Effect of (Pr+Ce) Additions on Microstructure and Mechanical Properties of AlSi5Cu1Mg Alloy
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Effects of (Pr+Ce) Addition on Microstructure and Morphology
3.2. Mechanism of (Pr+Ce) Modification on Eutectic Si and Fe Phase
3.3. Effect of (Pr+Ce) Addition on Mechanical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zykova, A.; Martyushev, N.; Skeeba, V.; Zadkov, D.; Kuzkin, A. Influence of W addition on microstructure and mechanical properties of Al-12%Si alloys. Materials 2019, 12, 981. [Google Scholar] [CrossRef]
- Wu, Q.J.; Yan, H.; Liu, Y.; Hu, Z. Effect of Sr modification on microstructures and mechanical properties of Al3Ti/ADC12 composites. Rare Metal Mater. Eng. 2018, 47, 742–747. [Google Scholar] [CrossRef]
- Tsai, Y.C.; Lee, S.L.; Lin, C.K. Effect of trace Ce addition on the microstructures and mechanical properties of A356 aluminum alloys. J. Chin. Inst. Eng. 2011, 34, 609–616. [Google Scholar] [CrossRef]
- Huang, X.; Yan, H. Effect of trace La on the microstructure and mechanical properties of as-cast ADC12 Al-alloy. J. Wuhan Univ. Technol. 2013, 28, 202–205. [Google Scholar] [CrossRef]
- Ahmad, R.; Asmael, M.B.A. Influence of Ce on microstructure and solidification of eutectic Al–Si piston alloy. Mater. Manuf. Process. 2016, 31, 1948–1957. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.W.; Jie, J.C.; Wei, Z.J. Microstructure evolution and modification mechanism of the Y modified Al–7.5%Si–0.45%Mg alloys. J. Alloy. Compd. 2011, 509, 3387–3392. [Google Scholar] [CrossRef]
- Song, X.C.; Yan, H.; Chen, F.H. Impact of rare earth element La on microstructure and hot crack resistance of ADC12 alloy. J. Wuhan Univ. Technol. 2018, 33, 193–197. [Google Scholar] [CrossRef]
- Vijeesh, V.; Narayan, P.K. The effect of chilling and Ce addition on the microstructure and mechanical properties of Al-23Si alloy. J. Mater. Eng. Perform. 2017, 26, 343–349. [Google Scholar] [CrossRef]
- Ashtari, P.; Tezuka, H.; Sato, T. Modification of Fe-containing intermetallic compounds by K addition to Fe-rich AA319 aluminum alloys. Scr. Mater. 2004, 53, 937–942. [Google Scholar] [CrossRef]
- Rao, Y.S.; Yan, H.; Hu, Z. Modification of eutectic silicon and β-Al5FeSi phases in as-cast ADC12 alloys by using samarium addition. J. Rare Earth 2013, 31, 916–922. [Google Scholar] [CrossRef]
- Zhu, M.; Jian, Z.Y.; Yao, L.J.; Liu, C.X.; Yang, G.C.; Zhou, Y.H. Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al-7.0%Si-0.3%Mg foundry aluminum alloys. J. Mater. Sci. 2011, 46, 2685–2694. [Google Scholar] [CrossRef]
- Li, Z.H.; Yan, H. Modification of primary α-Al, eutectic silicon and β-Al5FeSi phases in as-cast AlSi10Cu3 alloys with (La+Yb) addition. J. Rare Earth 2015, 33, 995–1003. [Google Scholar] [CrossRef]
- Lu, S.Z.; Hellawell, A. Growth mechanisms of silicon in Al–Si alloys. J. Cryst. Growth 1985, 73, 316–328. [Google Scholar] [CrossRef]
- Taylor, J.A. Iron-containing intermetallic phases in Al–Si based casting alloys. Proc. Mater. Sci. 2012, 1, 19–33. [Google Scholar] [CrossRef]
- Qiu, H.X.; Yan, H.; Hu, Z. Effect of Sm addition on the microstructures and mechanical properties of Al–7Si–0.7Mg alloys. J. Alloy. Compd. 2013, 567, 77–81. [Google Scholar] [CrossRef]
- Mrówka-Nowotnik, G.; Sieniawski, J.; Nowotnik, A. The chemical phenol extraction of intermetallic particles from casting AlSi5Cu1Mg alloy. J. Microsc. 2010, 237, 407–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabani, M.O.; Mazahery, A. Microstructural prediction of cast A356 alloy as a function of cooling rate. JOM 2011, 63, 132–136. [Google Scholar] [CrossRef]
- Yan, H.; Song, X.C.; Huang, X. Preparation of Al–La master alloy by ultrasonic method and modification on Al alloy. Rare Met. 2015, 34, 457–462. [Google Scholar] [CrossRef]
- Wang, L.P.; Gou, E.J.; Ma, B.X. Modification effect of La on primary phase Mg2Si in Mg-Si alloys. J. Rare Earth 2008, 26, 105–109. [Google Scholar] [CrossRef]
- Song, X.C.; Yan, H.; Zhang, X.J. Microstructure and mechanical properties of Al-7Si-0.7Mg alloy formed with an addition of (Pr+Ce). J. Rare Earth 2017, 35, 412–418. [Google Scholar] [CrossRef]
- Trivedi, R.; Somboonsuk, K. Constrained dendritic growth and spacing. Mater. Sci. Eng. 1984, 65, 65–74. [Google Scholar] [CrossRef]
- Fournée, V.; Belin-ferré, E.; Dubois, J. Study of Al-Cu hume-rothery alloys and their relationship to the electronic properties of quasicrystals. J. Phys. Condens. Mater. 1998, 10, 4231–4244. [Google Scholar] [CrossRef]
- Saccone, A.; Cacciamani, G.; Macciò, D.; Borzone, G.; Ferro, R. Contribution to the study of the alloys and intermetallic compounds of aluminium with the rare-earth metals. Intermetallics 1998, 6, 210–215. [Google Scholar] [CrossRef]
- Li, J.H.; Wang, X.D.; Ludwig, T.H.; Tsunekawa, Y.; Arnberg, L.; Jiang, J.Z.; Schumacher, P. Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater. 2015, 84, 153–163. [Google Scholar] [CrossRef]
- Ruan, Y.; Lu, X.Y. Abnormal growth relationship between Si and other phases in undercooled Al–Cu–Si alloy. J. Alloy. Compd. 2012, 542, 232–235. [Google Scholar] [CrossRef]
- Li, S.P.; Chen, X.C. Growth rules of eutectic symbiotic region and microstructure of Al–Si alloy. Acta Metall. Sin. 1995, 31, 47–55. [Google Scholar]
- Chang, J.Y.; Kim, G.H.; Moon, I.G.; Choi, C.S. Rare earth concentration in the primary Si crystal in rare earth added Al-21wt.%Si alloy. Scr. Mater. 1998, 39, 307–314. [Google Scholar] [CrossRef]
- Ceschini, L.; Morri, A.; Gamberini, A.; Messieri, S. Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy. Mater. Des. 2009, 30, 4525–4531. [Google Scholar] [CrossRef]
- Liu, Z.W.; Wang, X.M.; Han, Q.Y.; Li, J.G. Effects of the addition of Ti powders on the microstructure and mechanical properties of A356 alloy. Powder Technol. 2014, 253, 751–756. [Google Scholar] [CrossRef]
- Liu, W.; Yan, H.; Zhu, J.B. Effect of the addition of rare earth element La on the tribological behaviour of AlSi5Cu1Mg alloy. Appl. Sci. 2018, 8, 163. [Google Scholar] [CrossRef]
- Tiryakioğlu, M. On the relationship between vickers hardness and yield stress in Al–Zn–Mg–Cu alloys. Mater. Sci. Eng. A Struct. 2015, 633, 17–19. [Google Scholar] [CrossRef]
- Huang, J.L.; Conley, J.G.; Mori, T. Simulation of microporosity formation in modified and unmodified A356 alloy castings. Metall. Mater. Trans. B 1998, 29, 1249–1260. [Google Scholar] [CrossRef]
- Zhu, J.D.; Cockcroft, S.L.; Maijer, D.M. Modeling of microporosity formation in A356 aluminum alloy casting. Metall. Mater. Trans. A 2006, 37, 1075–1085. [Google Scholar] [CrossRef]
- Lashkari, O.; Yao, L.; Cockcroft, S.; Maijer, D. X-ray Microtomographic Characterization of Porosity in Aluminum Alloy A356. Metall. Mater. Trans. A 2009, 40, 991–999. [Google Scholar] [CrossRef]
- Yao, L.; Cockcroft, S.; Zhu, J.D.; Reilly, C. Modeling of Microporosity Size Distribution in Aluminum Alloy A356. Metall. Mater. Trans. A 2011, 42, 4137–4148. [Google Scholar] [CrossRef]
- Ma, Z.; Samuel, A.M.; Samuel, F.H.; Doty, H.W.; Valtierra, S. A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics and porosity. Mater. Sci. Eng. A Struct. 2008, 490, 36–51. [Google Scholar] [CrossRef]
- Mahmoud, M.G.; Elgallad, E.M.; Ibrahim, M.F.; Samuel, F.H. Effect of Rare Earth Metals on Porosity Formation in A356 Alloy. Int. J. Metal. Cast. 2018, 12, 251–265. [Google Scholar] [CrossRef]
Number | Materials | Si | Cu | Mg | Fe | Pr | Ce | Al |
---|---|---|---|---|---|---|---|---|
1 | AlSi5Cu1Mg | 5.41 | 1.05 | 0.50 | 0.63 | 0 | 0 | 92.41 |
2 | 0.3wt.% (Pr+Ce)/AlSi5Cu1Mg | 5.23 | 1.03 | 0.50 | 0.61 | 0.14 | 0.16 | 92.33 |
3 | 0.6wt.% (Pr+Ce)/AlSi5Cu1Mg | 5.21 | 1.01 | 0.50 | 0.60 | 0.32 | 0.28 | 92.08 |
4 | 0.9wt.% (Pr+Ce)/AlSi5Cu1Mg | 5.26 | 0.99 | 0.50 | 0.62 | 0.44 | 0.46 | 91.73 |
Samples | Porosity/% | Microhardness/HV |
---|---|---|
AlSi5Cu1Mg | 0.55 | 72.39±3.15 |
0.3wt.% (Pr+Ce)/AlSi5Cu1Mg | 0.51 | 82.67±4.37 |
0.6wt.% (Pr+Ce)/AlSi5Cu1Mg | 0.49 | 87.96±3.48 |
0.9wt.% (Pr+Ce)/AlSi5Cu1Mg | 0.57 | 85.17±2.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, M.-M.; Yan, H.; Song, X.-C.; Sun, Y.-H. Effect of (Pr+Ce) Additions on Microstructure and Mechanical Properties of AlSi5Cu1Mg Alloy. Appl. Sci. 2019, 9, 1856. https://doi.org/10.3390/app9091856
Fang M-M, Yan H, Song X-C, Sun Y-H. Effect of (Pr+Ce) Additions on Microstructure and Mechanical Properties of AlSi5Cu1Mg Alloy. Applied Sciences. 2019; 9(9):1856. https://doi.org/10.3390/app9091856
Chicago/Turabian StyleFang, Miao-Miao, Hong Yan, Xian-Chen Song, and Yong-Hui Sun. 2019. "Effect of (Pr+Ce) Additions on Microstructure and Mechanical Properties of AlSi5Cu1Mg Alloy" Applied Sciences 9, no. 9: 1856. https://doi.org/10.3390/app9091856