Salivary Cortisol Levels Are Associated with Craving and Cognitive Performance in Cocaine-Abstinent Subjects: A Pilot Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Procedures
2.3. Neuropsychological Assessments
2.4. Salivary Collection Sample and Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Statistical Analysis
3. Results
3.1. Group Differences in Salivary Cortisol Levels
3.2. Group Differences in Cognitive Performance
3.2.1. Attentional Processes and Psychomotor Speed
3.2.2. Declarative Memory
3.2.3. Executive Functions and Emotional Perception
3.3. Relationship between Salivary Cortisol Levels, Cognitive Status and Drug-Related Variables
3.3.1. Control Group
3.3.2. SUD Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goeders, N.E. A neuroendocrine role in cocaine reinforcement. Psychoneuroendocrinology 1997, 22, 237–259. [Google Scholar] [CrossRef]
- Uhart, M.; Wand, G.S. Stress, alcohol and drug interaction: An update of human research. Addict. Biol. 2009, 14, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Deroche, V.; Marinelli, M.; Le Moal, M.; Piazza, P.V. Glucocorticoids and behavioral effects of psychostimulants. II: Cocaine intravenous self-administration and reinstatement depend on glucocorticoid levels. J. Pharmacol. Exp. Ther. 1997, 281, 1401–1407. [Google Scholar] [PubMed]
- Mantsch, J.R.; Saphier, D.; Goeders, N.E. Corticosterone facilitates the acquisition of cocaine self-administration in rats: Opposite effects of the type II glucocorticoid receptor agonist dexamethasone. J. Pharmacol. Exp. Ther. 1998, 287, 72–80. [Google Scholar] [PubMed]
- Mantsch, J.R.; Katz, E.S. Elevation of glucocorticoids is necessary but not sufficient for the escalation of cocaine self-administration by chronic electric footshock stress in rats. Neuropsychopharmacology 2007, 32, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, A.D.; Li, Q.A.; Kerr, J.E.; Rittenhouse, P.A.; Milonas, G.; Cabrera, T.M.; Battaglia, G.; Alvarez- Sanz, M.C.; Van de Kar, L.D. Cocaine-induced elevation of plasma adrenocorticotropin hormone and corticosterone is mediated by serotonergic neurons. J. Pharmacol. Exp. Ther. 1991, 259, 495–500. [Google Scholar]
- Saphier, D.; Welch, J.E.; Farrar, G.E.; Goeders, N.E. Effects of intracerebroventricular and intrahypothalamic cocaine administration on adrenocortical secretion. Neuroendocrinology 1993, 57, 54–62. [Google Scholar] [CrossRef]
- Armario, A. Activation of the hypothalamic-pituitary-adrenal axis by addictive drugs: Different pathways, common outcome. Trends Pharmacol. Sci. 2010, 31, 318–325. [Google Scholar] [CrossRef]
- Rivier, C.; Vale, W. Cocaine stimulates adrenocorticotropin (ACTH) secretion through a corticotropin-releasing factor (CRF)-mediated mechanism. Brain Res. 1987, 422, 403–406. [Google Scholar] [CrossRef]
- Kreek, M.J.; Bart, G.; Lilly, C.; LaForge, K.S.; Nielsen, D.A. Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol. Rev. 2005, 57, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Schwabe, L.; Dickinson, A.; Wolf, O.T. Stress, habits, and drug addiction: A psychoneuroendocrinological perspective. Exp. Clin. Psychopharmacol. 2011, 19, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Goeders, N.E. Stress and cocaine addiction. J. Pharmacol. Exp. Ther. 2002, 301, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Graf, E.N.; Wheeler, R.A.; Baker, D.A.; Ebben, A.L.; Hill, J.E.; McReynolds, J.R.; Robble, M.A.; Vranjkovic, O.; Wheeler, D.S.; Mantsch, J.R.; et al. Corticosterone acts in the nucleus accumbens to enhance dopamine signalling and potentiate reinstatement of cocaine seeking. J. Neurosci. 2013, 33, 11800–11810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koob, G.; Kreek, M.J. Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am. J. Psychiatry 2007, 164, 1149–1159. [Google Scholar] [CrossRef] [PubMed]
- Manetti, L.; Cavagnini, F.; Martino, E.; Ambrogio, A. Effects of cocaine on the hypothalamic-pituitary-adrenal axis. J. Endocrinol. Invest. 2014, 37, 701–708. [Google Scholar] [CrossRef]
- Erb, S. Evaluation of the relationship between anxiety during withdrawal and stress-induced reinstatement of cocaine seeking. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 798–807. [Google Scholar] [CrossRef]
- Fox, H.C.; Talih, M.; Malison, R.; Anderson, G.M.; Kreek, M.J.; Sinha, R. Frequency of recent cocaine and alcohol use affects drug craving and associated responses to stress and drug-related cues. Psychoneuroendocrinology 2005, 30, 880–891. [Google Scholar] [CrossRef]
- Sinha, R.; Talih, M.; Malison, R.; Cooney, N.; Anderson, G.M.; Kreek, M.J. Hypothalamic-pituitary-adrenal axis and sympatho-adreno-medullary responses during stress-induced and drug cue-induced cocaine craving states. Psychopharmacology 2003, 170, 62–72. [Google Scholar] [CrossRef]
- Sinha, R.; Garcia, M.; Paliwal, P.; Kreek, M.J.; Rounsaville, B.J. Stress-induced cocaine craving and hypothalamic-pituitary-adrenal responses are predictive of cocaine relapse outcomes. Arch. Gen. Psychiatry 2006, 63, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Elman, I.; Lukas, S.E.; Karlsgodt, K.H.; Gasic, G.P.; Breiter, H.C. Acute cortisol administration triggers craving in individuals with cocaine dependence. Pharmacol. Bull. 2003, 37, 84–89. [Google Scholar]
- Cohen, L.M.; al’Absi, M.; Collins, F.L., Jr. Salivary cortisol concentrations are associated with acute nicotine withdrawal. Addict. Behav. 2004, 29, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Back, S.E.; Hartwell, K.; DeSantis, S.M.; Saladin, M.; McRae-Clark, A.L.; Price, K.L.; Moran-Santa, M.M.; Baker, N.L.; Spratt, E.; Kreek, M.J.; et al. Reactivity to laboratory stress provocation predicts relapse to cocaine. Drug Alcohol Depend. 2010, 106, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raby, W.N.; Sanfilippo, L.; Pavlicova, M.; Carpenter, K.M.; Glass, A.; Onyemekwu, C.; Roginek, E.; Nunes, E.V. Dysregulation of diurnal cortisol secretion affects abstinence induction during a lead-in period of a clinical trial for depressed cocaine-dependent patients. Am. J. Addict. 2014, 23, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Elgh, E.; Lindqvist Astot, A.; Fagerlund, M.; Eriksson, S.; Olsson, T.; Näsman, B. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol. Psychiatry 2006, 59, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Hansson, P.B.; Murison, R.; Lund, A.; Hammar, Å. Cognitive functioning and cortisol profiles in first episode major depression. Scand. J. Psychol. 2015, 56, 379–383. [Google Scholar] [CrossRef]
- Pivonello, R.; De Martino, M.C.; De Leo, M.; Simeoli, C.; Colao, A. Cushing’s disease: The burden of illness. Endocrine 2017, 56, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Brunner, R.; Schaefer, D.; Hess, K.; Parzer, P.; Resch, F.; Schwab, S. Effect of corticosteroids on short-term and long-term memory. Neurology 2005, 64, 335–337. [Google Scholar] [CrossRef]
- Lim, S.S.; Conn, D.L. The use of low-dose prednisone in the management of rheumatoid arthritis. Bull. Rheum. Dis. 2001, 50, 1–4. [Google Scholar]
- De Quervain, D.J.; Roozendaal, B.; Nitsch, R.M.; McGaugh, J.L.; Hock, C. Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nat. Neurosci. 2000, 3, 313–314. [Google Scholar] [CrossRef]
- Kirschbaum, C.; Wolf, O.T.; May, M.; Wippich, W.; Hellhammer, D.H. Stress—And treatment—Induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 1996, 58, 1475–1483. [Google Scholar] [CrossRef]
- Prado, C.E.; Crowe, S.F. Corticosteroids and Cognition: A Meta-Analysis. Neuropsychol. Rev. 2019, 29, 288–312. [Google Scholar] [CrossRef] [PubMed]
- Suri, D.; Vaidya, V.A. The adaptive and maladaptive continuum of stress responses—A hippocampal perspective. Rev. Neurosci. 2015, 26, 415–442. [Google Scholar] [CrossRef] [PubMed]
- Wingenfeld, K.; Wolf, O.T. Stress, memory, and the hippocampus. Front Neurol. Neurosci. 2014, 34, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Fox, H.C.; Jackson, E.D.; Sinha, R. Elevated cortisol and learning and memory deficits in cocaine dependent individuals: Relationship to relapse outcomes. Psychoneuroendocrinology 2009, 34, 1198–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vescovi, P.P.; Coiro, V.; Volpi, R.; Passeri, M. Diurnal variations in plasma ACTH, cortisol and beta-endorphin levels in cocaine addicts. Horm. Res. 1992, 37, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.P.; de Araujo Filho, G.M.; Malta, S.M.; Laranjeira, R.R.; Marques, A.C.R.P.; Bressan, R.A.; Lacerda, A.L.T. Attention and memory deficits in crack-cocaine users persist over four weeks of abstinence. J. Subst. Abuse Treat. 2017, 81, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Matias, L.; Reyes-Zamorano, E.; Gonzalez-Olvera, J.J. Cognitive functions of subjects with cocaine and crack dependency disorder during early abstinence. Rev. Neurol. 2019, 68, 271–280. [Google Scholar] [CrossRef]
- Mañas-Padilla, M.C.; Gil-Rodríguez, S.; Sampedro-Piquero, P.; Ávila-Gámiz, F.; Rodríguez de Fonseca, F.; Santín, L.J.; Castilla-Ortega, E. Remote memory of drug experiences coexists with cognitive decline and abnormal adult neurogenesis in an animal model of cocaine-altered cognition. Addict. Biol. 2020, 23, e12886. [Google Scholar] [CrossRef]
- Vicario, S.; Pérez-Rivas, A.; de Guevara-Miranda, D.L.; Santín, L.J.; Sampedro-Piquero, P. Cognitive reserve mediates the severity of certain neuropsychological deficits related to cocaine use disorder. Addict. Behav. 2020, 107, 106399. [Google Scholar] [CrossRef]
- Bates, M.E.; Buckman, J.F.; Voelbel, G.T.; Eddie, D.; Freeman, J. The mean and the individual: Integrating variable-centered and person-centered analyses of cognitive recovery in patients with substance use disorders. Front. Psychiatry 2013, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Brorson, H.H.; Ajo Arnevik, E.; Rand-Hendriksen, K.; Duckert, F. Drop-out from addiction treatment: A systematic review of risk factors. Clin. Psychol. Rev. 2013, 33, 1010–1024. [Google Scholar] [CrossRef] [PubMed]
- Sampedro-Piquero, P.; Ladrón de Guevara-Miranda, D.; Pavón, F.J.; Serrano, A.; Suárez, J.; Rodríguez de Fonseca, F.; Santín, L.J.; Castilla-Ortega, E. Neuroplastic and cognitive impairment in substance use disorders: A therapeutic potential of cognitive stimulation. Neurosci. Biobehav. Rev. 2019, 106, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Hellhammer, D.H.; Wüst, S.; Kudielka, B.M. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 2009, 34, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Ligabue, K.P.; Schuch, J.B.; Scherer, J.N.; Ornell, F.; Roglio, V.S.; Assunção, V.; Rebelatto, F.P.; Hildalgo MPPechansky, F.; Kessler, F.; von Diemen, L. Increased cortisol levels are associated with low treatment retention in crack cocaine users. Addict. Behav. 2020, 103, 106260. [Google Scholar] [CrossRef] [PubMed]
- Rami, L.; Valls-Pedret, C.; Bartrés-Faz, D.; Caprile, C.; Solé-Padullés, C.; Castellvi, M.; Olives, J.; Bosch, B.; Molinuevo, J.L. Cognitive reserve questionnaire. Scores obtained in a healthy elderly population and in one with Alzheimer´s disease. Rev. Neurol. 2011, 52, 195–201. [Google Scholar] [PubMed]
- Brickenkamp, R.; Zillmer, E. Test de Atención d2; TEA Ediciones: Madrid, Spain, 2002. [Google Scholar]
- Reitan, R.M.; Wolfson, D. The Haldstead-Reitan Neuropsychological Test Battery: Therapy and Clinical Interpretation; Neuropsychological Press: Tucson, AZ, USA, 1985. [Google Scholar]
- Benedet, M.J.; Alejandre, M.A. Test de Aprendizaje Verbal España Complutense; TEA Ediciones: Madrid, Spain, 2014. [Google Scholar]
- Osterrieth, P.A. Le test de copie d’une figure complexe. Arch. Psychol. 1944, 30, 206–356. [Google Scholar]
- Delis, D.C.; Kaplan, E.; Kramer, J. Delis–Kaplan Executive Function System; The Psychological Corporation: San Antonio, TX, USA, 2001. [Google Scholar]
- Wechsler, D. Escala de Inteligencia de Wechsler Para Adultos 4th Edición: Manual Técnico y de Interpretación; Pearson: Madrid, Spain, 2008. [Google Scholar]
- Golden, C.J. Stroop Test de Colores y Palabras, Manual, 5th ed.; TEA Ediciones: Madrid, Spain, 2001. [Google Scholar]
- Baron-Cohen, S.; Wheelwright, S.; Hill, J.; Raste, Y.; Plumb, I. The “Reading the Mind in the Eyes” Test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry 2001, 42, 241–251. [Google Scholar] [CrossRef]
- Montoliu, T.; Hidalgo, V.; Salvador, A. The relationship between loneliness and cognition in healthy older men and women: The role of cortisol. Psychoneuroendocrinology 2019, 107, 270–279. [Google Scholar] [CrossRef]
- Pruessner, J.C.; Kirschbaum, C.; Meinlschmid, G.; Hellhammer, D.H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 2003, 28, 916–931. [Google Scholar] [CrossRef]
- Pedrero-Pérez, E.J.; Rojo-Mota, G.; Ruiz-Sánchez de León, J.M.; Fernández-Méndez, L.M.; Morales-Alonso, S.; Prieto-Hidalgo, A. Cognitive reserve in substance addicts in treatment: Relation to cognitive performance and activities of daily living. Rev. Neurol. 2014, 59, 481–489. [Google Scholar]
- Contoreggi, C.; Herning, R.I.; Koeppl, B.; Simpson, P.M.; Negro, P.J., Jr.; Fortner-Burton, C.; Hess, J. Treatment-seeking inpatient cocaine abusers show hypothalamic dysregulation of both basal prolactin and cortisol secretion. Neuroendocrinology 2003, 78, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Wemm, S.E.; Sinha, R. Drug-induced stress responses and addiction risk and relapse. Neurobiol. Stress 2019, 10, 100148. [Google Scholar] [CrossRef] [PubMed]
- Majewska, M.D. HPA axis and stimulant dependence: An enigmatic relationship. Psychoneuroendocrinology 2002, 27, 5–12. [Google Scholar] [CrossRef]
- Sinha, R. How does stress increase risk of drug abuse and relapse? Psychopharmacology 2001, 158, 343–359. [Google Scholar] [CrossRef]
- Sarnyai, Z.; Bíró, E.; Gardi, J.; Vecsernyés, M.; Julesz, J.; Telegdy, G. Brain corticotropin-releasing factor mediates ‘anxiety-like’ behavior induced by cocaine withdrawal in rats. Brain Res. 1995, 675, 89–97. [Google Scholar] [CrossRef]
- Koob, G.; Buck, C.L.; Cohen, A.; Edwards, S.; Park, P.E.; Schlosburg, J.E.; Schmeichel, B.; Vendruscolo, L.F.; Wade, C.L.; Whitfield, T.W., Jr.; et al. Addiction as a stress surfeit disorder. Neuropharmacology 2014, 76, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, J.P.; Cerbone, F.G. Parental substance use disorder and the risk of adolescent drug abuse: An event history analysis. Drug Alcohol Depend. 2002, 66, 255–264. [Google Scholar] [CrossRef]
- Weinberg, N.Z.; Rahdert, E.; Colliver, J.D.; Glantz, M.D. Adolescent substance abuse: A review of the past 10 years. J. Am. Acad. Child Adolesc. Psychiatry 1998, 37, 252–261. [Google Scholar] [CrossRef]
- Vendruscolo, L.F.; Barbier, E.; Schlosburg, J.E.; Misra, K.K.; Whitfield, T.W., Jr.; Logrip, M.L.; Rivier, C.; Repunte-Canonigo, V.; Zorrilla, E.P.; Sanna, P.P.; et al. Corticosteroid-dependent plasticity mediates compulsive alcohol drinking in rats. J. Neurosci. 2012, 32, 7563–7571. [Google Scholar] [CrossRef] [Green Version]
- Jovanovski, D.; Erb, S.; Zakzanis, K.K. Neurocognitive deficits in cocaine users: A quantitative review of the evidence. J. Clin. Exp. Neuropsychol 2005, 27, 189–204. [Google Scholar] [CrossRef]
- Spronk, D.B.; van Wel, J.H.; Ramaekers, J.G.; Verkes, R.J. Characterizing the cognitive effects of cocaine: A comprehensive review. Neurosci. Biobehav. Rev. 2013, 37, 1838–1859. [Google Scholar] [CrossRef] [PubMed]
- Vonmoos, M.; Hulka, L.M.; Preller, K.H.; Minder, F.; Baumgartner, M.R.; Quednow, B.B. Cognitive impairment in cocaine users is drug-induced but partially reversible: Evidence from a longitudinal study. Neuropsychopharmacology 2014, 39, 2200–2210. [Google Scholar] [CrossRef] [PubMed]
- Woicik, P.A.; Moeller, S.J.; Alia-Klein, N.; Maloney, T.; Lukasik, T.M.; Yeliosof, O.; Wang, G.J.; Volkow, N.D.; Goldstein, R.Z. The neuropsychology of cocaine addiction: Recent cocaine use masks impairment. Neuropsychopharmacology 2009, 34, 1112–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vonmoos, M.; Hulka, L.M.; Preller, K.H.; Jenni, D.; Baumgartner, M.R.; Stohler, R.; Bolla, K.I.; Quednow, B.B. Cognitive dysfunctions in recreational and dependent cocaine users: Role of attention-deficit hyperactivity disorder, craving and early age at onset. Br. J. Psychiatry 2013, 203, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Bolla, K.I.; Funderburk, F.R.; Cadet, J.L. Differential effects of cocaine and cocaine alcohol on neurocognitive performance. Neurology 2000, 54, 2285–2292. [Google Scholar] [CrossRef]
- Aharonovich, E.; Hasin, D.S.; Brooks, A.C.; Liu, X.; Bisaga, A.; Nunes, E.V. Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug Alcohol Depend. 2006, 81, 313–322. [Google Scholar] [CrossRef]
- Perry, C.J.; Lawrence, A.J. Addiction, cognitive decline and therapy: Seeking ways to escape a vicious cycle. Genes Brain Behav. 2017, 16, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Torregrossa, M.M.; Corlett, P.R.; Taylor, J.R. Aberrant learning and memory in addiction. Neurobiol. Learn. Mem. 2011, 96, 609–623. [Google Scholar] [CrossRef] [Green Version]
- Geerlings, M.I.; Sigurdsson, S.; Eiriksdottir, G.; Garcia, M.E.; Harris, T.B.; Gudnason, V.; Launer, L.J. Salivary cortisol, brain volumes, and cognition in community-dwelling elderly without dementia. Neurology 2015, 85, 976–983. [Google Scholar] [CrossRef] [Green Version]
- Venero, C.; Díaz-Mardomingo, C.; Pereda-Pérez, I.; García-Herranz, S.; Utrera, L.; Valencia, A.; Peraita, H. Increased morning salivary cortisol levels in older adults with non-amnestic and multidomain mild cognitive impairment. Psychoneuroendocrinology 2013, 38, 488–498. [Google Scholar] [CrossRef]
- McGaugh, J. Memory—A century of consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwabe, L.; Wolf, O.T. Stress and multiple memory systems: From ‘thinking ‘to ‘doing’. Trends Cog. Sci. 2013, 17, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Shields, G.S.; Sazma, M.A.; McCullough, A.M.; Yonelinas, A.P. The effects of acute stress on episodic memory: A meta-analysis and integrative review. Psychol. Bull. 2017, 143, 636–675. [Google Scholar] [CrossRef] [PubMed]
- Van Stegeren, A.H. Imaging stress effects on memory: A review of neuroimaging studies. Can. J. Psychiatry 2009, 54, 16–27. [Google Scholar] [CrossRef] [Green Version]
- Lupien, S.J.; Fiocco, A.; Wan, N.; Maheu, F.; Lord, C.; Schramek, T.; Tu, M.T. Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology 2005, 30, 225–242. [Google Scholar] [CrossRef]
- Morisot, N.; Le Moine, C.; Millan, M.J.; Contarino, A. CRF2 receptor-deficiency reduces recognition memory deficits and vulnerability to stress induced by cocaine withdrawal. Int. J. Neuropsychopharmacol. 2014, 17, 1969–1979. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.S.; Woolston, D.J.; Frol, A.; Bobadilla, L.; Khan, D.A.; Hanczyc, M.; Rush, A.J.; Fleckenstein, J.; Babcock, E.; Cullum, C.M. Hippocampal volume, spectroscopy, cognition, and mood in patients receiving corticosteroid therapy. Biol. Psychiatry 2004, 55, 538–545. [Google Scholar] [CrossRef]
- Lupien, S.J.; McEwen, B.S. The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Res. Rev. 1997, 24, 1–27. [Google Scholar] [CrossRef]
- Bolla, K.I.; Rothman, R.; Cadet, J.L. Dose-related neurobehavioral effects of chronic cocaine use. J. Neuropsychiatry Clin. Neurosci. 1999, 11, 361–369. [Google Scholar] [CrossRef]
- Colzato, L.S.; van den Wildenberg, W.P.; Hommel, B. Reduced attentional scope in cocaine polydrug users. PLoS ONE 2009, 4, e6043. [Google Scholar] [CrossRef] [Green Version]
- Erickson, K.; Drevets, W.; Schulkin, J. Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neurosci. Biobehav. Rev. 2003, 27, 233–246. [Google Scholar] [CrossRef]
- Fox, H.C.; Wilker, E.H.; Kreek, M.J.; Sinha, R. Reliability of salivary cortisol assessments in cocaine dependent individuals. J. Psychopharmacol. 2006, 20, 650–655. [Google Scholar] [CrossRef] [PubMed]
SUD Group | Healthy Group | |
---|---|---|
DEMOGRAPHICS | ||
Age ± SEM | 36.2 ± 2.3 | 40.6 ± 3.2 (p = 0.27) |
Sex % male | 100% | 100% |
Years of education | 15.7 ± 0.5 | 17.3 ± 0.8 (p = 0.10) |
Marital status (single)—% (n) | 64.3% (9/14) | 38.46% (5/13) |
SUBSTANCE USE | ||
Onset age | 16.4 ± 0.8 | |
Duration of cocaine use (years) | 18.7 ± 3.2 | |
Weeks since last used drug | 5.9 ± 0.6 | |
Number of drugs consumed | 3.1 ± 0.3 | |
Cocaine used per day (g) | 1.5 ± 0.3 | |
Route of administration % intranasal | 100% | |
Reported tobacco use—% (n) | 78.6% (11/14) | |
Tobacco cigarettes per day | 9.2 ± 1.9 | |
Reported alcohol use—% (n) | 100% | |
Reported cannabis use—% (n) | 28.6% (4/14) | |
Reported amphetamine/MDMA use—% (n) | 0% (0/14) | |
Score craving scale (maximum 30) | 12.9 ± 1.5 |
Healthy Controls | SUD Group | Student’s t-Test and p Values for Comparisons | Cohen’s d | |
---|---|---|---|---|
COGNITIVE RESERVE | 11.70 + 0.99 | 9.07 + 0.53 | t(25) = −2.38, p = 0.03 * | 0.9 |
Attention, psychomotor speed and visual searching | ||||
d2 | ||||
-Effectiveness index | 421.9 + 28 | 333.6 + 17.9 | F(1,24) = −7.33, p = 0.01 * | 1.03 |
-Concentration index | 158.8 + 11.7 | 106.1 + 13.9 | F(1,24) = 6.08, p = 0.02 * | 1.10 |
-Variability index | 12.8 + 1.3 | 19 + 2.1 | F(1,24) = 4.36, p = 0.04 * | 1.23 |
Trail making test | ||||
-Version A (s) | 24.9 + 2.3 | 32.1 + 5.2 | F(1,24) = 0.12, p = 0.73 | |
-Version B (s) | 64.9 + 7.4 | 83.5 + 13.4 | F(1,24) = 0.25, p = 0.62 | |
Declarative memory | ||||
TAVEC | ||||
-Trial 1 | 7.2 + 0.4 | 6 + 0.5 | F(1,24) = 1.79, p = 0.19 | |
-Trial 5 | 14.2 + 0.4 | 12.1 + 0.7 | F(1,24) = 5.20, p = 0.03 * | 1.3 |
-Total trials | 58.6 + 1.5 | 48.3 + 2.8 | F(1,24) = 6.29, p = 0.02 * | 1.4 |
-Free STM | 6.7 + 0.3 | 4.9 + 0.2 | F(1,24) = 6.75, p = 0.02 * | 1.2 |
-STM with semantic cues | 13.8 + 0.7 | 10.6 + 0.8 | F(1,24) = 6.34, p = 0.02 * | 1.5 |
-Free LTM | 14.2 + 0.4 | 10.5 + 0.8 | F(1,24) = 9.61, p = 0.005 * | 1.8 |
-LTM with semantic cues | 14.4 + 0.4 | 10.6 + 0.8 | F(1,24) = 11.10, p = 0.003 * | 2.5 |
-Semantic strategy use during the list acquisition | 18.8 + 2.8 | 10.9 + 2.1 | F(1,24) = 4.90, p = 0.04 * | 0.9 |
-Semantic strategy use during free STM | 6 + 0.8 | 3.8 + 0.9 | F(1,24) = 1.65, p = 0.21 | |
-Semantic strategy use during LTM | 7.2 + 1 | 3.6 + 0.8 | F(1,24) = 5.33, p = 0.03 * | 1.6 |
-Serial strategy use during the list acquisition | 5 + 1.2 | 5 + 0.9 | F(1,24) = 0.02, p = 0.90 | |
-Serial strategy use during free STM | 1 + 0.4 | 0.8 + 0.3 | F(1,24) = 0.18, p = 0.68 | |
-Serial strategy use during free LTM | 0.8 + 0.5 | 0.9 + 0.4 | F(1,24) = 0.001, p = 0.97 | |
-Intrusions during free memory | 2.2 + 0.8 | 6.8 + 1.3 | F(1,24) = 5.10, p = 0.03 * | 1.3 |
-Intrusions during memory with semantic cues | 0.8 + 0.3 | 3.2 + 0.7 | F(1,24) = 6.37, p = 0.02 * | 2.1 |
-Recognition | 15.8 + 0.1 | 15.7 + 0.2 | F(1,24) = 0.04, p = 0.84 | |
-False positives in Recognition | 0.7 + 0.2 | 2.8 + 1.1 | F(1,24) = 1.27, p = 0.27 | |
Rey Complex Figure | ||||
-Copy score | 35.7 + 0.3 | 33.9 + 1.7 | F(1,24) = 0.55, p = 0.47 | |
-Delayed score | 23.8 + 1.6 | 20.3 + 1.8 | F(1,24) = 2.27, p = 0.15 | |
Executive functions | ||||
D-KEFS Tower test | ||||
-Achievement score | 20.2 + 0.8 | 16.7 + 0.8 | F(1,24) = 5.07, p = 0.03 * | 1.6 |
Digit span | ||||
-Forward | 5.9 + 0.3 | 5.8 + 0.3 | F(1,24) = 0.28, p = 0.60 | |
-Backward | 5.2 + 0.4 | 4.1 + 0.2 | F(1,24) = 3.60, p = 0.06 | |
Verbal fluency | ||||
-FAS | 43.6 + 1.7 | 35.8 + 2.7 | F(1,24) = 3.44, p = 0.05 * | |
-Semantic: Animals | 22 + 0.8 | 19.4 + 1.2 | F(1,24) = 1.42, p = 0.24 | 0.9 |
Stroop test | ||||
-Word | 93.8 + 7 | 91.8 + 5.9 | F(1,24) = 0.03, p = 0.85 | |
-Color | 62.8 + 3.5 | 59.4 + 3.3 | F(1,24) = 0.70, p = 0.41 | |
-Total Color/Word | 49.4 + 6.8 | 36.9 + 2.3 | F(1,24) = 2.49, p = 0.12 | |
-Interference Index | 12.8 + 6 | 1.3 + 2.1 | F(1,24) = 2.62, p = 0.12 | |
Emotional perception | ||||
RMET | ||||
-Correct answers | 22.7 + 1.1 | 20.3 + 1.1 | F(1,24) = 0.37, p = 0.55 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampedro-Piquero, P.; Vicario, S.; Pérez-Rivas, A.; Venero, C.; Baliyan, S.; Santín, L.J. Salivary Cortisol Levels Are Associated with Craving and Cognitive Performance in Cocaine-Abstinent Subjects: A Pilot Study. Brain Sci. 2020, 10, 682. https://doi.org/10.3390/brainsci10100682
Sampedro-Piquero P, Vicario S, Pérez-Rivas A, Venero C, Baliyan S, Santín LJ. Salivary Cortisol Levels Are Associated with Craving and Cognitive Performance in Cocaine-Abstinent Subjects: A Pilot Study. Brain Sciences. 2020; 10(10):682. https://doi.org/10.3390/brainsci10100682
Chicago/Turabian StyleSampedro-Piquero, Patricia, Selene Vicario, Aroha Pérez-Rivas, César Venero, Shishir Baliyan, and Luis Javier Santín. 2020. "Salivary Cortisol Levels Are Associated with Craving and Cognitive Performance in Cocaine-Abstinent Subjects: A Pilot Study" Brain Sciences 10, no. 10: 682. https://doi.org/10.3390/brainsci10100682
APA StyleSampedro-Piquero, P., Vicario, S., Pérez-Rivas, A., Venero, C., Baliyan, S., & Santín, L. J. (2020). Salivary Cortisol Levels Are Associated with Craving and Cognitive Performance in Cocaine-Abstinent Subjects: A Pilot Study. Brain Sciences, 10(10), 682. https://doi.org/10.3390/brainsci10100682