Assessment of Executive Function in Patients with Traumatic Brain Injury with the Wisconsin Card-Sorting Test
Mild and Moderate Traumatic Brain Injuries: Diagnosis, Assessment Tools, Management and Factors Influencing Recovery
)
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Availability of Data and Material
Appendix A
Reference | [50] | [51] | [52] | [53] | [54] | [55] | [56] | |||||||
Rater 1 | Rater 2 | Rater 1 | Rater 2 | Rater 1 | Rater 2 | Rater 1 | Rater 2 | Rater 1 | Rater 2 | Rater 1 | Rater 2 | Rater 1 | Rater 2 | |
1. Did the trial address a clearly focused issue? | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
2. Was the assignment of patients to treatments randomised? | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
3. Were all of the patients who entered the trial properly accounted for at its conclusion? | ✓ | x | ✓ | ✓ | ✓ | x | ✓ | x | ✓ | x | ✓ | ✓ | ✓ | x |
4. Were patients, health workers and study personnel ‘blind’ to treatment? | x | ? | x | ? | ✓ | ✓ | x | ? | ✓ | ✓ | ? | ? | x | ? |
5. Were the groups similar at the start of the trial? | ✓ | x | ✓ | x | ✓ | x | ✓ | x | ✓ | ✓ | ✓ | x | ? | x |
6. Aside from the experimental intervention, were the groups treated equally? | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
*Was the estimated treatment effect adequately reported? | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
9. Can the results be applied to the local population, or in your context? | ✓ | x | ✓ | x | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | x | ✓ | x | ✓ |
10. Were all clinically important outcomes considered? | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
11. Are the benefits worth the harms and costs? | ✓ | ✓ | ✓ | x | ✓ | ✓ | ✓ | ✓ | ✓ | x | ✓ | ✓ | ✓ | ✓ |
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2019, 130, 1080–1097. [Google Scholar] [CrossRef] [Green Version]
- Baxendale, S.; Heaney, D.; Rugg-Gunn, F.; Friedland, D. Neuropsychological outcomes following traumatic brain injury. Pr. Neurol. 2019, 19, 476–482. [Google Scholar] [CrossRef]
- Haller, C.S.; Walder, B. Severe traumatic brain injury in high-income countries. Swiss Arch. Neurol Psychiatry 2015, 166, 114–119. [Google Scholar]
- Cristofori, I.; Grafman, J. Executive Functions After Traumatic Brain Injury. Exec. Funct. Health Dis. 2017, 2017, 421–443. [Google Scholar] [CrossRef]
- Azouvi, P.; Arnould, A.; Dromer, E.; Vallat-Azouvi, C. Neuropsychology of traumatic brain injury: An expert overview. Rev. Neurol. 2017, 173, 461–472. [Google Scholar] [CrossRef] [PubMed]
- The Brain Injury Association. Executive Dysfunction after Brain Injury. 2020. Available online: https://www.headway.org.uk/media/2801/executive-dysfunction-after-brain-injury-factsheet.pdf (accessed on 5 May 2020).
- Podell, K.; Gifford, K.; Bougakov, D.; Goldberg, E. Neuropsychological Assessment in Traumatic Brain Injury. Psychiatr. Clin. North Am. 2010, 33, 855–876. [Google Scholar] [CrossRef] [PubMed]
- Laxe, S.; Tomás, E.C.; Monsalvez, B.C. Instrumentos de medida más frecuentemente empleados en la valoración del traumatismo craneoencefálico. Rehabilitación 2014, 48, 175–181. [Google Scholar] [CrossRef]
- Nyhus, E.; Barceló, F. The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain Cogn. 2009, 71, 437–451. [Google Scholar] [CrossRef]
- Kong, A.P.-H.; Abutalebi, J.; Lam, K.S.-Y.; Weekes, B. Executive and Language Control in the Multilingual Brain. Behav. Neurol. 2014, 2014, 527951. [Google Scholar] [CrossRef]
- Kwak, E.H.; Wi, S.; Kim, M.; Pyo, S.; Shin, Y.-K.; Oh, K.J.; Han, K.; Kim, Y.W.; Cho, S. Factors affecting cognition and emotion in patients with traumatic brain injury. NeuroRehabilitation 2020, 46, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.B.; Lee-Wilk, T.; Kok, B.C.; Wilk, J.E. Interdisciplinary rehabilitation of mild TBI and PTSD: A case report. Brain Inj. 2011, 25, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Chaves, C.; Trzesniak, C.; Derenusson, G.N.; Araújo, D.; Wichert-Ana, L.; Machado-De-Sousa, J.P.; Jr, C.G.C.; Nardi, A.E.; Zuardi, A.W.; Crippa, J.A.D.S.; et al. Late-onset social anxiety disorder following traumatic brain injury. Brain Inj. 2012, 26, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Van Horn, J.D.; Irimia, A.; Torgerson, C.M.; Bhattrai, A.; Jacokes, Z.; Vespa, P.M. Mild cognitive impairment and structural brain abnormalities in a sexagenarian with a history of childhood traumatic brain injury. J. Neurosci. Res. 2017, 96, 652–660. [Google Scholar] [CrossRef] [Green Version]
- Thomas-Antérion, C.; Truche, A.; Sciessere, K.; Extier, C. Spontaneous confabulations and behavioral and cognitive dysexecutive syndrome. Ann. Phys. Rehabil. Med. 2012, 55, 44–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quijano-Martínez, M.C.; Cuervo-Cuesta, M.T. Cognitive impairment after traumatic brain injury. Acta Colomb Psicol. 2011, 14, 71–80. [Google Scholar]
- García-Molina, A.; Tormos, J.; Bernabeu, M.; Junqué, C.; Roig-Rovira, T. Do traditional executive measures tell us anything about daily-life functioning after traumatic brain injury in Spanish-speaking individuals? Brain Inj. 2012, 26, 864–874. [Google Scholar] [CrossRef]
- Leung, J.; Fereday, S.; Sticpewich, B.; Hanna, J. Extra practice outside therapy sessions to maximize training opportunity during inpatient rehabilitation after traumatic brain injury. Brain Inj. 2018, 32, 915–925. [Google Scholar] [CrossRef]
- Krasovsky, T.; Landa, J.; Bar, O.; Jaana, A.-A.; Livny, A.; Tsarfaty, G.; Silberg, T. Functional Plasticity in the Absence of Structural Change. J. Child Neurol. 2017, 32, 505–511. [Google Scholar] [CrossRef]
- Barney, S.J.; Allen, D.N.; Thaler, N.S.; Park, B.S.; Strauss, G.P.; Mayfield, J. Neuropsychological and Behavioral Measures of Attention Assess Different Constructs in Children with Traumatic Brain Injury. Clin. Neuropsychol. 2011, 25, 1145–1157. [Google Scholar] [CrossRef]
- Formisano, R.; Longo, E.; Azicnuda, E.; Silvestro, D.; D’Ippolito, M.; Truelle, J.-L.; Von Steinbüchel, N.; Von Wild, K.; Wilson, L.; Rigon, J.; et al. Quality of life in persons after traumatic brain injury as self-perceived and as perceived by the caregivers. Neurol. Sci. 2016, 38, 279–286. [Google Scholar] [CrossRef]
- Homaifar, B.Y.; Shura, R.D.; Miskey, H.M.; Yoash-Gantz, R.E.; Rowland, J. The Relationship of Suicidal Ideation to Objective and Subjective Executive Functioning. Mil. Psychol. 2016, 28, 185–191. [Google Scholar] [CrossRef]
- Lucas, M.; Buchanan, C. The Tinker Toy Test as a Measure of the Dysexecutive Syndrome in Those from Differing Socio-Economic Backgrounds. South Afr. J. Psychol. 2012, 42, 381–388. [Google Scholar] [CrossRef]
- García-Molina, A.; Guitart, M.B.; Roig-Rovira, T. [Traumatic brain injury and daily life: The role of executive function]. Psicothema 2010, 22, 430–435. [Google Scholar] [PubMed]
- Karr, J.E.; Rau, H.K.; Shofer, J.B.; Hendrickson, R.C.; Peskind, E.R.; Pagulayan, K.F. Variables associated with subjective cognitive change among Iraq and Afghanistan war Veterans with blast-related mild traumatic brain injury. J. Clin. Exp. Neuropsychol. 2019, 41, 680–693. [Google Scholar] [CrossRef]
- Shadli, R.M.; Pieter, M.S.; Yaacob, M.J.; Rashid, F.A. APOE genotype and neuropsychological outcome in mild-to-moderate traumatic brain injury: A pilot study. Brain Inj. 2011, 25, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Tunvirachaisakul, C.; Thavichachart, N.; Worakul, P. Executive dysfunction among mild traumatic brain injured patients in Northeastern Thailand. Asian Biomed. 2017, 5, 407–411. [Google Scholar] [CrossRef]
- Galetto, V.; Andreetta, S.; Zettin, M.; Marini, A. Patterns of impairment of narrative language in mild traumatic brain injury. J. Neurolinguist. 2013, 26, 649–661. [Google Scholar] [CrossRef]
- Zimmermann, N.; Gindri, G.; De Oliveira, C.R.; Fonseca, R.P. Pragmatic and executive functions in traumatic brain injury and right brain damage: An exploratory comparative study. Dement. Neuropsychol. 2011, 5, 337–345. [Google Scholar] [CrossRef]
- Hanks, R.A.; Jackson, A.M.; Crisanti, L.K. Predictive validity of a brief outpatient neuropsychological battery in individuals 1–25 years post traumatic brain injury. Clin. Neuropsychol. 2016, 30, 1074–1086. [Google Scholar] [CrossRef]
- Kumar, S.; Rao, S.L.; Chandramouli, B.A.; Pillai, S. Reduced contribution of executive functions in impaired working memory performance in mild traumatic brain injury patients. Clin. Neurol. Neurosurg. 2013, 115, 1326–1332. [Google Scholar] [CrossRef]
- Dardier, V.; Bernicot, J.; Delanoë, A.; Vanberten, M.; Fayada, C.; Chevignard, M.; Delaye, C.; Laurent-Vannier, A.; Dubois, B. Severe traumatic brain injury, frontal lesions, and social aspects of language use: A study of French-speaking adults. J. Commun. Disord. 2011, 44, 359–378. [Google Scholar] [CrossRef] [PubMed]
- Marini, A.; Zettin, M.; Bencich, E.; Bosco, F.M.; Galetto, V. Severity effects on discourse production after TBI. J. Neurolinguist. 2017, 44, 91–106. [Google Scholar] [CrossRef]
- Heled, E.; Hoofien, D.; Margalit, D.; Natovich, R.; Agranov, E. The Delis–Kaplan Executive Function System Sorting Test as an evaluative tool for executive functions after severe traumatic brain injury: A comparative study. J. Clin. Exp. Neuropsychol. 2012, 34, 151–159. [Google Scholar] [CrossRef]
- Hanks, R.; Millis, S.; Scott, S.; Gattu, R.; O’Hara, N.B.; Haacke, M.; Kou, Z. The relation between cognitive dysfunction and diffusion tensor imaging parameters in traumatic brain injury. Brain Inj. 2018, 33, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Bivona, U.; Formisano, R.; De Laurentiis, S.; Accetta, N.; Di Cosimo, M.R.; Massicci, R.; Ciurli, M.P.; Azicnuda, E.; Silvestro, D.; Sabatini, U.; et al. Theory of mind impairment after severe traumatic brain injury and its relationship with caregivers’ quality of life. Restor. Neurol. Neurosci. 2015, 33, 335–345. [Google Scholar] [CrossRef]
- Strazzer, S.; Rocca, M.A.; Molteni, E.; De Meo, E.; Recla, M.; Valsasina, P.; Arrigoni, F.; Galbiati, S.; Bardoni, A.; Filippi, M. Altered Recruitment of the Attention Network Is Associated with Disability and Cognitive Impairment in Pediatric Patients with Acquired Brain Injury. Neural Plast. 2015, 2015, 104282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiteside, D.; Caraher, K.; E Hahn-Ketter, A.; Gaasedelen, O.; Basso, M.R. Classification accuracy of individual and combined executive functioning embedded performance validity measures in mild traumatic brain injury. Appl. Neuropsychol. Adult 2018, 26, 472–481. [Google Scholar] [CrossRef]
- Marini, A.; Zettin, M.; Galetto, V. Cognitive correlates of narrative impairment in moderate traumatic brain injury. Neuropsychol. 2014, 64, 282–288. [Google Scholar] [CrossRef]
- Krpan, K.M.; Stuss, D.T.; Anderson, N.D. Coping behaviour following traumatic brain injury: What makes a planner plan and an avoider avoid? Brain Inj. 2011, 25, 989–996. [Google Scholar] [CrossRef]
- Crowe, S.F.; Crowe, L.M. Does the presence of posttraumatic anosmia mean that you will be disinhibited? J. Clin. Exp. Neuropsychol. 2013, 35, 298–308. [Google Scholar] [CrossRef]
- Ord, J.S.; Greve, K.W.; Bianchini, K.J.; Aguerrevere, L.E. Executive dysfunction in traumatic brain injury: The effects of injury severity and effort on the Wisconsin Card Sorting Test. J. Clin. Exp. Neuropsychol. 2009, 32, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Brenner, L.A.; Bahraini, N.; Homaifar, B.Y.; Monteith, L.L.; Nagamoto, H.; Dorsey-Holliman, B.; Forster, J.E. Executive Functioning and Suicidal Behavior Among Veterans with and Without a History of Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2015, 96, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Pereira, N.; Holz, M.; Pereira, A.H.; Bresolin, A.P.; Zimmermann, N.; Fonseca, R.P. Frecuencia de déficits neuropsicológicos post lesión cerebral traumática. Acta Colombiana de Psicología 2016, 19, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Ciurli, M.P.; Bivona, U.; Barba, C.; Onder, G.; Silvestro, D.; Azicnuda, E.; Rigon, J.; Formisano, R. Metacognitive unawareness correlates with executive function impairment after severe traumatic brain injury. J. Int. Neuropsychol. Soc. 2010, 16, 360–368. [Google Scholar] [CrossRef]
- Zakzanis, K.K.; Grimes, K.M.; Uzzaman, S.; Schmuckler, M.A. Prospection and its relationship to instrumental activities of daily living in patients with mild traumatic brain injury with cognitive impairment. Brain Inj. 2016, 30, 986–992. [Google Scholar] [CrossRef]
- Homaifar, B.Y.; Brenner, L.A.; Forster, J.E.; Nagamoto, H. Traumatic brain injury, executive functioning, and suicidal behavior: A brief report. Rehabil. Psychol. 2012, 57, 337–341. [Google Scholar] [CrossRef]
- Matsushita, M.; Hosoda, K.; Naitoh, Y.; Yamashita, H.; Kohmura, E. Utility of diffusion tensor imaging in the acute stage of mild to moderate traumatic brain injury for detecting white matter lesions and predicting long-term cognitive function in adults. J. Neurosurg. 2011, 115, 130–139. [Google Scholar] [CrossRef]
- Soldatovic-Stajic, B.; Misic-Pavkov, G.; Bozić, K.; Novovic, Z.; Gajic, Z. Neuropsychological and neurophysiological evaluation of cognitive deficits related to the severity of traumatic brain injury. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1632–1637. [Google Scholar]
- Twamley, E.W.; Jak, A.J.; Delis, D.C.; Bondi, M.W.; Lohr, J.B. Cognitive Symptom Management and Rehabilitation Therapy (CogSMART) for Veterans with traumatic brain injury: Pilot randomized controlled trial. J. Rehabil. Res. Dev. 2014, 51, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Twamley, E.W.; Thomas, K.R.; Gregory, A.M.; Jak, A.J.; Bondi, M.W.; Delis, D.C.; Lohr, J.B. CogSMART Compensatory Cognitive Training for Traumatic Brain Injury. J. Head Trauma Rehabil. 2015, 30, 391–401. [Google Scholar] [CrossRef] [Green Version]
- High, W.M.; Briones-Galang, M.; Clark, J.A.; Gilkison, C.; Mossberg, K.A.; Zgaljardic, D.J.; Masel, B.E.; Urban, R.J. Effect of Growth Hormone Replacement Therapy on Cognition after Traumatic Brain Injury. J. Neurotrauma 2010, 27, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Cantor, J.; Ashman, T.; Dams-O’Connor, K.; Dijkers, M.P.; Gordon, W.; Spielman, L.; Tsaousides, T.; Allen, H.; Nguyen, M.; Oswald, J. Evaluation of the Short-Term Executive Plus Intervention for Executive Dysfunction After Traumatic Brain Injury: A Randomized Controlled Trial with Minimization. Arch. Phys. Med. Rehabil. 2014, 95, 1–9.e3. [Google Scholar] [CrossRef] [PubMed]
- Baños, J.H.; Novack, T.A.; Brunner, R.; Renfroe, S.; Lin, H.-Y.; Meythaler, J. Impact of Early Administration of Sertraline on Cognitive and Behavioral Recovery in the First Year After Moderate to Severe Traumatic Brain Injury. J. Head Trauma Rehabil. 2010, 25, 357–361. [Google Scholar] [CrossRef]
- Reddy, R.P.; Rajeswaran, J.; Devi, B.I.; Kandavel, T. Neurofeedback Training as an Intervention in a Silent Epidemic: An Indian Scenario. J. Neurother. 2013, 17, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Man, D.W.K.; Poon, W.S.; Lam, C. The effectiveness of artificial intelligent 3-D virtual reality vocational problem-solving training in enhancing employment opportunities for people with traumatic brain injury. Brain Inj. 2013, 27, 1016–1025. [Google Scholar] [CrossRef]
- Critical Appraisal Skills Programme (CASP). CASP Randomised Controlled Trial Checklist. Available online: https://casp-uk.net/wp-content/uploads/2018/01/CASP-Randomised-Controlled-Trial-Checklist-2018.pdf (accessed on 17 August 2020).
- James, S.L.; Theadom, A.; Ellenbogen, R.G.; Bannick, M.S.; Montjoy-Venning, W.; Lucchesi, L.R.; Abbasi, N.; Abdulkader, R.; Abraha, H.N.; Adsuar, J.C.; et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef] [Green Version]
- Romine, C.B.; Wolfe, M.E.; Homack, S.; George, C.; Lee, D.; Riccio, C.A. Wisconsin Card Sorting Test with children: A meta-analytic study of sensitivity and specificity. Arch. Clin. Neuropsychol. 2004, 19, 1027–1041. [Google Scholar] [CrossRef]
- Axelrod, B.N.; Woodard, J.L.; Henry, R.R. Analysis of an abbreviated form of the Wisconsin card sorting test. Clin. Neuropsychol. 1992, 6, 27–31. [Google Scholar] [CrossRef]
- Nelson, H.E. A Modified Card Sorting Test Sensitive to Frontal Lobe Defects. Cortex 1976, 12, 313–324. [Google Scholar] [CrossRef]
- Feldstein, S.N.; Keller, F.R.; Portman, R.E.; Durham, R.L.; Klebe, K.J.; Davis, H.P. A Comparison of Computerized and Standard Versions of the Wisconsin Card Sorting Test. Clin. Neuropsychol. 1999, 13, 303–313. [Google Scholar] [CrossRef]
- Kibby, M.Y. Ecological Validity of Neuropsychological Tests Focus on the California Verbal Learning Test and the Wisconsin Card Sorting Test. Arch. Clin. Neuropsychol. 1998, 13, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Pezzuti, L.; Mastrantonio, E.; Orsini, A. Construction and validation of an ecological version of the Wisconsin Card Sorting Test applied to an elderly population. Aging Neuropsychol. Cogn. 2013, 20, 567–591. [Google Scholar] [CrossRef] [PubMed]
Year of Publication: n (%) | |||||
---|---|---|---|---|---|
2010: | 5 (10.6) | 2011: | 9 (19.1) | 2012: | 6 (12.8) |
2013: | 5 (10.6) | 2014: | 5 (10.6) | 2015: | 4 (8.5) |
2016: | 4 (8.5) | 2017: | 3 (6.4) | 2018: | 2 (4.3) |
2019: | 3 (6.4) | 2020: | 1 (2.1) | ||
Location: n (%) | |||||
Australia | 2 (4.3) | India | 2 (4.3) | Serbia | 1 (2.1) |
Brazil | 3 (6.4) | Italy | 7 (14.9) | South Africa | 1 (2.1) |
Canada | 2 (4.3) | Israel | 2 (4.3) | Spain | 2 (4.3) |
China | 2 (4.3) | Japan | 1 (2.1) | Thailand | 1 (2.1) |
Colombia | 1 (2.1) | Korea | 1 (2.1) | United States of America | 16 (34.0) |
France | 2 (4.3) | Malaysia | 1 (2.1) |
Study Design: n (%) | References | |
Observational | ||
Case report | 6 (12.8) | [10,11,12,13,14,15] |
Case series | 10 (21.3) | [16,17,18,19,20,21,22,23,24,25] |
Cohort | 1 (2.1) | [26] |
Cross-sectional one group | 10 (21.3) | [27,28,29,30,31,32,33,34,35,36] |
Cross-sectional two or more groups | 13 (27.7) | [37,38,39,40,41,42,43,44,45,46,47,48,49] |
Experimental | ||
Randomized control trial | 7 (14.9) | [50,51,52,53,54,55,56] |
WCST version: n (%) | References | |
With interviewer | ||
WCST-128 | 37 (78.7) | [10,11,12,13,14,15,16,17,18,19,20,21,24,25,27,28,29,31,32,33,34,35,36,37,38,39,40,42,43,45,46,47,48,49,52,55,56] |
WCST-64 | 6 (12.8) | [26,30,41,50,51,54] |
WCST-48 | 1 (2.1) | [44] |
Computerized | ||
WCST-128 | 2 (4.3) | [23,53] |
WCST-64 | 1 (2.1) | [22] |
WCST reported scores: n (%) | References | |
Correct responses | 5 (10.6) | [16,23,26,37,52] |
Errors | 13 (27.7) | [10,15,16,19,23,31,34,37,41,42,44,46,56] |
Perseverative responses | 15 (31.9) | [10,16,17,20,23,30,31,32,34,36,37,38,42,45,55] |
Perseverative errors | 22 (46.8) | [14,15,16,23,24,25,26,27,28,31,33,37,39,41,44,45,47,49,50,51,54,56] |
Nonperseverative errors | 11 (23.4) | [15,16,23,28,31,37,39,42,44,45,49] |
Conceptual-level responses | 9 (19.1) | [10,15,16,31,34,42,54,55,56] |
Categories completed | 20 (42.6) | [14,15,16,17,20,23,24,31,32,33,34,36,37,41,42,43,44,45,46,49] |
Trials to complete first category | 6 (12.8) | [16,23,34,42,43,46] |
Failure to maintain set | 5 (10.6) | [31,34,42,46,47] |
Learning to learn | 0 (0) | |
Use of WCST scores in the study: n (%) | References | |
Description of clinical profile of participants | 16 (34.0) | [10,12,13,14,15,16,17,19,20,21,22,24,25,27,28,37] |
Comparison of clinical profile within groups | 18 (38.3) | [29,31,32,33,34,35,36,39,40,41,42,43,44,45,46,47,48,49] |
Treatment outcome | 7 (14.9) | [26,50,51,52,54,55,56] |
Predictor variable | 4 (8.5) | [11,18,30,38] |
Predicted outcome | 1 (2.1) | [23] |
Inclusion criterion | 1 (2.1) | [53] |
Reference | % of Male Participants | Mean Age (Years) of Patients with TBI | Mean Time after Injury | Severity of TBI | Participants |
---|---|---|---|---|---|
[10] | 0 | 77 | NR | NR | 1 TBI patient 1 healthy control |
[11] | 78 | 36.26 | 11.20 months | NR | 80 TBI patients |
[12] | 100 | 45 | NR | mild | 1 TBI patient |
[13] | 100 | 21 | 4 years | NR | 1 TBI patient |
[14] | 0 | 67 | 62 years | NR | 1 TBI patient |
[15] | 0 | 20 | 8 years | severe | 1 TBI patient |
[16] | 76 | 34 | NR | mild to severe | 30 TBI patients |
[17] | 75 | 30.73 | 7.04 months | moderate to severe | 32 TBI patients |
[18] | 45 | NR | 78 of days (median) | NR | 69 TBI patients |
[19] | 0 | 22 | 10 years | severe | 1 TBI patient |
[20] | 68 | 15.1 | 23.0 months | NR | 65 TBI patients |
[21] | 35 | 34.5 | 1671.3 days | mild to severe | 19 TBI patients |
[22] | 87 | 35.52 | NR | NR | 94 TBI patients |
[23] | NR | 43.68 | 103 months | severe | 25 TBI patients |
[24] | 74 | 32 | 8.7 months | moderate to severe | 43 TBI patients |
[25] | 100 | 35.3 | 6.6 years | mild | 56 TBI patients |
[26] | 95 | 25.79 | 6 weeks | mild to moderate | 19 TBI patients 14 healthy controls |
[27] | 80 | 29.5 | NR | mild | 60 TBI patients 32 healthy controls |
[28] | NR | 35.4 | 39.1 months | mild | 10 nonaphasic speaker TBI patients 13 neurologically intact controls |
[29] | 57 | 32 | 25 months | mild to severe | 7 TBI patients 7 patients with right brain damage |
[30] | 82 | 37.3 | NR | mild to severe | 377 TBI patients |
[31] | 90 | 30.3 | 2.13 months | mild | 30 TBI patients 30 healthy controls |
[32] | 91 | 33.6 | 6.72 years | severe | 11 TBI patients 11 healthy controls |
[33] | NR | 36.18 | 48.6 months | moderate to severe | 20 severe TBI patients 20 moderate TBI patients 20 healthy controls |
[34] | 69 | 25.53 | 8.6 months | severe | 29 TBI patients 38 healthy controls |
[35] | 85 | 40.5 | 335 days (median) | mild to severe | 27 TBI patients 18 healthy controls |
[36] | 80 | 36.9 | 262 days | severe | 20 TBI patients with adequate levels of self-awareness 20 healthy controls |
[37] | 0 | 14.0 | <6 months, 7 patients ≥6 months and <12 months, 3 patients ≥12 months, 10 patients | NR | 20 TBI patients 7 healthy controls |
[38] | 45 | 44.55 | NR | mild | 95 TBI patients who passed the performance validity measures 60 TBI patients who failed the performance validity measures |
[42] | 75 | 37.6 | 37.7 months | mild to severe | 176 TBI patients 49 patients with diffuse neurological impairment 20 healthy controls |
[43] | 51 | 51.25 | NR | moderate to severe | 73 TBI patients 60 patients with no TBI |
[44] | 77 | 36.56 | 22 months | mild to severe | 39 mild TBI patients 57 severe TBI patients |
[45] | 85 | 30.6 | 0.9 years median interval | severe | 29 TBI patients with good metacognitive self-awareness 23 TBI patients with heightened metacognitive self-awareness |
[46] | NR | 40.97 | 954.57 days | mild | 77 TBI patients grouped as disabled or impaired |
[47] | 94 | 51.2 | 23.5 years | mild to severe | 18 TBI patients with a history of at least one suicide attempt 29 TBI patients with no history of suicide attempt |
[48] | 90 | 39.3 | NR | mild to moderate | 9 mild TBI patients 11 moderate TBI patients 27 healthy controls |
[49] | NR | 38.18 | NR | mild to severe | 30 mild TBI patients 30 moderate TBI patients 30 severe TBI patients |
[39] | NR | 36.6 | 22.4 months | moderate | 10 TBI patients 20 healthy controls |
[40] | 67 | 38.8 | 153 months | moderate to severe | 6 planner TBI patients 11 avoider TBI patients |
[41] | 91 | 43.29 | NR | NR | 30 anosmic TBI patients 36 nonanosmic TBI patients |
[50] | 94 | 32 | 4.35 years | mild to moderate | 16 TBI patients treated with supported employment plus Cognitive Symptom Management and Rehabilitation Therapy (CogSMART) 18 TBI patients treated with enhanced supported employment |
[51] | 96 | 31.76 | 4.56 years | mild to moderate | 25 TBI patients treated with supported employment plus Cognitive Symptom Management and Rehabilitation Therapy (CogSMART) 25 TBI patients treated with enhanced supported employment |
[52] | NR | 37.6 | 8.05 years | NR | 12 TBI treated with growth hormone replacement therapy 11 TBI treated with placebo |
[53] | 38 | 45.3 | 12.6 years | mild to severe | 49 TBI patients treated with a problem-solving and emotional regulation program 49 TBI patients in waitlist |
[54] | 73 | 34.9 | 20.35 days | moderate to severe | 49 TBI patients treated with sertraline 50 mg 50 TBI patients treated with placebo |
[55] | 90 | 29.54 | NR | mild to severe | 30 TBI patients treated with neuro-feedback training 30 TBI patients in waitlist |
[56] | NR | NR | NR | mild to moderate | 20 TBI patients treated with an artificial intelligence virtual reality-based vocational training system 20 TBI patients treated with a psycho-educational vocational training program |
Perseverative Errors: Number of Incorrect Matches in Sequence, Following the Same Incorrect Criterion | |||||
---|---|---|---|---|---|
[14] | 6 | [27] | 22.10 (mild TBI) 16.34 (healthy) | [47] | 41.7 (mild to severe TBI) |
[15] | 79 (severe TBI) | [28] | 8.4 (mild TBI) 0.08 (neurologically intact) | [49] | 6.39 (mild TBI) 26.00 (severe TBI) 18.96 (moderate TBI) |
[16] | 30 (mild TBI) 30 (severe TBI) 11 (moderate TBI) | [31] | 19.76 (mild TBI) 15.67 (healthy) | [39] | 6.4 (moderate TBI) 0.5 (healthy) |
[23] | 19.83 (severe TBI) | [33] | 7.40 (moderate TBI) 0.06 (healthy) 31.67 (severe TBI) | [56] | 31.32 virtual reality group at baseline 31.60 psychoeducation group at baseline |
[24] | 15.6 (moderate to severe TBI) | [37] | 89.42 raw scores | (mild to moderate TBI) | |
[25] | 10.8 (mild TBI) | [45] | 14.1 (severe TBI) | ||
Categories Completed: Number of categories with a sequence of 10 consecutive correct matches | |||||
[14] | 6 | [24] | 5 (moderate to severe) | [37] | 4.07 |
[15] | 6 (severe TBI) | [31] | 4.07 (mild TBI) 4.53 (healthy) | [42] | 4.85 controls 4.90/4.12 (mild TBI, good/poor effort) 4.57/4.38 (moderate to severe TBI, good/poor effort) 2.55 diffuse neurological impairment |
[16] | 3 (mild TBI) 4 (severe TBI) 5 (moderate TBI) | [32] | 5.54 (severe TBI) | [43] | 3.6/3.6 (moderate to severe TBI, suicide attempt: no/yes) 3.9/4.1 (healthy, suicide attempt: no/yes) |
[17] | 4.5 (moderate to severe TBI) | [33] | 5.35 (moderate TBI) 6.00 (healthy) 3.00 (severe TBI) | [45] | 5.1 (severe TBI) |
[20] | 4.77 | [34] | 5.17(severe TBI) 5.8 (healthy) | [46] | Weighted mean = 0.354 (mild TBI) |
[23] | 3.04 (severe TBI) | [36] | 4.85 (severe TBI) 5.65 (healthy) | [49] | 4.95 (mild TBI) 2.50 (severe TBI) 4.00 (moderate TBI) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-de-Regil, L. Assessment of Executive Function in Patients with Traumatic Brain Injury with the Wisconsin Card-Sorting Test. Brain Sci. 2020, 10, 699. https://doi.org/10.3390/brainsci10100699
Gómez-de-Regil L. Assessment of Executive Function in Patients with Traumatic Brain Injury with the Wisconsin Card-Sorting Test. Brain Sciences. 2020; 10(10):699. https://doi.org/10.3390/brainsci10100699
Chicago/Turabian StyleGómez-de-Regil, Lizzette. 2020. "Assessment of Executive Function in Patients with Traumatic Brain Injury with the Wisconsin Card-Sorting Test" Brain Sciences 10, no. 10: 699. https://doi.org/10.3390/brainsci10100699
APA StyleGómez-de-Regil, L. (2020). Assessment of Executive Function in Patients with Traumatic Brain Injury with the Wisconsin Card-Sorting Test. Brain Sciences, 10(10), 699. https://doi.org/10.3390/brainsci10100699