Key Issues on the Design of an Offshore Wind Farm Layout and Its Equivalent Model
Abstract
:Featured Application
Abstract
1. Introduction
2. Wake Models
3. Power Losses and Wind Farm Efficiency
4. Optimization of Wind Turbine Layout
5. Collector System in a Wind Farm
6. Wind Farm Reliability
7. Cost of Developing an Offshore Wind Farm
8. Mitigation of Carbon Emissions by Building Offshore Wind Farms
9. Equivalent Model for a Wind Farm
10. Aggregation of Equivalent Parameters of a Wind Farm
11. Main Factors that Strongly Influence the Design of an Offshore Wind Farm
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mytilinou, V.; Kolios, A.J. Techno-economic optimisation of offshore wind farms based on life cycle cost analysis on the UK. Renew. Energy 2019, 132, 439–454. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Xu, J. Optimal irregular wind farm design for continuous placement of wind turbines with a two-dimensional Jensen-Gaussian wake model. Appl. Sci. 2018, 8, 2660. [Google Scholar] [CrossRef]
- Hwang, B.; Kim, H.; Lee, S. Wind farm layout optimization using multidisciplinary model. J. Mech. Sci. Technol. 2018, 32, 2919–2924. [Google Scholar] [CrossRef]
- Pollai, A.C.; Chick, J.; Khorasanchi, M.; Barbouchi, S.; Johanning, L. Application of an offshore wind farm layout optimization methodology at Middelgrunden wind farm. Renew. Energy 2017, 139, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Dhali, S.K.; Nandigam, M. Design of electrical layout of offshore wind farms. J. Renew. Sustain. Energy 2017, 9, 043303. [Google Scholar] [CrossRef]
- Hou, P.; Hu, W.; Soltani, M.; Chen, C.; Zhang, B.; Chen, Z. Offshore wind farm layout design considering optimized power dispatch strategy. IEEE Trans. Sustain. Energy 2017, 8, 638–647. [Google Scholar] [CrossRef]
- Hou, P.; Hu, W.; Chen, C.; Soltani, M.; Chen, Z. Optimization of offshore wind farm layout in restricted zones. Wind Energy Sci. 2016, 113, 487–496. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Huang, Q.; Wang, N.; Zhang, X.; Lee, W. Improved wind farm aggregated modeling method for large-scale power system stability studies. IEEE Trans. Power Syst. 2018, 33, 6332–6342. [Google Scholar] [CrossRef]
- Li, W.; Chao, P.; Liang, X.; Ma, J.; Xu, D.; Jin, X. A practical equivalent method for DFIG wind farms. IEEE Trans. Sustain. Energy 2018, 9, 610–620. [Google Scholar] [CrossRef]
- Ouyang, J.; Diao, Y.; Zheng, D.; Yu, R.; Zhang, X.; Xiong, X. Dynamic equivalent model of doubly fed wind farm during electromagnetic transient process. IET Renew. Power Gener. 2017, 11, 100–106. [Google Scholar]
- Zou, J.; Peng, C.; Yan, Y.; Zheng, H.; Li, Y. A survey of dynamic equivalent modeling for wind farm. Appl. Energy 2014, 40, 956–963. [Google Scholar] [CrossRef]
- Archer, C.L.; Ahmadreza, V.B.H.; Yan, C.; Wu, S.; Pan, Y.; Brodie, J.F.; Maguire, A.E. Review and evaluation of wake loss models for wind energy applications. Renew. Energy 2018, 226, 1187–1207. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lin, L. Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model. Renew. Energy 2016, 174, 192–200. [Google Scholar] [CrossRef]
- Bokharaie, V.S.; Bauweraerts, P.; Meyers, J. Wind-farm layout optimisation using a hybrid Jensen–LES approach. Wind Energy Sci. 2016, 1, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Kuo, J.Y.J.; Romero, D.A.; Beck, J.C. Wind farm layout optimization on complex terrains—Integrating a CFD wake model with mixed-integer programming. Appl. Energy 2016, 178, 404–414. [Google Scholar] [CrossRef]
- Shakoor, R.; Hassan, M.Y.; Raheem, A.; Wu, Y.-K. Wake effect modeling: A review of wind farm layout optimization using Jensen’s model. Renew. Sustain. Energy Rev. 2016, 58, 1048–1059. [Google Scholar] [CrossRef]
- Ulku, I.; Alabas-Uslu, C. A new mathematical programming approach to wind farm layout problem under multiple wake effects. Renew. Energy 2019, 136, 1190–1201. [Google Scholar] [CrossRef]
- Fischetti, M.; Pisinger, D. Power output efficiency in large wind farms with different hub heights and configurations. Renew. Energy 2018, 270, 917–930. [Google Scholar]
- Wu, Y.T.; Liao, T.L.; Chen, C.K.; Lin, C.Y.; Chen, P.W. Power output efficiency in large wind farms with different hub heights and configurations. Renew. Energy 2019, 132, 941–949. [Google Scholar] [CrossRef]
- Gutierrez Pablo, Z.; Garcia Merayo, P.; Silvan, F. Evaluation of WAsP software version 11 to previous versions and errors in the estimation of energy output of a wind farm. Wind Eng. 2018, 42, 665–669. [Google Scholar] [CrossRef]
- Sharma, P.K.; Warudkar, V.; Ahmed, S. A comparative analysis of wind resource parameters using WAsP and windPRO. Int. J. Green Energy 2019, 16, 152–166. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Gallo-Marazuela, D.; Pastor-Sanchez, A.; Carro-Calvo, L.; Portilla-Figueras, A.; Prieto, L. Evolutionary computation approaches for real offshore wind farm layout: A case study in northern Europe. Renew. Energy 2013, 40, 6292–6297. [Google Scholar] [CrossRef]
- Bohme Gustavo, S.; Fadigas Eliane, A.; Gimenes Andre, L.V. Wake effect measurement in complex terrain—A case study in Brazilian wind farms. Energy 2018, 161, 277–283. [Google Scholar] [CrossRef]
- Shayan, N.; Sogand, P.; Farschad, T. Modeling of horizontal axis wind turbine wakes in Horns Rev offshore wind farm using an improved actuator disc model coupled with computational fluid dynamic. Energy Convers. Manag. 2018, 171, 953–968. [Google Scholar]
- Barthelmie, R.J.; Hansen, K.S.; Pryor, S.C. Meteorological Controls on Wind Turbine Wakes. Proc. IEEE 2012, 101, 1010–1019. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Lin, L.; Koo, P. Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore. Sci. Forum 2015, 139, 89–99. [Google Scholar] [CrossRef]
- Anoune, K.; Bouya, M.; Astito, A.; Abdellah, A.B. Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2018, 93, 652–673. [Google Scholar] [CrossRef]
- Cincotti, S.; Gallo, G.; Ponta, L.; Raberto, M. Modelling and forecasting of electricity spot-prices: Computational intelligence vs classical econometrics. AI Commun. 2014, 27, 301–314. [Google Scholar]
- Pollai, A.C.; Chick, J.; Johanning, L.; Khorasanchi, M.; Pelissier, S. Optimisation of offshore wind farms using a genetic algorithm. Int. J. Offshore Polar Eng. 2016, 26, 225–234. [Google Scholar] [CrossRef]
- Beşkirli, M.; Koç, İ.; Haklı, H.; Kodaz, H. A new optimization algorithm for solving wind turbine placement problem: Binary artificial algae algorithm. Renew. Energy 2018, 121, 301–308. [Google Scholar] [CrossRef]
- Qi, Y.; Hou, P.; Yang, L.; Yang, G. Simultaneous optimisation of cable connection schemes and capacity for offshore wind farms via a modified bat algorithm. Appl. Sci. 2019, 9, 265. [Google Scholar] [CrossRef]
- Srikakulapu, R.; Vinatha, U. Optimized design of collector topology for offshore wind farm based on ant colony optimization with multiple travelling salesman problem. J. Mod. Power Syst. Clean Energy 2018, 6, 1181–1192. [Google Scholar] [CrossRef] [Green Version]
- Hou, P.; Hu, W.; Soltani, M.; Chen, Z. Optimized placement of wind turbines in large-scale offshore wind farm using particle swarm optimization algorithm. IEEE Trans. Sustain. Energy 2015, 6, 1272–1282. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, L.; Xu, Y.; Fu, Y.; Li, F. Hierarchical optimization for the double-sided ring structure of the collector system planning of large offshore wind farms. IEEE Trans. Sustain. Energy 2017, 8, 1029–1039. [Google Scholar] [CrossRef]
- Ortiz, J.M.H.; Pourakbari-Kasmaei, M.; López, J.; Mantovani, J.R.S. A stochastic mixed-integer conic programming model for distribution system expansion planning considering wind generation. Energy Syst. 2018, 9, 551–571. [Google Scholar] [CrossRef]
- Home-Ortiz, J.M.; Pourakbari-Kasmaei, M.; Lehtonen, M.; Mantovani, J.R.S. Optimal location-allocation of storage devices and renewable-based DG in distribution systems. Electr. Power Syst. Res. 2019, 172, 11–21. [Google Scholar] [CrossRef]
- Hou, P.; Hu, W.; Chen, C.; Chen, Z. Overall optimization for offshore wind farm electrical system. Wind Energy 2017, 20, 1017–1032. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, Z.Y.; Meng, K.; Luo, F.; Xu, Z.; Wong, K.P. Collector system layout optimization framework for large-scale offshore wind farms. IEEE Trans. Sustain. Energy 2016, 7, 1398–1407. [Google Scholar] [CrossRef]
- Dahmani, O.; Bourguet, S.; Machmoum, M.; Guérin, P.; Rhein, P.; Jossé, L. Optimization of the connection topology of an offshore wind farm network. IEEE Syst. J. 2015, 9, 1519–1528. [Google Scholar] [CrossRef]
- Wu, Y.-K.; Lee, C.-Y.; Chen, C.-R. Optimization of the Wind Turbine Layout and Transmission System Planning for a Large-Scale Offshore Wind Farm by AI Technology. IEEE Transm. Ind. Appl. 2014, 50, 2071–2080. [Google Scholar] [CrossRef]
- Camm, E.H.; Behnke, M.R.; Bolado, O.; Bollen, M. Wind power plant collector system design considerations: IEEE PES wind plant collector system design working group. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009. [Google Scholar]
- Clark, C.E.; DuPont, B. Reliability-based design optimization in offshore renewable energy systems. Renew. Sustain. Energy Rev. 2018, 97, 390–400. [Google Scholar] [CrossRef]
- Dahmani, O.; Bourguet, S.; Machmoum, M.; Guerin, P.; Rhein, P.; Josse, L. Optimization and reliability evaluation of an offshore wind farm architecture. IEEE Trans. Sustain. Energy 2017, 8, 542–550. [Google Scholar] [CrossRef]
- Negra, N.B.; Holmstrom, O.; Bak-Jensen, B.; Sorensen, P. Aspects of relevance in offshore wind farm reliability assessment. IEEE Trans. Energy Convers. 2007, 22, 159–166. [Google Scholar] [CrossRef]
- Wedzik, A.; Siewierski, T.; Szypowski, M. A new method for simultaneous optimizing of wind farm’s network layout and cable cross-sections by MILP optimization. Wind Energy Sci. 2016, 182, 525–538. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Enevoldsen, P.; Koch, C.; Barthelmie, R.J. Cost performance and risk in the construction of offshore and onshore wind farms. Wind Energy 2017, 20, 891–908. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, A.G. Review of offshore wind farm cost components. Energy Sustain. Dev. 2017, 37, 10–19. [Google Scholar] [CrossRef]
- Zhang, J.; Chowdhury, S.; Messac, A.; Castillo, L. A response surface-based cost model for wind farm design. Energy Policy 2012, 42, 538–550. [Google Scholar] [CrossRef]
- Li, W.; Chao, P.; Liang, X.; Xu, D.; Jin, X. An improved single-machine equivalent method of wind power plants by calibrating power recovery behaviors. IEEE Trans. Power Syst. 2018, 33, 4371–4381. [Google Scholar] [CrossRef]
- Usubiaga, A.; Acosta-Fernández, J.; McDowall, W.; Li, F.G.N. Exploring the macro-scale CO2 mitigation potential of photovoltaics and wind energy in Europe’s energy transition. Energy Policy 2017, 104, 203–213. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, N.; Wang, Y.; Yang, J.; Kang, C.; Xia, Q. Modeling carbon emission flow in multiple energy systems. IEEE Trans. Smart Grid 2018. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, N.; Lu, Z.; Kang, C. Planning Multiple Energy Systems towards Low-Carbon Society: A Decentralized Approach. IEEE Trans. Smart Grid 2018. [Google Scholar] [CrossRef]
- Pourakbari-Kasmaei, M.; Mantovani, J.R.S.; Rashidinejad, M.; Habibi, M.R.; Contreras, J. Carbon footprint allocation among consumers and transmission losses. In Proceedings of the IEEE International Conference on Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017. [Google Scholar]
- Kaldellis, J.K.; Apostolou, D. Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart. Renew. Energy 2017, 108, 72–84. [Google Scholar] [CrossRef]
- Alderson, H.; Cranston, G.R.; Hammond, G.P. Carbon and environmental footprinting of low carbon UK electricity futures to 2050. Energy 2012, 48, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Lee, W.; Sahni, M.; Cheng, Y.; Lee, L.K. Dynamic equivalent model development to improve the operation efficiency of wind farm. IEEE Trans. Ind. Appl. 2016, 52, 2759–2767. [Google Scholar] [CrossRef]
- Luo, K.; Shi, W.; Qu, J. Multi-machine equivalent model parameter identification method for double-fed induction generator (DFIG)-based wind power plant based on measurement data. J. Eng. 2017, 2017, 1550–1554. [Google Scholar] [CrossRef]
- Dziewit, Z.; Bucki, B. Simplified model for calculation of clutters caused by wind turbines. Res. Oper. Appl. 2018, 5, 3–11. [Google Scholar] [CrossRef]
- Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds. Appl. Energy 2009, 50, 691–704. [Google Scholar] [CrossRef]
- Teng, W.; Wang, X.; Meng, Y.; Shi, W. Dynamic clustering equivalent model of wind turbines based on spanning tree. J. Renew. Sustain. Energy 2015, 7, 063126. [Google Scholar] [CrossRef]
- Fang, R.; Shang, R.; Wu, M.; Peng, C.; Guo, X. Application of gray relational analysis to k-means clustering for dynamic equivalent modeling of wind farm. Appl. Energy 2018, 42, 20154–20163. [Google Scholar] [CrossRef]
- Zou, J.; Peng, C.; Xu, H.; Yan, Y. A fuzzy clustering algorithm-based dynamic equivalent modeling method for wind farm with DFIG. IEEE Trans. Energy Convers. 2015, 30, 1329–1337. [Google Scholar] [CrossRef]
- Ali, M.; Ilie, I.; Milanovic, J.V.; Chicco, G. Wind farm model aggregation using probabilistic clustering. IEEE Trans. Power Syst. 2013, 28, 309–316. [Google Scholar] [CrossRef]
- Li, L.; Wang, T.; Wang, X. Dynamic Equivalent Modeling of Wind Farm with DDPMSG Wind Turbine Generators. In Proceedings of the International Conference on Power System Technology, Chengdu, China, 20–22 October 2014; pp. 2908–2914. [Google Scholar]
Factor | Method | Note |
---|---|---|
Optimization algorithms | Neural network, turbine distribution algorithm (TDA), mathematical programming, extended pattern search methodology, bionic method, evolutionary strategy algorithm, ant colony algorithm, gaussian particle swarm optimization with local search strategy, quality threshold clustering, minimum spanning tree algorithm, particle swarm optimization, and numerical experiments, and so on. | Each algorithm has its advantages and weak points. The trend of the optimization algorithms is to use hybrid methods, and the location of wind turbines and internal cable connections are planned simultaneously. |
Wake model | Jensen, Katic, virtual particle wake flow model, and others. | The trend of the wake model has been moved from linear to nonlinear models. |
Wind speed and direction | Specific wind conditions, single and multiple wind directions with constant wind speed, wind scenarios created by Weibull distribution function, extracted from a real wind farm, and single wind direction with constant wind speed. | The simplified method is to use single wind direction with constant wind speed, or specific wind conditions. The accurate method is to extract the wind conditions from an actual wind farm. |
Objective function | Maximum annual energy production (AEP), maximum net present value (NPV), minimum cable costs, minimum power losses, and others. | Most works considered the maximum AEP or NPV as the objective function. |
Constraint Limit | Wake loss, wind-farm boundary, the distance between two turbines, forbidden zones, the allowed turbines in a feeder or a clustering, and others, the power curve of a wind turbine, the height of a wind turbine, non-cable crossing, and others. | Each constraint limit is important, and these constraints influence each other. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-K.; Wu, W.-C.; Zeng, J.-J. Key Issues on the Design of an Offshore Wind Farm Layout and Its Equivalent Model. Appl. Sci. 2019, 9, 1911. https://doi.org/10.3390/app9091911
Wu Y-K, Wu W-C, Zeng J-J. Key Issues on the Design of an Offshore Wind Farm Layout and Its Equivalent Model. Applied Sciences. 2019; 9(9):1911. https://doi.org/10.3390/app9091911
Chicago/Turabian StyleWu, Yuan-Kang, Wen-Chin Wu, and Jyun-Jie Zeng. 2019. "Key Issues on the Design of an Offshore Wind Farm Layout and Its Equivalent Model" Applied Sciences 9, no. 9: 1911. https://doi.org/10.3390/app9091911
APA StyleWu, Y.-K., Wu, W.-C., & Zeng, J.-J. (2019). Key Issues on the Design of an Offshore Wind Farm Layout and Its Equivalent Model. Applied Sciences, 9(9), 1911. https://doi.org/10.3390/app9091911