A Sample-Encoding Generalization of the Kohonen Associative Memory and Application to Knee Kinematic Data Representation and Pathology Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Knee Kinematic Data Collection
2.2. Classification by a Sample-Encoding Generalization of the Kohonen Neural Network
2.2.1. Sample Similarity and the Two-Sample Hotelling Statistic
2.2.2. Sample-Encoding Kohonen Network Algorithm
Algorithm 1 Network algorithm |
Input, |
Output,
|
2.3. Dimensionality Reduction
2.4. Evaluation of the Sample-Encoding Kohonen Network Results
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, U.; Zhang, Y.; Zhu, Y.; Niu, J.; Zhang, B.; Felson, D. Increasing prevalence of knee pain and symptomatic knee osteoarthritis: Survey and cohort data. Ann. Intern. Med. 2011, 155, 725–732. [Google Scholar] [CrossRef]
- Peat, G.; McCarney, R.; Croft, P. Knee pain and osteoarthritis in older adults: A review of community burden and current use of primary health care. Ann. Rheum. Dis. 2001, 60, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Mezghani, N.; Boivin, K.; Turcot, K.; Aissaoui, R.; Hagmeister, N.; De Guise, J. Hierarchical analysis and classification of asymptomatic and knee osteoarthritis gait patterns using a wavelet representation of kinetic data and the nearest neighbor classifier. J. Mech. Med. Biol. 2008, 8, 45–54. [Google Scholar] [CrossRef]
- Astephen, J.L.; Deluzio, K.J.; Caldwell, G.E.; Dunbar, M.J.; Hubley-Kozey, C.L. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels. J. Biomech. 2008, 41, 868–876. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, A.; Mor, A.; Segal, G.; Debi, R.; Shazar, N.; Herman, A. Classification of knee osteoarthritis according to spatio-temporal gait analysis. Osteoarthr. Cartil. 2013, 21, S63–S312. [Google Scholar] [CrossRef]
- Astephen, J.L.; Deluzio, K.J.; Caldwell, G.E.; Dunbar, M.J. Biomechanical changes at the hip, knee, and ankle joints during gait are associated with knee osteoarthritis severity. J. Orthop. Res. 2008, 26, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Holt, C.A.; Beynon, M.J. Reduction, classification and ranking of motion analysis data: An application to osteoarthritic and normal knee function data. Comput. Methods Biomech. Biomed. Eng. 2008, 11, 31–40. [Google Scholar] [CrossRef]
- Mezghani, N.; Ouakrim, Y.; Fuentes, A.; Mitiche, A.; Hagemeister, N.; Vendittoli, P.A.; de Guise, J.A. Mechanical biomarkers of medial compartment knee osteoarthritis diagnosis and severity grading: Discovery phase. J. Biomech. 2017, 52, 106–112. [Google Scholar] [CrossRef]
- Hagemeister, N.; Parent, G.; Van de Putte, M.; St-Onge, N.; Duval, N.; De Guise, J. A reproducible method for studying three-dimensional knee kinematics. J. Biomech. 2005, 38, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Ben Nouma, B.; Mezghani, N.; Mitiche, A.; Ouakrim, Y. A variational method to determine the most representative shape of a set of curves and its application to knee kinematic data for pathology classification. MedPRAI 2018, 22–26. [Google Scholar] [CrossRef]
- Duda, R.; Hart, P.; Stork, D. Pattern Classification; A Wiley-Interscience Publication; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Mezghani, N.; Ouakrim, Y.; Fuentes, A.; Mitiche, A.; Hagemeister, N.; Vendittoli, P.; De Guise, J. An Analysis of 3D Knee Kinematic Data Complexity in Knee Osteoarthritis and Asymptomatic Controls. PLoS ONE 2018, 13, e0202348. [Google Scholar] [CrossRef] [PubMed]
- Lustig, S.; Magnussen, R.; Cheze, L.; Neyret, P. The KneeKG system: A review of the literature. Knee Surg. Sport Traumatol. Arthrosc. 2012, 20, 633–638. [Google Scholar] [CrossRef]
- Härdle, W.; Simar, L. Applied Multivariate Statistical Analysis; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kaski, S. Data exploration using self-organizing maps. In Acta Polytechnica Scandinavica: Mathematics, Computing and Management in Engineering Series No. 82; 1997. [Google Scholar]
- Ritter, H.; Martinetz, T.; Schulten, K. Neural Computation and Self-Organizing Maps: An Introduction; Addison-Wesley Publishing Company: Boston, MA, USA, 1992. [Google Scholar]
- Mitiche, A.; Aggarwal, J. Pattern category assignment by neural networks and nearest neighbors rule: A synopsis and a characterization. In Studies In Pattern Recognition: A Memorial to the Late Professor King-Sun Fu; World Scientific: Singapore, 1996; pp. 3–18. [Google Scholar]
- Cottrell, M.; Rousset, P. The Kohonen algorithm: A powerful tool for analysing and representing multidimensional quantitative and qualitative data. In Proceedings of the International Work-Conference on Artificial Neural Networks, Lanzarote, Spain, 12 June 1997; pp. 861–871. [Google Scholar]
- Deboeck, G.; Kohonen, T. (Eds.) Visual Explorations in Finance: With Self-Organizing Maps; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kaski, S.; Oja, E. Kohonen Maps; Elsevier Science Inc.: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Kohonen, T. Self-Organizing Maps, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Le Bail, E.; Mitiche, A. Quantification vectorielle d’images par le réseau neuronal de Kohonen. Trait. Signal 1989, 6, 529–539. [Google Scholar]
- Nasrabadi, N.; Feng, Y. Vector quantization of images based upon the Kohonen self-organizing feature maps. In Proceedings of the IEEE 1988 International Conference on Neural Networks, San Diego, CA, USA, 24–27 July 1988; pp. 101–105. [Google Scholar]
- Mezghani, N.; Mitiche, A.; Cheriet, M. Maximum Entropy Gibbs Density Modeling for Pattern Classification. Entropy 2012, 14, 2478–2491. [Google Scholar] [CrossRef] [Green Version]
- Mezghani, N.; Mitiche, A.; Cheriet, M. Bayes Classification of Online Arabic Characters by Gibbs Modeling of Class Conditional Densities. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- González, I.; García, H. Fuzzy Labeled Self-organizing Map with Kernel-Based Topographic Map Formation. In Proceedings of the International Conference on Artificial Neural Networks, Porto, Portugal, 9–13 September 2007; pp. 341–348. [Google Scholar]
- Hotelling, H. The generalization of Student’s ratio. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 54–65. [Google Scholar]
- Johnson, R.; Wichern, D. Applied Multivariate Statistical Analysis, 6th ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- McLachlan, G. Mahalanobis distance. Resonance 1999, 4, 20–26. [Google Scholar] [CrossRef]
- Daubechies, I. Ten Lectures on Wavelets; CBMS-NSF Regional Conference Series in Applied Mathematics; Siam: Philadelphia, PA, USA, 1990. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Cohen, A. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, Xix + 357 Pp. J. Approx. Theory 1994, 78, 460–461. [Google Scholar] [CrossRef]
- Akanksha, N.; Mridu, S.; Shrish, V.; Raj, V. Dimensionality Reduction for Motor Imagery Signal Classification using Wavelet Analysis. Int. J. Control Theory Appl. 2017, 10, 65–76. [Google Scholar]
- Thepade, S.; Erandole, S. Extended performance comparison of tiling based image compression using wavelet transforms amp; hybrid wavelet transforms. In Proceedings of the IEEE Conference on Information Communication Technologies, Singapore, 1–2 December 2013; pp. 1150–1155. [Google Scholar]
- Taujuddin, N.; Ibrahim, R.; Sari, S. Wavelet Coefficients Reduction Method Based On Standard Deviation Concept For High Quality Compressed Image. J. Theor. Appl. Inf. Technol. 2015, 79, 380–388. [Google Scholar]
- Boix, M.; Canto, B. Wavelet Transform application to the compression of images. Math. Comput. Model. 2010, 52, 1265–1270. [Google Scholar] [CrossRef]
- Jolliffe, I.; Cadima, J. Principal component analysis: A review and recent developments. Phil. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Shao, J. Linear model selection by cross-validation. J. Am. Stat. Assoc. 1993, 88, 486–494. [Google Scholar] [CrossRef]
- Sharma, L.; Song, J.; Felson, D.; Cahue, S.; Shamiyeh, E.; Dunlop, D. The role of knee alignment in disease progression and functional decline in knee osteoarthritis. J. Am. Med. Assoc. 2001, 286, 188–195. [Google Scholar] [CrossRef]
- Thorp, L.; Sumner, D.; Block, J.; Moisio, K.; Shott, S.; Wimmer, M. Knee joint loading differs in individuals with mild compared with moderate medial knee osteoarthritis. Arthritis Rheumatol. 2006, 54, 3842–3849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | C1:FR | C2:FT | C3:FR-FT |
---|---|---|---|
Age (years) | 46.1 * ± 11.7 | 59.5 * ± 10.1 | 59.6 ± 11.4 |
Height (m) | 1.71 ± 0.07 | 1.66 ± 0.09 | 1.66 ± 0.11 |
Weight (kg) | 82.9 ± 20.7 | 76.2 ± 11.2 | 84.3 ± 15.9 |
BMI (kg/m2) | 28.3 ± 7.1 | 27.4 ± 3.9 | 30.3 ± 5.5 |
Men% | 45 | 38 | 33.3 |
Predicted | C1:FR | C2:FT | τ (%) |
---|---|---|---|
Real | |||
:FR | 20 | 1 | 90.47 |
:FT | 3 | 18 |
Predicted | C1:FR | C2:FT | C3:FR-FT | τ (%) |
---|---|---|---|---|
Real | ||||
:FR | 18 | 1 | 2 | 71.43 |
:FT | 3 | 14 | 4 | |
:FR-FT | 4 | 4 | 13 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Nouma, B.; Mitiche, A.; Mezghani, N. A Sample-Encoding Generalization of the Kohonen Associative Memory and Application to Knee Kinematic Data Representation and Pathology Classification. Appl. Sci. 2019, 9, 1741. https://doi.org/10.3390/app9091741
Ben Nouma B, Mitiche A, Mezghani N. A Sample-Encoding Generalization of the Kohonen Associative Memory and Application to Knee Kinematic Data Representation and Pathology Classification. Applied Sciences. 2019; 9(9):1741. https://doi.org/10.3390/app9091741
Chicago/Turabian StyleBen Nouma, Badreddine, Amar Mitiche, and Neila Mezghani. 2019. "A Sample-Encoding Generalization of the Kohonen Associative Memory and Application to Knee Kinematic Data Representation and Pathology Classification" Applied Sciences 9, no. 9: 1741. https://doi.org/10.3390/app9091741
APA StyleBen Nouma, B., Mitiche, A., & Mezghani, N. (2019). A Sample-Encoding Generalization of the Kohonen Associative Memory and Application to Knee Kinematic Data Representation and Pathology Classification. Applied Sciences, 9(9), 1741. https://doi.org/10.3390/app9091741