Comprehensive Study of Cross-Section Dependent Effective Masses for Silicon Based Gate-All-Around Transistors
Abstract
:1. Introduction
2. Nano-Electronic Simulation Software
3. Effective Mass Calculation Methodology
4. Results and Discussion
4.1. Effective Mass Results
4.2. Mobility: A Kubo-Greenwood Study
4.3. Ballistic Transfer Characteristic: A NEGF Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dennard, R.H.; Gaensslen, F.H.; Rideout, V.L.; Bassous, E.; LeBlanc, A.R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 1974, 9, 256–268. [Google Scholar] [CrossRef]
- Moore, G.E. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Soc. Newsl. 2006, 11, 33–35. [Google Scholar] [CrossRef]
- Badami, O.; Lizzit, D.; Driussi, F.; Palestri, P.; Esseni, D. Benchmarking of 3-D MOSFET Architectures: Focus on the Impact of Surface Roughness and Self-Heating. IEEE Trans. Electron Devices 2018, 65, 3646–3653. [Google Scholar] [CrossRef]
- Dupre, C.; Hubert, A.; Becu, S.; Jublot, M.; Maffini-Alvaro, V.; Vizioz, C.; Aussenac, F.; Arvet, C.; Barnola, S.; Hartmann, J.; et al. 15nm-diameter 3D stacked nanowires with independent gates operation: ϕFET. In Proceedings of the 2008 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Colinge, J.P. Multiple-gate SOI MOSFETs. Solid-State Electron. 2004, 48, 897–905. [Google Scholar] [CrossRef]
- Song, Y.; Xu, Q.; Luo, J.; Zhou, H.; Niu, J.; Liang, Q.; Zhao, C. Performance Breakthrough in Gate-All-Around Nanowire n- and p-Type MOSFETs Fabricated on Bulk Silicon Substrate. IEEE Trans. Electron Devices 2012, 59, 1885–1890. [Google Scholar] [CrossRef]
- Luisier, M.; Schenk, A.; Fichtner, W.; Klimeck, G. Atomistic simulation of nanowires in the sp3d5s* tight-binding formalism: From boundary conditions to strain calculations. Phys. Rev. B 2006, 74, 205323. [Google Scholar] [CrossRef]
- Neophytou, N.; Kosina, H. Large thermoelectric power factor in p-type Si (110)/[110] ultra-thin-layers compared to differently oriented channels. J. Appl. Phys. 2012, 112, 024305. [Google Scholar] [CrossRef] [Green Version]
- Van der Steen, J.P.J.; Esseni, D.; Palestri, P.; Selmi, L.; Hueting, R.J.E. Validity of the Parabolic Effective Mass Approximation in Silicon and Germanium n-MOSFETs With Different Crystal Orientations. IEEE Trans. Electron Devices 2007, 54, 1843–1851. [Google Scholar] [CrossRef] [Green Version]
- Berrada, S.; Dutta, T.; Carrillo-Nunez, H.; Duan, M.; Adamu-Lema, F.; Lee, J.; Georgiev, V.; Medina-Bailon, C.; Asenov, A. NESS: New flexible Nano-Electronic Simulation Software. In Proceedings of the 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Austin, TX, USA, 24–26 September 2018; pp. 22–25. [Google Scholar] [CrossRef]
- Neophytou, N.; Kosina, H. Atomistic simulations of low-field mobility in Si nanowires: Influence of confinement and orientation. Phys. Rev. B 2011, 84, 085313–085328. [Google Scholar] [CrossRef]
- Sadi, T.; Medina-Bailon, C.; Nedjalkov, M.; Lee, J.; Badami, O.; Berrada, S.; Carrillo-Nuñez, H.; Georgiev, V.; Selberherr, S.; Asenov, A. Simulation of the Impact of Ionized Impurity Scattering on the Total Mobility in Si Nanowire Transistors. Materials 2019, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Esseni, D.; Palestri, P.; Selmi, L. Nanoscale MOS Transistors - Semi-Classical Transport and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- QuantumATK version O-2018.06. 2018. Available online: https://www.synopsys.com/silicon/quantumatk/ (accessed on 19 April 2019).
- Boykin, T.B.; Klimeck, G.; Oyafuso, F. Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization. Phys. Rev. B 2004, 69, 115201. [Google Scholar] [CrossRef]
- Rahman, A.; Lundstrom, M.S.; Ghosh, A.W. Generalized effective-mass approach for n-type metal-oxide-semiconductor field-effect transistors on arbitrarily oriented wafers. J. Appl. Phys. 2005, 97, 053702. [Google Scholar] [CrossRef]
- Bescond, M.; Cavassilas, N.; Lannoo, M. Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented. Nanotechnology 2007, 18, 255201. [Google Scholar] [CrossRef]
- Stanojević, Z.; Baumgartner, O.; Sverdlov, V.; Kosina, H. Electronic band structure modeling in strained Si-nanowires: Two band k·p versus tight binding. In Proceedings of the International Workshop on Computational Electronis (IWCE), Pisa, Italy, 26–29 October 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Medina-Bailon, C.; Sadi, T.; Nedjalkov, M.; Lee, J.; Berrada, S.; Carrillo-Nuñez, H.; Georgiev, V.; Selberherr, S.; Asenov, A. Impact of the Effective Mass on the Mobility in Si Nanowire Transistors. In Proceedings of the 2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Austin, TX, USA, 24–26 September 2018; pp. 297–300. [Google Scholar] [CrossRef]
Square [100] | Square [110] | Square [111] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Side [nm] | Valley | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] |
3 | 0.279 | 0.279 | 0.947 | 0.505 | 0.252 | 0.578 | 0.782 | 0.241 | 0.447 | |
1.008 | 0.262 | 0.266 | 0.498 | 0.251 | 0.578 | 0.794 | 0.236 | 0.447 | ||
0.253 | 0.983 | 0.266 | 0.325 | 0.816 | 0.172 | 0.248 | 0.670 | 0.447 | ||
4 | 0.245 | 0.245 | 0.921 | 0.444 | 0.233 | 0.554 | 0.491 | 0.259 | 0.434 | |
0.986 | 0.229 | 0.244 | 0.425 | 0.236 | 0.554 | 0.494 | 0.254 | 0.434 | ||
0.230 | 0.922 | 0.244 | 0.425 | 0.934 | 0.183 | 0.264 | 0.447 | 0.434 | ||
5 | 0.229 | 0.229 | 0.911 | 0.433 | 0.224 | 0.562 | 0.454 | 0.238 | 0.430 | |
0.951 | 0.219 | 0.231 | 0.426 | 0.225 | 0.562 | 0.412 | 0.242 | 0.430 | ||
0.219 | 0.894 | 0.231 | 0.260 | 0.908 | 0.190 | 0.244 | 0.407 | 0.430 | ||
6 | 0.246 | 0.246 | 0.905 | 0.394 | 0.245 | 0.561 | 0.458 | 0.282 | 0.478 | |
0.967 | 0.253 | 0.222 | 0.393 | 0.245 | 0.561 | 0.422 | 0.294 | 0.478 | ||
0.253 | 0.929 | 0.222 | 0.274 | 0.930 | 0.193 | 0.425 | 0.292 | 0.478 | ||
7 | 0.238 | 0.238 | 0.902 | 0.374 | 0.211 | 0.557 | 0.443 | 0.229 | 0.435 | |
0.947 | 0.256 | 0.217 | 0.374 | 0.211 | 0.557 | 0.399 | 0.243 | 0.435 | ||
0.256 | 0.901 | 0.217 | 0.230 | 0.882 | 0.195 | 0.238 | 0.402 | 0.435 | ||
8 | 0.209 | 0.209 | 0.896 | 0.362 | 0.207 | 0.589 | 0.431 | 0.219 | 0.433 | |
0.896 | 0.212 | 0.212 | 0.362 | 0.207 | 0.589 | 0.385 | 0.234 | 0.433 | ||
0.202 | 0.878 | 0.212 | 0.213 | 0.894 | 0.197 | 0.228 | 0.387 | 0.433 |
Circle [100] | Circle [110] | Circle [111] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Diameter [nm] | Valley | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] |
3 | 0.254 | 0.254 | 0.942 | 0.549 | 0.207 | 0.601 | 0.970 | 0.195 | 0.476 | |
0.836 | 0.250 | 0.273 | 0.547 | 0.201 | 0.601 | 0.964 | 0.192 | 0.476 | ||
0.237 | 0.875 | 0.273 | 0.299 | 0.756 | 0.150 | 0.192 | 0.962 | 0.476 | ||
4 | 0.239 | 0.239 | 0.910 | 0.443 | 0.210 | 0.574 | 0.602 | 0.216 | 0.445 | |
0.930 | 0.223 | 0.250 | 0.446 | 0.201 | 0.574 | 0.605 | 0.215 | 0.445 | ||
0.225 | 0.897 | 0.250 | 0.248 | 0.910 | 0.175 | 0.216 | 0.603 | 0.445 | ||
5 | 0.227 | 0.227 | 0.910 | 0.429 | 0.215 | 0.558 | 0.458 | 0.230 | 0.447 | |
0.894 | 0.222 | 0.235 | 0.439 | 0.207 | 0.558 | 0.458 | 0.230 | 0.447 | ||
0.218 | 0.886 | 0.235 | 0.239 | 0.987 | 0.184 | 0.229 | 0.450 | 0.447 | ||
6 | 0.221 | 0.221 | 0.907 | 0.381 | 0.207 | 0.563 | 0.443 | 0.227 | 0.433 | |
0.880 | 0.216 | 0.226 | 0.384 | 0.203 | 0.563 | 0.449 | 0.223 | 0.433 | ||
0.216 | 0.879 | 0.226 | 0.228 | 0.869 | 0.189 | 0.223 | 0.442 | 0.433 | ||
7 | 0.229 | 0.229 | 0.901 | 0.372 | 0.209 | 0.560 | 0.440 | 0.224 | 0.434 | |
0.827 | 0.249 | 0.219 | 0.374 | 0.206 | 0.560 | 0.441 | 0.221 | 0.434 | ||
0.246 | 0.837 | 0.219 | 0.226 | 0.894 | 0.192 | 0.221 | 0.437 | 0.434 | ||
8 | 0.233 | 0.233 | 0.896 | 0.364 | 0.206 | 0.567 | 0.431 | 0.216 | 0.436 | |
0.809 | 0.263 | 0.214 | 0.363 | 0.206 | 0.567 | 0.431 | 0.216 | 0.436 | ||
0.262 | 0.797 | 0.214 | 0.222 | 0.891 | 0.194 | 0.220 | 0.427 | 0.436 |
Ellipse [100] | Ellipse [110] | Ellipse [111] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a [nm] | b [nm] | Valley | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] |
3 | 2.00 | 0.383 | 0.238 | 0.986 | 0.469 | 0.251 | 0.574 | 0.972 | 0.292 | 0.570 | |
0.205 | 1.072 | 0.283 | 0.570 | 0.209 | 0.574 | 1.005 | 0.284 | 0.570 | |||
0.683 | 0.287 | 0.283 | 0.183 | 1.290 | 0.135 | 0.767 | 0.294 | 0.570 | |||
4 | 2.67 | 0.342 | 0.189 | 0.935 | 0.553 | 0.201 | 0.629 | 0.667 | 0.245 | 0.467 | |
0.199 | 0.916 | 0.254 | 0.489 | 0.207 | 0.629 | 0.674 | 0.242 | 0.467 | |||
0.887 | 0.210 | 0.254 | 0.213 | 1.149 | 0.160 | 0.593 | 0.232 | 0.467 | |||
5 | 3.33 | 0.300 | 0.193 | 0.915 | 0.452 | 0.205 | 0.560 | 0.389 | 0.301 | 0.449 | |
0.203 | 0.880 | 0.238 | 0.472 | 0.195 | 0.560 | 0.395 | 0.295 | 0.449 | |||
0.816 | 0.218 | 0.238 | 0.241 | 0.797 | 0.183 | 0.419 | 0.255 | 0.449 | |||
6 | 4.00 | 0.274 | 0.199 | 0.912 | 0.391 | 0.218 | 0.563 | 0.344 | 0.319 | 0.455 | |
0.207 | 0.895 | 0.228 | 0.409 | 0.205 | 0.563 | 0.338 | 0.322 | 0.455 | |||
0.892 | 0.214 | 0.228 | 0.218 | 0.917 | 0.188 | 0.396 | 0.259 | 0.455 | |||
7 | 4.67 | 0.261 | 0.200 | 0.906 | 0.409 | 0.207 | 0.565 | 0.331 | 0.322 | 0.438 | |
0.210 | 0.879 | 0.220 | 0.405 | 0.204 | 0.565 | 0.320 | 0.327 | 0.438 | |||
0.896 | 0.212 | 0.220 | 0.224 | 0.882 | 0.192 | 0.389 | 0.254 | 0.438 | |||
8 | 5.33 | 0.243 | 0.202 | 0.903 | 0.370 | 0.208 | 0.548 | 0.327 | 0.331 | 0.444 | |
0.207 | 0.878 | 0.215 | 0.373 | 0.201 | 0.548 | 0.312 | 0.338 | 0.444 | |||
0.875 | 0.208 | 0.215 | 0.208 | 0.885 | 0.193 | 0.394 | 0.248 | 0.444 |
Bulk [100] | Bulk [110] | Bulk [111] | |||||||
---|---|---|---|---|---|---|---|---|---|
Valley | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] | m [m0] |
0.201 | 0.201 | 0.891 | 0.328 | 0.201 | 0.546 | 0.431 | 0.201 | 0.431 | |
0.891 | 0.201 | 0.201 | 0.328 | 0.201 | 0.546 | 0.431 | 0.201 | 0.431 | |
0.201 | 0.891 | 0.201 | 0.201 | 0.891 | 0.201 | 0.431 | 0.201 | 0.431 |
Optical Phonon Type | D (eV/m) | Energy (eV) |
---|---|---|
g-type, TA | ||
g-type, LA | ||
g-type, LO | ||
f-type, TA | ||
f-type, LA | ||
f-type, TO |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badami, O.; Medina-Bailon, C.; Berrada, S.; Carrillo-Nunez, H.; Lee, J.; Georgiev, V.; Asenov, A. Comprehensive Study of Cross-Section Dependent Effective Masses for Silicon Based Gate-All-Around Transistors. Appl. Sci. 2019, 9, 1895. https://doi.org/10.3390/app9091895
Badami O, Medina-Bailon C, Berrada S, Carrillo-Nunez H, Lee J, Georgiev V, Asenov A. Comprehensive Study of Cross-Section Dependent Effective Masses for Silicon Based Gate-All-Around Transistors. Applied Sciences. 2019; 9(9):1895. https://doi.org/10.3390/app9091895
Chicago/Turabian StyleBadami, Oves, Cristina Medina-Bailon, Salim Berrada, Hamilton Carrillo-Nunez, Jaeyhun Lee, Vihar Georgiev, and Asen Asenov. 2019. "Comprehensive Study of Cross-Section Dependent Effective Masses for Silicon Based Gate-All-Around Transistors" Applied Sciences 9, no. 9: 1895. https://doi.org/10.3390/app9091895
APA StyleBadami, O., Medina-Bailon, C., Berrada, S., Carrillo-Nunez, H., Lee, J., Georgiev, V., & Asenov, A. (2019). Comprehensive Study of Cross-Section Dependent Effective Masses for Silicon Based Gate-All-Around Transistors. Applied Sciences, 9(9), 1895. https://doi.org/10.3390/app9091895