Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain–Computer Interfaces
Abstract
:1. Introduction
2. Materials and Methods
- Ethics Statement
2.1. Subjects
2.2. Questionnaire
2.3. Visual Stimulation
- SSMVEP1-up-down movement oscillation,
- SSMVEP2-oscillating in vertical size (flipping illusion),
- SSMVEP3-checkerboard pulsation,
- SSMVEP4-arc’s inverse pulsation,
- SSMVEP5-arc’s inverse rotational oscillation.
- SSVEP
- SSMVEP1
- SSMVEP2
- SSMVEP3
- SSMVEP4
- SSMVEP5Ethics Statement
2.4. Data Acquisition
2.5. Data Analysis
2.5.1. Minimum Energy Combination (MEC)
2.5.2. Filter Banks (FBs)
2.6. Classification Window
2.7. Procedure
2.8. Information Transfer Rate (ITR)
2.9. Statistical Analysis
3. Results
- Statistical Tests
- Questionnaire Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EEG | electroencephalography |
SSVEP | steady-state visual evoked potentials |
SSMVEP | steady-state motion visual evoked potentials |
CCA | canonical correlation analysis |
MEC | minimum energy combination |
bpm | bits/min |
References
- Wolpaw, J.; Birbaumer, N.; McFarland, D.; Pfurtscheller, G.; Vaughan, T. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Rezeika, A.; Benda, M.; Stawicki, P.; Gembler, F.; Saboor, A.; Volosyak, I. Brain–computer interface spellers: A review. Brain Sci. 2018, 8, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, C.S. Human EEG responses to 1–100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 2001, 137, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Nakanishi, M.; Gao, X.; Jung, T.P.; Gao, S. High-speed spelling with a noninvasive brain–computer interface. Proc. Natl. Acad. Sci. USA 2015, 112, E6058–E6067. [Google Scholar] [CrossRef] [Green Version]
- Volosyak, I.; Valbuena, D.; Lüth, T.; Malechka, T.; Gräser, A. BCI Demographics II: How many (and what kinds of) people can use an SSVEP BCI? IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 232–239. [Google Scholar] [CrossRef]
- Volosyak, I.; Rezeika, A.; Benda, M.; Gembler, F.; Stawicki, P. Towards solving of the Illiteracy phenomenon for VEP-based brain–computer interfaces. Biomed. Phys. Eng. Express 2020, 6, 035034. [Google Scholar] [CrossRef]
- Gembler, F.; Stawicki, P.; Volosyak, I. Autonomous parameter adjustment for SSVEP-based BCIs with a novel BCI wizard. Front. Neurosci. 2015, 9, 474. [Google Scholar] [CrossRef]
- Stawicki, P.; Gembler, F.; Volosyak, I. Driving a semiautonomous mobile robotic car controlled by an SSVEP-based BCI. Comput. Intell. Neurosci. 2016, 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Bieger, J.; Molina, G.G.; Aarts, R.M. A survey of stimulation methods used in SSVEP-based BCIs. Comput. Intell. Neurosci. 2010, 1, 702357. [Google Scholar] [CrossRef]
- Xie, J.; Xu, G.; Luo, A.; Li, M.; Zhang, S.; Han, C.; Yan, W. The role of visual noise in influencing mental load and fatigue in a steady-state motion visual evoked potential-based brain–computer interface. Sensors 2017, 17, 1873. [Google Scholar] [CrossRef]
- Xie, J.; Xu, G.; Wang, J.; Li, M.; Han, C.; Jia, Y. Effects of mental load and fatigue on steady-state evoked potential based brain computer interface tasks: A comparison of periodic flickering and motion-reversal based visual attention. PLoS ONE 2016, 11, e0163426. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.; Harden, C. Use of rhythmically varying patterns for photic stimulation. Electroencephalogr. Clin. Neurophysiol. 1952, 4, 283–287. [Google Scholar] [CrossRef]
- Heinrich, S.P. A primer on motion visual evoked potentials. Doc. Ophthalmol. 2007, 114, 83–105. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Xu, G.; Wang, J.; Zhang, F.; Zhang, Y. Steady-State Motion Visual Evoked potentials Produced by Oscillating Newton’s Rings: Implications for Brain–Computer Interfaces. PLoS ONE 2012, 7, e39707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guitong, L.; Zhimin, Z.; Xiaoke, C.; Yangting, L.; Tengyu, Z.; Haijun, N.; Yubo, F. Study of Steady State Motion Visual Evoked Potential-based Visual Stimulation Paradigm. In Proceedings of the 12th International Convention on Rehabilitation Engineering and Assistive Technology, Singapore, 14–16 July 2018; Singapore Therapeutic, Assistive & Rehabilitative Technologies (START) Centre: Singapore, 2018; pp. 17–20. [Google Scholar]
- Xie, J.; Han, X.; Xu, G.; Zhang, X.; Li, M.; Luo, A.; Mu, X. Recognition of SSMVEP signals based on multi-channel integrated GT 2 circ statistic method. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Korea, 28 June–1 July 2017; pp. 169–173. [Google Scholar]
- Yan, W.; Xu, G.; Li, M.; Xie, J.; Han, C.; Zhang, S.; Luo, A.; Chen, C. Steady-State Motion Visual Evoked Potential (SSMVEP) based on equal luminance colored enhancement. PLoS ONE 2017, 12, e0169642. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Xu, G.; Xie, J.; Chen, C.; Zhang, S. Highly Interactive Brain–Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential. Sci. Rep. 2018, 8, 5835. [Google Scholar] [CrossRef]
- Yan, W.; Xu, G.; Xie, J.; Li, M.; Dan, Z. Four novel motion paradigms based on steady-state motion visual evoked potential. IEEE Trans. Biomed. Eng. 2018, 65, 1696–1704. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, Z.; Guan, K.; Liu, G.; Niu, H. A radial zoom motion-based paradigm for steady state motion visual evoked potentials. Front. Hum. Neurosci. 2019, 13, 127. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, G.; Ravi, A.; Pearce, S.; Jiang, N. Can a highly accurate multi-class SSMVEP BCI induce sensory-motor rhythm in sensorimotor area? J. Neural Eng. 2020. [Google Scholar] [CrossRef]
- Stawicki, P.; Rezeika, A.; Saboor, A.; Volosyak, I. Investigating Flicker-Free Steady-State Motion Stimuli for VEP-Based BCIs. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; pp. 1–4. [Google Scholar]
- Zheng, X.; Xu, G.; Wu, Y.; Wang, Y.; Du, C.; Zhang, S.; Han, C. Comparison of the performance of six stimulus paradigms in visual acuity assessment based on steady-state visual evoked potentials. Doc. Ophthalmol. Adv. Ophthalmol. 2020. [Google Scholar] [CrossRef]
- Laugwitz, B.; Held, T.; Schrepp, M. Construction and Evaluation of a User Experience Questionnaire. HCI and Usability for Education and Work; Holzinger, A., Ed.; Springer Berlin Heidelberg: Berlin/Heidelberg, Gemany, 2008; pp. 63–76. [Google Scholar]
- Friman, O.; Volosyak, I.; Gräser, A. Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces. IEEE Trans. Biomed. Eng. 2007, 54, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Volosyak, I. SSVEP-based Bremen-BCI interface–boosting information transfer rates. J. Neural Eng. 2011, 8, 036020. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Gao, S.; Jung, T.P.; Gao, X. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface. J. Neural Eng. 2015, 12, 046008. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Xu, G.; Chen, L.; Zheng, X. Steady-State Motion Visual Evoked Potential (SSMVEP) Enhancement Method Based on Time-Frequency Image Fusion. Comput. Intell. Neurosci. 2019, 2019. [Google Scholar] [CrossRef] [PubMed]
- Vialatte, F.B.; Maurice, M.; Dauwels, J.; Cichocki, A. Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog. Neurobiol. 2010, 90, 418–438. [Google Scholar] [CrossRef]
First Author | Year | Stimulus Design (Shape) | Behavior | Frequencies | Method |
---|---|---|---|---|---|
Xie [14] | 2012 | Newton’s rings (◯) | Reversal motion /translation | 8.1, 9.8, 12.25, 14 Hz | CCA (offline) |
Guitong [15] | 2018 | Newton’s rings Solid (◯/☐) | Reversal motion /translation | 8–15 Hz (Δ f 1 Hz) | CCA (offline) |
Yan [19] | 2018 | Checkerboard (◯) Spiral (◯) Swing (∇) Osscilation (◯) | translational rotation | 7–12.8 Hz (Δ f 0.2 Hz) | CCA (online) |
Han [18] | 2018 | Checkerboard (◯) | Reversal /translation | 7–14.8 Hz (Δ f 0.2 Hz) | CCA (online) |
Chai [20] | 2019 | Newton’s rings Solid box (☐) | Zoom motion translation | 8–15 Hz (Δ f 1 Hz) | CCA (offline) |
Zhang [21] | 2020 | Solid Circle (◯) Checkerboard (◯) Gating (Video frame) | Translational | 8.57, 10 12, 15 Hz | CCA (online) |
Stawicki [22] | 2019 | Solid circle (◯) | Translational up-down | 3.0–3.75 Hz 6.00–6.67 Hz 9.23–12.0 Hz | CCA (online) |
Volosyak [6] | 2020 | Solid circle (◯) | Translational Vertical zoom | 8, 10, 12, 15 Hz | CCA (online) |
Subject | SSVEP | SSMVEP1 | SSMVEP2 | SSMVEP3 | SSMVEP4 | SSMVEP5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc [%] | ITR [bpm] | Acc [%] | ITR [bpm] | Acc [%] | ITR [bpm] | Acc [%] | ITR [bpm] | Acc [%] | ITR [bpm] | Acc [%] | ITR [bpm] | |
1 | 100 | 30.42 | 100 | 23.97 | 100 | 22.10 | 100 | 19.64 | 100 | 10.87 | 100 | 24.65 |
2 | 100 | 34.84 | 100 | 34.98 | 100 | 26.83 | 100 | 25.26 | 90.9 | 18.84 | 100 | 19.20 |
3 | 100 | 30.53 | 100 | 29.24 | 95.0 | 19.11 | 87.5 | 12.07 | 90.9 | 9.09 | 100 | 13.17 |
4 | 100 | 29.04 | 100 | 35.34 | 100 | 23.74 | 100 | 15.40 | 100 | 12.67 | 88.5 | 9.96 |
5 | 100 | 38.31 | 100 | 40.00 | 100 | 37.40 | 100 | 25.34 | 100 | 25.19 | 100 | 26.34 |
6 | 100 | 37.00 | 100 | 38.40 | 100 | 33.82 | 87.5 | 10.94 | 100 | 18.23 | 100 | 16.24 |
7 | 100 | 34.35 | 100 | 28.33 | 100 | 31.42 | 100 | 16.43 | 100 | 13.51 | 100 | 20.28 |
8 | 100 | 38.74 | 100 | 39.63 | 100 | 35.27 | 100 | 26.67 | 100 | 21.65 | 100 | 27.43 |
9 | 100 | 26.06 | 100 | 35.41 | 100 | 17.76 | 100 | 12.16 | 95.5 | 8.71 | 100 | 21.31 |
Mean | 100 | 33.26 | 100 | 33.92 | 99.44 | 27.49 | 97.22 | 18.21 | 97.47 | 15.42 | 98.72 | 19.84 |
SD | 0 | 4.45 | 0 | 5.56 | 1.67 | 7.27 | 5.51 | 6.25 | 4.01 | 5.82 | 3.85 | 5.92 |
Group 1 | Group 2 | ITR | Time | ||
---|---|---|---|---|---|
p-Value | Mean | p-Value | Mean | ||
SSVEP | SSMVEP1 | 00.665 | 00.613 | ||
SSVEP | SSMVEP2 | 05.764 | 16.751 | ||
SSVEP | SSMVEP3 | 15.046 | 59.172 | ||
SSVEP | SSMVEP4 | 17.840 | 88.401 | ||
SSVEP | SSMVEP5 | 13.414 | 52.793 | ||
SSMVEP1 | SSMVEP2 | 06.428 | 17.364 | ||
SSMVEP1 | SSMVEP3 | 15.710 | 59.785 | ||
SSMVEP1 | SSMVEP4 | 18.504 | 89.014 | ||
SSMVEP1 | SSMVEP5 | 14.079 | 53.407 | ||
SSMVEP2 | SSMVEP3 | 09.282 | 42.421 | ||
SSMVEP2 | SSMVEP4 | 12.076 | 71.650 | ||
SSMVEP2 | SSMVEP5 | 07.651 | 36.043 | ||
SSMVEP3 | SSMVEP4 | 02.794 | 29.230 | ||
SSMVEP3 | SSMVEP5 | 01.631 | 06.378 | ||
SSMVEP4 | SSMVEP5 | 04.425 | 35.608 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stawicki, P.; Volosyak, I. Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain–Computer Interfaces. Brain Sci. 2020, 10, 686. https://doi.org/10.3390/brainsci10100686
Stawicki P, Volosyak I. Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain–Computer Interfaces. Brain Sciences. 2020; 10(10):686. https://doi.org/10.3390/brainsci10100686
Chicago/Turabian StyleStawicki, Piotr, and Ivan Volosyak. 2020. "Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain–Computer Interfaces" Brain Sciences 10, no. 10: 686. https://doi.org/10.3390/brainsci10100686
APA StyleStawicki, P., & Volosyak, I. (2020). Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain–Computer Interfaces. Brain Sciences, 10(10), 686. https://doi.org/10.3390/brainsci10100686