Children
Abstract
:1. Introduction
Aims
2. Materials and Methods
2.1. Design and Settings
2.2. Participants and Sampling
2.3. Neuroimaging Data Have Been Processed
2.4. Study Variables
2.4.1. Outcome
2.4.2. Independent Variable
2.4.3. Confounders
2.5. Main Data Analysis
2.6. Sensitivity Analysis
2.7. Ethics
3. Results
3.1. Descriptives
3.2. Bivariate Correlations
3.3. Multivariate Analysis
3.4. Multivariate Analysis
3.5. Sensitivity Analysis
4. Discussion
4.1. Implications
4.2. Limitations
4.3. Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
anthro_bmi_calc ~ rsfmri_cor_network.gordon_frontoparietal_subcort.aseg_accumbens.area.lh + race.4level + sex + high.educ.bl + married.bl + age + household.income.bl + hisp + rsfmri_cor_network.gordon_frontoparietal_subcort.aseg_accumbens.area.lh * sex Random: ~(1|abcd_site/rel_family_id) |
Level | All | F | M | p | |
---|---|---|---|---|---|
N | 10,184 | 3909 | 4168 | ||
BMI time 1 (mean (SD)) | 18.65 (3.90) | 18.62 (3.91) | 18.41 (3.69) | 0.013 | |
NAc functional connectivity with the frontoparietal network (left) (mean (SD)) | 79.01 (5.06) | −0.06 (0.16) | −0.04 (0.18) | 0.001 | |
Race (%) | White | 6802 (66.8) | 2576 (65.9) | 2859 (68.6) | 0.051 |
Black | 1456 (14.3) | 570 (14.6) | 566 (13.6) | ||
Asian | 218 (2.1) | 93 (2.4) | 78 (1.9) | ||
Other/Mixed | 1708 (16.8) | 670 (17.1) | 665 (16.0) | ||
Sex (%) | Female | 4860 (47.7) | 3909 (100.0) | 0 (0.0) | <0.001 |
Male | 5324 (52.3) | 0 (0.0) | 4168 (100.0) | ||
Parental Education (%) | <High School Diploma | 369 (3.6) | 144 (3.7) | 117 (2.8) | 0.142 |
High School Diploma/ General Educational Development | 837 (8.2) | 304 (7.8) | 339 (8.1) | ||
Some College | 2604 (25.6) | 987 (25.2) | 1110 (26.6) | ||
Bachelor | 2698 (26.5) | 1061 (27.1) | 1124 (27.0) | ||
Postgraduate Degree | 3676 (36.1) | 1413 (36.1) | 1478 (35.5) | ||
Family Married (%) | No | 3082 (30.3) | 1190 (30.4) | 1195 (28.7) | 0.085 |
Yes | 7102 (69.7) | 2719 (69.6) | 2973 (71.3) | ||
Age (mean (SD)) | 118.96 (7.47) | 118.93 (7.47) | 119.24 (7.53) | 0.060 | |
Household Income (%) | (<50K) | 2900 (28.5) | 1118 (28.6) | 1157 (27.8) | 0.508 |
(≥50K and <100K) | 2928 (28.8) | 1145 (29.3) | 1204 (28.9) | ||
(≥100K) | 4356 (42.8) | 1646 (42.1) | 1807 (43.4) | ||
Hispanic (%) | No | 8259 (81.1) | 3157 (80.8) | 3390 (81.3) | 0.531 |
Yes | 1925 (18.9) | 752 (19.2) | 778 (18.7) |
b | SE | t | p | sig | |
---|---|---|---|---|---|
Model 3 | |||||
NAc functional connectivity with the frontoparietal network | 0.77706 | 0.33632 | 2.31 | 0.020885 | * |
Sex (Male) | −0.29206 | 0.08307 | −3.52 | 0.0004409 | *** |
NAc functional connectivity with the frontoparietal network × Sex (Male) | −1.32806 | 0.44780 | −2.97 | 0.0030286 | ** |
References
- Dingess, P.M.; Darling, R.A.; Derman, R.C.; Wulff, S.S.; Hunter, M.L.; Ferrario, C.R.; Brown, T.E. Structural and Functional Plasticity within the Nucleus Accumbens and Prefrontal Cortex Associated with Time-Dependent Increases in Food Cue-Seeking Behavior. Neuropsychopharmacology 2017, 42, 2354–2364. [Google Scholar] [CrossRef]
- Gugusheff, J.R.; Ong, Z.Y.; Muhlhausler, B.S. Naloxone treatment alters gene expression in the mesolimbic reward system in ’junk food’ exposed offspring in a sex-specific manner but does not affect food preferences in adulthood. Physiol. Behav. 2014, 133, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Carr, K.D. Modulatory Effects of Food Restriction on Brain and Behavioral Effects of Abused Drugs. Curr. Pharm. Des. 2020, 26, 2363–2371. [Google Scholar] [CrossRef]
- Olivo, D.; Caba, M.; Gonzalez-Lima, F.; Rodriguez-Landa, J.F.; Corona-Morales, A.A. Metabolic activation of amygdala, lateral septum and accumbens circuits during food anticipatory behavior. Behav. Brain. Res. 2017, 316, 261–270. [Google Scholar] [CrossRef]
- Saul’skaya, N.B.; Mikhailova, M.O. Increased glutamate release into the intercellular space of the nucleus accumbens (N. accumbens) during substitution of food reinforcement with aversive or neutral stimuli. Neurosci. Behav. Physiol. 2004, 34, 109–113. [Google Scholar] [CrossRef]
- Romani-Perez, M.; Lepinay, A.L.; Alonso, L.; Rincel, M.; Xia, L.; Fanet, H.; Caille, S.; Cador, M.; Laye, S.; Vancassel, S.; et al. Impact of perinatal exposure to high-fat diet and stress on responses to nutritional challenges, food-motivated behaviour and mesolimbic dopamine function. Int. J. Obes. (Lond) 2017, 41, 502–509. [Google Scholar] [CrossRef]
- Salamone, J.D.; Mahan, K.; Rogers, S. Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol. Biochem. Behav. 1993, 44, 605–610. [Google Scholar] [CrossRef]
- Whishaw, I.Q.; Kornelsen, R.A. Two types of motivation revealed by ibotenic acid nucleus accumbens lesions: Dissociation of food carrying and hoarding and the role of primary and incentive motivation. Behav. Brain. Res. 1993, 55, 283–295. [Google Scholar] [CrossRef]
- Kask, A.; Schioth, H.B. Tonic inhibition of food intake during inactive phase is reversed by the injection of the melanocortin receptor antagonist into the paraventricular nucleus of the hypothalamus and central amygdala of the rat. Brain. Res. 2000, 887, 460–464. [Google Scholar] [CrossRef]
- Pan, Y.; Berman, Y.; Haberny, S.; Meller, E.; Carr, K.D. Synthesis, protein levels, activity, and phosphorylation state of tyrosine hydroxylase in mesoaccumbens and nigrostriatal dopamine pathways of chronically food-restricted rats. Brain. Res. 2006, 1122, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Siregar, E.; Carr, K.D. Striatal cell signaling in chronically food-restricted rats under basal conditions and in response to brief handling. Neurosci. Lett. 2006, 393, 243–248. [Google Scholar] [CrossRef]
- Deshmukh, R.R.; Sharma, P.L. Stimulation of accumbens shell cannabinoid CB(1) receptors by noladin ether, a putative endocannabinoid, modulates food intake and dietary selection in rats. Pharmacol. Res. 2012, 66, 276–282. [Google Scholar] [CrossRef]
- Nakazato, T. Striatal dopamine release in the rat during a cued lever-press task for food reward and the development of changes over time measured using high-speed voltammetry. Exp. Brain Res. 2005, 166, 137–146. [Google Scholar] [CrossRef]
- Singer, B.F.; Bryan, M.A.; Popov, P.; Scarff, R.; Carter, C.; Wright, E.; Aragona, B.J.; Robinson, T.E. The sensory features of a food cue influence its ability to act as an incentive stimulus and evoke dopamine release in the nucleus accumbens core. Learn. Mem. 2016, 23, 595–606. [Google Scholar] [CrossRef] [Green Version]
- Carr, K.D.; Cabeza de Vaca, S.; Sun, Y.; Chau, L.S. Reward-potentiating effects of D-1 dopamine receptor agonist and AMPAR GluR1 antagonist in nucleus accumbens shell and their modulation by food restriction. Psychopharmacology (Berl) 2009, 202, 731–743. [Google Scholar] [CrossRef] [Green Version]
- Naef, L.; Moquin, L.; Gratton, A.; Walker, C.D. Reduced anticipatory dopamine responses to food in rats exposed to high fat during early development. Int. J. Obes. (Lond) 2013, 37, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Vollbrecht, P.J.; Nobile, C.W.; Chadderdon, A.M.; Jutkiewicz, E.M.; Ferrario, C.R. Pre-existing differences in motivation for food and sensitivity to cocaine-induced locomotion in obesity-prone rats. Physiol. Behav. 2015, 152, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Uribe-Cerda, S.; Morselli, E.; Perez-Leighton, C. Updates on the neurobiology of food reward and their relation to the obesogenic environment. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 292–297. [Google Scholar] [CrossRef]
- van de Giessen, E.; de Bruin, K.; la Fleur, S.E.; van den Brink, W.; Booij, J. Triple monoamine inhibitor tesofensine decreases food intake, body weight, and striatal dopamine D2/D3 receptor availability in diet-induced obese rats. Eur. Neuropsychopharmacol. 2012, 22, 290–299. [Google Scholar] [CrossRef]
- Casquero-Veiga, M.; Garcia-Garcia, D.; Pascau, J.; Desco, M.; Soto-Montenegro, M.L. Stimulating the nucleus accumbens in obesity: A positron emission tomography study after deep brain stimulation in a rodent model. PLoS One 2018, 13, e0204740. [Google Scholar] [CrossRef]
- Aitken, T.J.; Greenfield, V.Y.; Wassum, K.M. Nucleus accumbens core dopamine signaling tracks the need-based motivational value of food-paired cues. J. Neurochem. 2016, 136, 1026–1036. [Google Scholar] [CrossRef] [Green Version]
- Tricomi, E.; Lempert, K.M. Value and probability coding in a feedback-based learning task utilizing food rewards. J Neurophysiol. 2015, 113, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Grottick, A.J.; Fletcher, P.J.; Higgins, G.A. Studies to investigate the role of 5-HT(2C) receptors on cocaine- and food-maintained behavior. J. Pharmacol. Exp. Ther. 2000, 295, 1183–1191. [Google Scholar]
- Gomez, A.A.; Shnitko, T.A.; Caref, K.L.; Nicola, S.M.; Robinson, D.L. Stimuli predicting high-calorie reward increase dopamine release and drive approach to food in the absence of homeostatic need. Nutr. Neurosci. 2020, 1–10. [Google Scholar] [CrossRef]
- Derman, R.C.; Ferrario, C.R. Enhanced incentive motivation in obesity-prone rats is mediated by NAc core CP-AMPARs. Neuropharmacology 2018, 131, 326–336. [Google Scholar] [CrossRef]
- Durst, M.; Konczol, K.; Balazsa, T.; Eyre, M.D.; Toth, Z.E. Reward-representing D1-type neurons in the medial shell of the accumbens nucleus regulate palatable food intake. Int. J. Obes. (Lond) 2019, 43, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Azzout-Marniche, D.; Chalvon-Demersay, T.; Pimentel, G.; Chaumontet, C.; Nadkarni, N.A.; Piedcoq, J.; Fromentin, G.; Tome, D.; Gaudichon, C.; Even, P.C. Obesity-prone high-fat-fed rats reduce caloric intake and adiposity and gain more fat-free mass when allowed to self-select protein from carbohydrate: Fat intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R1169-76. [Google Scholar] [CrossRef] [Green Version]
- Crespo, J.A.; Stockl, P.; Zorn, K.; Saria, A.; Zernig, G. Nucleus accumbens core acetylcholine is preferentially activated during acquisition of drug- vs food-reinforced behavior. Neuropsychopharmacology 2008, 33, 3213–3220. [Google Scholar] [CrossRef]
- Oginsky, M.F.; Ferrario, C.R. Eating "junk food" has opposite effects on intrinsic excitability of nucleus accumbens core neurons in obesity-susceptible versus -resistant rats. J. Neurophysiol. 2019, 122, 1264–1273. [Google Scholar] [CrossRef]
- Alsio, J.; Olszewski, P.K.; Norback, A.H.; Gunnarsson, Z.E.; Levine, A.S.; Pickering, C.; Schioth, H.B. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience 2010, 171, 779–787. [Google Scholar] [CrossRef]
- Brown, R.M.; Kupchik, Y.M.; Spencer, S.; Garcia-Keller, C.; Spanswick, D.C.; Lawrence, A.J.; Simonds, S.E.; Schwartz, D.J.; Jordan, K.A.; Jhou, T.C.; et al. Addiction-like Synaptic Impairments in Diet-Induced Obesity. Biol. Psychiatry 2017, 81, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Caraballo, Y.; Fetterly, T.L.; Jorgensen, E.T.; Nieto, A.M.; Brown, T.E.; Ferrario, C.R. Sex specific effects of "junk-food" diet on calcium permeable AMPA receptors and silent synapses in the nucleus accumbens core. Neuropsychopharmacology 2020. [Google Scholar] [CrossRef]
- Ong, Z.Y.; Muhlhausler, B.S. Maternal "junk-food" feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J. 2011, 25, 2167–2179. [Google Scholar] [CrossRef] [Green Version]
- Oginsky, M.F.; Maust, J.D.; Corthell, J.T.; Ferrario, C.R. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity. Psychopharmacology (Berl.) 2016, 233, 773–784. [Google Scholar] [CrossRef]
- Tan, Y.; Tan, J.; Deng, J.; Cui, W.; He, H.; Yang, F.; Deng, H.; Xiao, R.; Huang, Z.; Zhang, X.; et al. Alteration of Basal Ganglia and Right Frontoparietal Network in Early Drug-Naive Parkinson’s Disease during Heat Pain Stimuli and Resting State. Front. Hum. Neurosci. 2015, 9, 467. [Google Scholar] [CrossRef] [Green Version]
- Zoon, H.F.A.; de Bruijn, S.E.M.; Smeets, P.A.M.; de Graaf, C.; Janssen, I.M.C.; Schijns, W.; Aarts, E.O.; Jager, G.; Boesveldt, S. Altered neural responsivity to food cues in relation to food preferences, but not appetite-related hormone concentrations after RYGB-surgery. Behav. Brain. Res. 2018, 353, 194–202. [Google Scholar] [CrossRef]
- Krafft, C.E.; Schaeffer, D.J.; Schwarz, N.F.; Chi, L.; Weinberger, A.L.; Pierce, J.E.; Rodrigue, A.L.; Allison, J.D.; Yanasak, N.E.; Liu, T.; et al. Improved frontoparietal white matter integrity in overweight children is associated with attendance at an after-school exercise program. Dev. Neurosci. 2014, 36, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Park, B.Y.; Byeon, K.; Park, H.; Kim, Y.; Eun, Y.M.; Chung, J.H. The effects of high-frequency repetitive transcranial magnetic stimulation on resting-state functional connectivity in obese adults. Diabetes Obes. Metab. 2019, 21, 1956–1966. [Google Scholar] [CrossRef]
- Cerit, H.; Davidson, P.; Hye, T.; Moondra, P.; Haimovici, F.; Sogg, S.; Shikora, S.; Goldstein, J.M.; Evins, A.E.; Whitfield-Gabrieli, S.; et al. Resting-State Brain Connectivity Predicts Weight Loss and Cognitive Control of Eating Behavior After Vertical Sleeve Gastrectomy. Obesity (Silver Spring) 2019, 27, 1846–1855. [Google Scholar] [CrossRef]
- Silvah, J.H.; Marchini, J.S.; Martires Lima, C.M.; Ferreira Nicoletti, C.; Alexandre Santos, L.; Nobuyuki Itikawa, E.; Trevisan, A.C.; Arriva Pitella, F.; Kato, M.; Iucif Junior, N.; et al. Regional cerebral blood flow at rest in obesity. Nutrition 2020, 79–80, 110888. [Google Scholar] [CrossRef]
- Ding, Y.; Ji, G.; Li, G.; Zhang, W.; Hu, Y.; Liu, L.; Wang, Y.; Hu, C.; von Deneen, K.M.; Han, Y.; et al. Altered Interactions Among Resting-State Networks in Individuals with Obesity. Obesity (Silver Spring) 2020, 28, 601–608. [Google Scholar] [CrossRef]
- Park, B.Y.; Lee, M.J.; Kim, M.; Kim, S.H.; Park, H. Structural and Functional Brain Connectivity Changes Between People With Abdominal and Non-abdominal Obesity and Their Association With Behaviors of Eating Disorders. Front. Neurosci. 2018, 12, 741. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Park, B.Y.; Byeon, K.; Won, J.H.; Kim, M.; Kim, S.H.; Park, H. Multivariate association between brain function and eating disorders using sparse canonical correlation analysis. PLoS ONE 2020, 15, e0237511. [Google Scholar] [CrossRef]
- Pessoa, L.; Engelmann, J.B. Embedding reward signals into perception and cognition. Front. Neurosci. 2010, 4. [Google Scholar] [CrossRef] [Green Version]
- Alcohol Research: Current Reviews Editorial Staff. NIH’s Adolescent Brain Cognitive Development (ABCD) Study. Alcohol Res. 2018, 39, 97. [Google Scholar]
- Casey, B.J.; Cannonier, T.; Conley, M.I.; Cohen, A.O.; Barch, D.M.; Heitzeg, M.M.; Soules, M.E.; Teslovich, T.; Dellarco, D.V.; Garavan, H.; et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 2018, 32, 43–54. [Google Scholar] [CrossRef]
- Karcher, N.R.; O’Brien, K.J.; Kandala, S.; Barch, D.M. Resting-State Functional Connectivity and Psychotic-like Experiences in Childhood: Results From the Adolescent Brain Cognitive Development Study. Biol. Psychiatry 2019, 86, 7–15. [Google Scholar] [CrossRef]
- Lisdahl, K.M.; Sher, K.J.; Conway, K.P.; Gonzalez, R.; Feldstein Ewing, S.W.; Nixon, S.J.; Tapert, S.; Bartsch, H.; Goldstein, R.Z.; Heitzeg, M. Adolescent brain cognitive development (ABCD) study: Overview of substance use assessment methods. Dev. Cogn. Neurosci. 2018, 32, 80–96. [Google Scholar] [CrossRef]
- Luciana, M.; Bjork, J.M.; Nagel, B.J.; Barch, D.M.; Gonzalez, R.; Nixon, S.J.; Banich, M.T. Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 2018, 32, 67–79. [Google Scholar] [CrossRef]
- Auchter, A.M.; Hernandez Mejia, M.; Heyser, C.J.; Shilling, P.D.; Jernigan, T.L.; Brown, S.A.; Tapert, S.F.; Dowling, G.J. A description of the ABCD organizational structure and communication framework. Dev. Cogn. Neurosci. 2018, 32, 8–15. [Google Scholar] [CrossRef]
- Garavan, H.; Bartsch, H.; Conway, K.; Decastro, A.; Goldstein, R.Z.; Heeringa, S.; Jernigan, T.; Potter, A.; Thompson, W.; Zahs, D. Recruiting the ABCD sample: Design considerations and procedures. Dev. Cogn. Neurosci. 2018, 32, 16–22. [Google Scholar] [CrossRef]
- Bjork, J.M.; Straub, L.K.; Provost, R.G.; Neale, M.C. The ABCD study of neurodevelopment: Identifying neurocircuit targets for prevention and treatment of adolescent substance abuse. Curr. Treat. Options Psychiatry 2017, 4, 196–209. [Google Scholar] [CrossRef]
- Fair, D.A.; Miranda-Dominguez, O.; Snyder, A.Z.; Perrone, A.; Earl, E.A.; Van, A.N.; Koller, J.M.; Feczko, E.; Tisdall, M.D.; van der Kouwe, A.; et al. Correction of respiratory artifacts in MRI head motion estimates. Neuroimage 2020, 208, 116400. [Google Scholar] [CrossRef]
- Hagler, D.J.; Hatton, S.; Cornejo, M.D.; Makowski, C.; Fair, D.A.; Dick, A.S.; Sutherland, M.T.; Casey, B.J.; Barch, D.M.; Harms, M.P.; et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage 2019, 202, 116091. [Google Scholar] [CrossRef]
- Oterdoom, D.L.M.; van Dijk, G.; Verhagen, M.H.P.; Jiawan, V.C.R.; Drost, G.; Emous, M.; van Beek, A.P.; van Dijk, J.M.C. Therapeutic potential of deep brain stimulation of the nucleus accumbens in morbid obesity. Neurosurg. Focus 2018, 45, E10. [Google Scholar] [CrossRef] [Green Version]
- Shin, A.C.; Pistell, P.J.; Phifer, C.B.; Berthoud, H.R. Reversible suppression of food reward behavior by chronic mu-opioid receptor antagonism in the nucleus accumbens. Neuroscience 2010, 170, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Brown, H.D.; McCutcheon, J.E.; Cone, J.J.; Ragozzino, M.E.; Roitman, M.F. Primary food reward and reward-predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. Eur. J. Neurosci. 2011, 34, 1997–2006. [Google Scholar] [CrossRef] [Green Version]
- Soria-Gomez, E.; Matias, I.; Rueda-Orozco, P.E.; Cisneros, M.; Petrosino, S.; Navarro, L.; Di Marzo, V.; Prospero-Garcia, O. Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. Br. J. Pharmacol. 2007, 151, 1109–1116. [Google Scholar] [CrossRef]
- Herisson, F.M.; Waas, J.R.; Fredriksson, R.; Schioth, H.B.; Levine, A.S.; Olszewski, P.K. Oxytocin Acting in the Nucleus Accumbens Core Decreases Food Intake. J. Neuroendocrinol. 2016, 28. [Google Scholar] [CrossRef]
- Liu, X.; Gao, S.; Zhang, N.; Jin, T.; Sun, X.; Luan, X.; Xu, L.; Guo, F. The orexinergic neural pathway from the lateral hypothalamus to the nucleus accumbens and its regulation of palatable food intake. Neuropeptides 2020, 80, 102028. [Google Scholar] [CrossRef]
- Saul’skaia, N.B.; Mikhailova, M.O. Th effect of D2-dopamine receptor blockade on glutamate release into extracellular space of Nucleus accumbens during food reinforcement. Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova 2001, 51, 254–255. [Google Scholar]
- Meena, H.; Nakhate, K.T.; Kokare, D.M.; Subhedar, N.K. GABAA receptors in nucleus accumbens shell mediate the hyperphagia and weight gain following haloperidol treatment in rats. Life Sci. 2009, 84, 156–163. [Google Scholar] [CrossRef]
- Kalyanasundar, B.; Perez, C.I.; Luna, A.; Solorio, J.; Moreno, M.G.; Elias, D.; Simon, S.A.; Gutierrez, R. D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell. J. Neurophysiol. 2015, 114, 585–607. [Google Scholar] [CrossRef] [Green Version]
- Oginsky, M.F.; Goforth, P.B.; Nobile, C.W.; Lopez-Santiago, L.F.; Ferrario, C.R. Eating ’Junk-Food’ Produces Rapid and Long-Lasting Increases in NAc CP-AMPA Receptors: Implications for Enhanced Cue-Induced Motivation and Food Addiction. Neuropsychopharmacology 2016, 41, 2977–2986. [Google Scholar] [CrossRef] [Green Version]
- Waeiss, R.A.; Knight, C.P.; Engleman, E.A.; Hauser, S.R.; Rodd, Z.A. Co-administration of ethanol and nicotine heightens sensitivity to ethanol reward within the nucleus accumbens (NAc) shell and increasing NAc shell BDNF is sufficient to enhance ethanol reward in naive Wistar rats. J. Neurochem. 2020, 152, 556–569. [Google Scholar] [CrossRef]
- Assari, S. Additive Effects of Anxiety and Depression on Body Mass Index among Blacks: Role of Ethnicity and Gender. Int. Cardiovasc. Res. J. 2014, 8, 44–51. [Google Scholar]
- Assari, S.; Lankarani, M.M. The Association Between Obesity and Weight Loss Intention Weaker Among Blacks and Men than Whites and Women. J. Racial Ethn. Health Disparities 2015, 2, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Caldwell, C.H.; Zimmerman, M.A. Depressive Symptoms During Adolescence Predict Adulthood Obesity Among Black Females. J. Racial Ethn. Health Disparities 2018, 5, 774–781. [Google Scholar] [CrossRef]
- Assari, S.; Moghani Lankarani, M.; Caldwell, C.H.; Zimmerman, M.A. Fear of Neighborhood Violence During Adolescence Predicts Development of Obesity a Decade Later: Gender Differences Among African Americans. Arch. Trauma Res. 2016, 5, e31475. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Caldwell, C.H. Low Family Support and Risk of Obesity among Black Youth: Role of Gender and Ethnicity. Children (Basel) 2017, 4, 36. [Google Scholar] [CrossRef] [Green Version]
- Blostein, F.; Assari, S.; Caldwell, C.H. Gender and Ethnic Differences in the Association Between Body Image Dissatisfaction and Binge Eating Disorder among Blacks. J. Racial Ethn. Health Disparities 2017, 4, 529–538. [Google Scholar] [CrossRef]
- Assari, S.; Caldwell, C.H. Gender and Ethnic Differences in the Association Between Obesity and Depression Among Black Adolescents. J Racial Ethn Health Disparities 2015, 2, 481–493. [Google Scholar] [CrossRef]
- Assari, S.; Wisseh, C.; Bazargan, M. Obesity and Polypharmacy among African American Older Adults: Gender as the Moderator and Multimorbidity as the Mediator. Int. J. Environ. Res. Public Health 2019, 16, 2181. [Google Scholar] [CrossRef] [Green Version]
- Assari, S. Psychosocial Correlates of Body Mass Index in the United States: Intersection of Race, Gender and Age. Iran J. Psychiatry Behav. Sci. 2016, 10, e3458. [Google Scholar] [CrossRef] [Green Version]
- Assari, S.; Nikahd, A.; Malekahmadi, M.R.; Lankarani, M.M.; Zamanian, H. Race by Gender Group Differences in the Protective Effects of Socioeconomic Factors Against Sustained Health Problems Across Five Domains. J. Racial Ethn. Health Disparities 2016. [Google Scholar] [CrossRef]
- Carter, J.D.; Assari, S. Sustained Obesity and Depressive Symptoms over 6 Years: Race by Gender Differences in the Health and Retirement Study. Front. Aging Neurosci. 2016, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Glymour, M.M.; Weuve, J.; Berkman, L.F.; Kawachi, I.; Robins, J.M. When is baseline adjustment useful in analyses of change? An example with education and cognitive change. Am. J. Epidemiol. 2005, 162, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Mantione, M.; van de Brink, W.; Schuurman, P.R.; Denys, D. Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: Therapeutic and research implications: Case report. Neurosurgery 2010, 66, E218. [Google Scholar] [CrossRef]
- Cho, S.; Hachmann, J.T.; Balzekas, I.; In, M.H.; Andres-Beck, L.G.; Lee, K.H.; Min, H.K.; Jo, H.J. Resting-state functional connectivity modulates the BOLD activation induced by nucleus accumbens stimulation in the swine brain. Brain Behav. 2019, 9, e01431. [Google Scholar] [CrossRef] [Green Version]
- Harat, M.; Rudas, M.; Zielinski, P.; Birska, J.; Sokal, P. Nucleus accumbens stimulation in pathological obesity. Neurol. Neurochir. Pol. 2016, 50, 207–210. [Google Scholar] [CrossRef]
- Rezai, A.R.; Krishna, V.; Bogner, J.; Kramer, D.; Needleman, B.; Emerson, A.M.; Reider, C.; Fiore, G.J.; Corrigan, J.D. Letter: Feasibility of Nucleus Accumbens Deep Brain Stimulation for Morbid, Treatment-Refractory Obesity. Neurosurgery 2018, 82, E136–E137. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, N.L.; Wang, Y.; Wang, X.; Zhang, J.G.; Zhang, K. Deep brain stimulation of the nucleus accumbens shell induces anti-obesity effects in obese rats with alteration of dopamine neurotransmission. Neurosci. Lett. 2015, 589, 1–6. [Google Scholar] [CrossRef]
- Ross, S.E.; Lehmann Levin, E.; Itoga, C.A.; Schoen, C.B.; Selmane, R.; Aldridge, J.W. Deep brain stimulation in the central nucleus of the amygdala decreases ’wanting’ and ’liking’ of food rewards. Eur. J. Neurosci. 2016, 44, 2431–2445. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.L.; Sussman, E.S.; Pendharkar, A.V.; Azagury, D.E.; Bohon, C.; Halpern, C.H. Deep brain stimulation for obesity: Rationale and approach to trial design. Neurosurg. Focus 2015, 38, E8. [Google Scholar] [CrossRef]
- Dupre, D.A.; Tomycz, N.; Oh, M.Y.; Whiting, D. Deep brain stimulation for obesity: Past, present, and future targets. Neurosurg. Focus 2015, 38, E7. [Google Scholar] [CrossRef] [Green Version]
- Demos, K.E.; Heatherton, T.F.; Kelley, W.M. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J. Neurosci. 2012, 32, 5549–5552. [Google Scholar] [CrossRef]
- Welch, A.C.; Zhang, J.; Lyu, J.; McMurray, M.S.; Javitch, J.A.; Kellendonk, C.; Dulawa, S.C. Dopamine D2 receptor overexpression in the nucleus accumbens core induces robust weight loss during scheduled fasting selectively in female mice. Mol. Psychiatry 2019. [Google Scholar] [CrossRef]
- Shalev, U.; Robarts, P.; Shaham, Y.; Morales, M. Selective induction of c-Fos immunoreactivity in the prelimbic cortex during reinstatement of heroin seeking induced by acute food deprivation in rats. Behav. Brain Res. 2003, 145, 79–88. [Google Scholar] [CrossRef]
- Sadeghzadeh, F.; Babapour, V.; Haghparast, A. Role of dopamine D1-like receptor within the nucleus accumbens in acute food deprivation- and drug priming-induced reinstatement of morphine seeking in rats. Behav. Brain Res. 2015, 287, 172–181. [Google Scholar] [CrossRef]
- Shalev, U.; Finnie, P.S.; Quinn, T.; Tobin, S.; Wahi, P. A role for corticotropin-releasing factor, but not corticosterone, in acute food-deprivation-induced reinstatement of heroin seeking in rats. Psychopharmacology (Berl.) 2006, 187, 376–384. [Google Scholar] [CrossRef]
- D’Cunha, T.M.; Daoud, E.; Rizzo, D.; Bishop, A.B.; Russo, M.; Mourra, G.; Hamel, L.; Sedki, F.; Shalev, U. Augmentation of Heroin Seeking Following Chronic Food Restriction in the Rat: Differential Role for Dopamine Transmission in the Nucleus Accumbens Shell and Core. Neuropsychopharmacology 2017, 42, 1136–1145. [Google Scholar] [CrossRef] [Green Version]
- Tobin, S.; Sedki, F.; Abbas, Z.; Shalev, U. Antagonism of the dopamine D1-like receptor in mesocorticolimbic nuclei attenuates acute food deprivation-induced reinstatement of heroin seeking in rats. Eur. J. Neurosci. 2013, 37, 972–981. [Google Scholar] [CrossRef]
All | Female | Male | ||||
---|---|---|---|---|---|---|
n | % | n | % | n | % | |
Sex | ||||||
Female | 1831 | 48.4 | 1831 | 100.0 | - | - |
Male | 1953 | 51.6 | - | - | 1953 | 100.0 |
Age | ||||||
9 | 1811 | 47.9 | 902 | 49.3 | 909 | 46.7 |
10 | 1966 | 52.1 | 927 | 50.7 | 1039 | 53.3 |
Child ethnicity | ||||||
Non-Hispanic | 3015 | 79.7 | 1464 | 80.0 | 1551 | 79.4 |
Hispanic | 769 | 20.3 | 367 | 20.0 | 402 | 20.6 |
Child race | ||||||
White | 2914 | 77.0 | 1382 | 75.5 | 1532 | 78.4 |
Other | 334 | 8.8 | 176 | 9.6 | 158 | 8.1 |
Black | 536 | 14.2 | 273 | 14.9 | 263 | 13.5 |
Parental employment | ||||||
No | 1153 | 30.5 | 545 | 29.8 | 608 | 31.1 |
Yes | 2631 | 69.5 | 1286 | 70.2 | 1345 | 68.9 |
Parents married | ||||||
No | 1049 | 27.7 | 510 | 27.9 | 539 | 27.6 |
Yes | 2735 | 72.3 | 1321 | 72.1 | 1414 | 72.4 |
Mean | SD | Mean | SD | Mean | SD | |
Parent education (y) | 16.89 | 2.63 | 16.96 | 2.59 | 16.82 | 2.66 |
Family income (1–10) | 7.51 | 2.17 | 7.56 | 2.12 | 7.46 | 2.22 |
BMI (baseline) | 18.53 | 3.93 | 18.59 | 4.03 | 18.48 | 3.84 |
BMI (1 y) * | 20.10 | 3.7. | 20.88 | 5.37 | 19.37 | 4.43 |
Right NAc functional connectivity with the frontoparietal network | −0.01 | 0.15 | −0.01 | 0.14 | −0.01 | 0.16 |
Left NAc functional connectivity with the frontoparietal network | −0.05 | 0.17 | −0.06 | 0.16 | −0.05 | 0.17 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Sex (Male) | 1 | 0.03 | −0.03 | −0.02 | 0.01 | 0.00 | −0.02 | −0.03 | −0.02 | −0.01 | −0.02 | −0.02 | 0.03 * |
2. Age (10 y) | 1 | 0.01 | 0.01 | −0.01 | 0.00 | 0.02 | 0.04 * | 0.05 ** | 0.09 ** | −0.01 | 0.00 | −0.01 | |
3. Race (Black) | 1 | −0.13 ** | 0.27 ** | −0.08 ** | −0.04 * | −0.17 ** | −0.15 ** | 0.05 ** | 0.00 | −0.03 | −0.02 | ||
4. Race (Other) | 1 | −0.09 ** | −0.29 ** | −0.01 | −0.13 ** | −0.28 ** | 0.16 ** | 0.01 | −0.04 * | 0.04 ** | |||
5. Ethnicity (Hispanic) | 1 | −0.15 ** | −0.07 ** | −0.37 ** | −0.31 ** | 0.18 ** | 0.01 | −0.01 | 0.00 | ||||
6. Parents married | 1 | 0.02 | 0.29 ** | 0.49 ** | −0.15 ** | −0.05 ** | 0.05 ** | −0.03 | |||||
7. Parents employed | 1 | 0.23 ** | 0.23 ** | −0.01 | 0.01 | 0.02 | 0.03 | ||||||
8. Parent education (y) | 1 | 0.60 ** | −0.18 ** | −0.01 | 0.04 * | −0.02 | |||||||
9. Family Income | 1 | −0.20 ** | −0.01 | 0.02 | 0.00 | ||||||||
10. BMI (baseline) | 1 | 0.10 ** | −0.03 | 0.00 | |||||||||
11. BMI (1 y) | 1 | −0.04 ** | −0.06 ** | ||||||||||
12. Right NAc | 1 | 0.00 | |||||||||||
13. Left NAc | 1 |
b | SE | 95% CI | t | p | b | SE | 95% CI | t | p | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Right | Left | |||||||||||
Model 1 | ||||||||||||
Sex (Male) | −1.45 | 1.32 | −4.05 | 1.14 | −1.10 | 0.272 | −1.20 | 1.32 | −3.79 | 1.38 | −0.91 | 0.362 |
Age (10 y) | −1.32 | 1.33 | −3.93 | 1.29 | −0.99 | 0.320 | −1.42 | 1.33 | −4.01 | 1.18 | −1.07 | 0.285 |
Race (Other) | −0.66 | 2.54 | −5.65 | 4.33 | −0.26 | 0.796 | −0.66 | 2.54 | −5.64 | 4.32 | −0.26 | 0.796 |
Race (Black) | −1.33 | 2.11 | −5.46 | 2.81 | −0.63 | 0.529 | −0.73 | 2.10 | −4.85 | 3.39 | −0.35 | 0.729 |
Ethnicity (Hispanic) | −0.35 | 1.89 | −4.06 | 3.36 | −0.19 | 0.853 | −0.30 | 1.89 | −4.00 | 3.40 | −0.16 | 0.874 |
Married household | −3.91 | 1.75 | −7.34 | −0.47 | −2.23 | 0.026 | −4.21 | 1.75 | −7.64 | −0.79 | −2.41 | 0.016 |
Parents employed | 0.52 | 1.52 | −2.47 | 3.50 | 0.34 | 0.734 | 0.62 | 1.52 | −2.36 | 3.59 | 0.41 | 0.684 |
Parent education years (1–21) | 0.09 | 0.34 | −0.58 | 0.76 | 0.27 | 0.787 | 0.05 | 0.34 | −0.62 | 0.72 | 0.14 | 0.886 |
Family income | 0.33 | 0.44 | −0.53 | 1.18 | 0.74 | 0.456 | 0.39 | 0.44 | −0.47 | 1.25 | 0.89 | 0.371 |
BMI baseline | 0.93 | 0.18 | 0.58 | 1.27 | 5.26 | < 0.001 | 0.92 | 0.18 | 0.58 | 1.27 | 5.25 | < 0.001 |
Accumbens area | −11.43 | 4.50 | −20.25 | −2.61 | −2.54 | 0.011 | −14.51 | 4.00 | −22.35 | −6.66 | −3.63 | < 0.001 |
Model 2 | ||||||||||||
Sex (Male) | −1.21 | 1.32 | −3.81 | 1.38 | −0.92 | 0.360 | 0.43 | 1.38 | −2.28 | 3.13 | 0.31 | 0.757 |
Age (10 y) | −1.41 | 1.33 | −4.01 | 1.20 | −1.06 | 0.289 | −1.40 | 1.32 | −4.00 | 1.19 | −1.06 | 0.289 |
Race (Other) | −0.83 | 2.54 | −5.82 | 4.15 | −0.33 | 0.743 | −0.68 | 2.53 | −5.65 | 4.29 | −0.27 | 0.788 |
Race (Black) | −1.15 | 2.11 | −5.29 | 2.98 | −0.55 | 0.584 | −0.87 | 2.10 | −4.99 | 3.24 | −0.42 | 0.677 |
Ethnicity (Hispanic) | −0.42 | 1.89 | −4.13 | 3.29 | −0.22 | 0.826 | −0.54 | 1.89 | −4.24 | 3.15 | −0.29 | 0.773 |
Married household | −3.81 | 1.75 | −7.25 | −0.38 | −2.18 | 0.030 | −4.13 | 1.74 | −7.55 | −0.71 | −2.37 | 0.018 |
Parents employed | 0.50 | 1.52 | −2.48 | 3.48 | 0.33 | 0.741 | 0.72 | 1.51 | −2.25 | 3.69 | 0.48 | 0.634 |
Parent education years (1–21) | 0.09 | 0.34 | −0.58 | 0.76 | 0.27 | 0.789 | 0.04 | 0.34 | −0.62 | 0.71 | 0.13 | 0.898 |
Family income | 0.31 | 0.44 | −0.55 | 1.17 | 0.71 | 0.477 | 0.37 | 0.44 | −0.49 | 1.22 | 0.84 | 0.400 |
BMI baseline | 0.93 | 0.18 | 0.58 | 1.27 | 5.25 | < 0.001 | 0.93 | 0.18 | 0.58 | 1.27 | 5.29 | < 0.001 |
Accumbens area | −24.14 | 6.58 | −37.04 | −11.23 | −3.67 | < 0.001 | −31.90 | 5.94 | −43.54 | −20.26 | −5.37 | < 0.001 |
Sex (male) × Accumbens area | 23.79 | 9.01 | 6.13 | 41.45 | 2.64 | 0.008 | 31.69 | 8.00 | 16.00 | 47.38 | 3.96 | < 0.001 |
b | SE | 95% CI | t | p | B | SE | 95% CI | t | P | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Right | Left | |||||||||||
Model 3 | ||||||||||||
Age (10 y) | −2.97 | 2.75 | −8.37 | 2.43 | −1.08 | 0.281 | −2.98 | 2.74 | −8.36 | 2.39 | −1.09 | 0.276 |
Race (Other) | −1.39 | 5.04 | −11.28 | 8.50 | −0.28 | 0.783 | −1.12 | 5.02 | −10.97 | 8.73 | −0.22 | 0.823 |
Race (Black) | −2.39 | 4.25 | −10.72 | 5.93 | −0.56 | 0.573 | −1.90 | 4.23 | −10.20 | 6.40 | −0.45 | 0.654 |
Ethnicity (Hispanic) | −1.39 | 3.95 | −9.14 | 6.35 | −0.35 | 0.724 | −1.72 | 3.94 | −9.44 | 6.00 | −0.44 | 0.662 |
Married household | −7.74 | 3.58 | −14.78 | −0.71 | −2.16 | 0.031 | −8.39 | 3.57 | −15.38 | −1.39 | −2.35 | 0.019 |
Parents employed | 0.96 | 3.16 | −5.25 | 7.17 | 0.30 | 0.762 | 1.45 | 3.16 | −4.75 | 7.64 | 0.46 | 0.647 |
Parent education years (1–21) | 0.20 | 0.72 | −1.21 | 1.62 | 0.28 | 0.779 | 0.10 | 0.72 | −1.31 | 1.51 | 0.14 | 0.891 |
Family income | 0.73 | 0.90 | −1.03 | 2.49 | 0.82 | 0.415 | 0.84 | 0.89 | −0.91 | 2.60 | 0.94 | 0.345 |
BMI baseline | 0.90 | 0.36 | 0.20 | 1.59 | 2.51 | 0.012 | 0.90 | 0.36 | 0.20 | 1.60 | 2.53 | 0.012 |
Accumbens area | −23.93 | 9.48 | −42.52 | −5.33 | −2.52 | 0.012 | −32.31 | 8.55 | −49.07 | −15.55 | −3.78 | < 0.001 |
Model 4 | ||||||||||||
Age (10 y) | −0.06 | 0.10 | −0.26 | 0.14 | −0.54 | 0.586 | −0.05 | 0.10 | −0.25 | 0.15 | −0.49 | 0.626 |
Race (Other) | −0.06 | 0.20 | −0.46 | 0.34 | −0.30 | 0.765 | −0.06 | 0.20 | −0.46 | 0.34 | −0.29 | 0.771 |
Race (Black) | 0.18 | 0.17 | −0.15 | 0.50 | 1.07 | 0.284 | 0.19 | 0.17 | −0.13 | 0.52 | 1.15 | 0.250 |
Ethnicity (Hispanic) | 0.19 | 0.14 | −0.09 | 0.47 | 1.32 | 0.189 | 0.18 | 0.14 | −0.10 | 0.47 | 1.27 | 0.203 |
Married household | −0.07 | 0.14 | −0.34 | 0.20 | −0.50 | 0.614 | −0.07 | 0.14 | −0.34 | 0.19 | −0.54 | 0.586 |
Parents employed | 0.11 | 0.12 | −0.11 | 0.34 | 0.98 | 0.325 | 0.10 | 0.12 | −0.12 | 0.33 | 0.89 | 0.372 |
Parent education years (1–21) | −0.02 | 0.03 | −0.07 | 0.03 | −0.86 | 0.391 | −0.02 | 0.03 | −0.07 | 0.03 | −0.85 | 0.396 |
Family income | −0.05 | 0.03 | −0.11 | 0.02 | −1.37 | 0.170 | −0.05 | 0.03 | −0.11 | 0.02 | −1.41 | 0.159 |
BMI baseline | 0.98 | 0.01 | 0.96 | 1.01 | 70.80 | < 0.001 | 0.98 | 0.01 | 0.96 | 1.01 | 70.85 | < 0.001 |
Accumbens area | −0.41 | 0.34 | −1.08 | 0.26 | −1.21 | 0.227 | 0.15 | 0.30 | −0.44 | 0.73 | 0.49 | 0.621 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assari, S.; Boyce, S.; Bazargan, M. Nucleus Accumbens Functional Connectivity with the Frontoparietal Network Predicts Subsequent Change in Body Mass Index for American Children. Brain Sci. 2020, 10, 703. https://doi.org/10.3390/brainsci10100703
Assari S, Boyce S, Bazargan M. Nucleus Accumbens Functional Connectivity with the Frontoparietal Network Predicts Subsequent Change in Body Mass Index for American Children. Brain Sciences. 2020; 10(10):703. https://doi.org/10.3390/brainsci10100703
Chicago/Turabian StyleAssari, Shervin, Shanika Boyce, and Mohsen Bazargan. 2020. "Nucleus Accumbens Functional Connectivity with the Frontoparietal Network Predicts Subsequent Change in Body Mass Index for American Children" Brain Sciences 10, no. 10: 703. https://doi.org/10.3390/brainsci10100703
APA StyleAssari, S., Boyce, S., & Bazargan, M. (2020). Nucleus Accumbens Functional Connectivity with the Frontoparietal Network Predicts Subsequent Change in Body Mass Index for American Children. Brain Sciences, 10(10), 703. https://doi.org/10.3390/brainsci10100703