Practical Design of a High-Voltage Pulsed Power Supply Implementing SiC Technology for Atmospheric Pressure Plasma Reactors
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. The DC Voltage Source
2.2. The Resonant Capacitor Charger
2.3. The Output Pulse Shaping Unit
3. Results
4. Discussion
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ohta, T. Plasma in agriculture. In Cold Plasma in Food and Agriculture; Misra, N.N., Schluter, O., Cullen, P.J., Eds.; Academic Press: Waltham, MA, USA, 2016; Chapter 8; pp. 205–221. ISBN 9780128013656. [Google Scholar]
- Metelmann, H.-R.; von Woedtke, T.; Weltmann, K.-D. Cold physical plasma for medical application. In Comprehensive Clinical Plasma Medicine; Springer International Publishing: New York, NY, USA, 2018. [Google Scholar]
- Inhwan, H.; Jongku, J.; Taesuk, Y.; Jinmu, J. Water electrode plasma discharge to enhance the bacterial inactivation in water. Biotechnol. Biotechnol. Equip. 2018, 32, 530–534. [Google Scholar] [CrossRef]
- Weltmann, K.-D.; Kolb, J.F.; Holub, M.; Uhrlandt, D.; Simek, M.; Ostrikov, K.K.; Hamaguchi, S.; Cvelbar, U.; Cernak, M.; Locke, B.; et al. The future for plasma science and technology. Plasma Process Polym. 2018, 16, e1800118. [Google Scholar] [CrossRef]
- Schmidt, M.; Holub, M.; Jogi, I.; Sikk, M. Treatment of industrial exhaust gases by a dielectric barrier discharge. Eur. Phys. J. Appl. Phys. 2016, 75, 24708. [Google Scholar] [CrossRef]
- Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, R.B.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; et al. White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Process Polym. 2018, 16, e1700238. [Google Scholar] [CrossRef]
- Wala, A.S.; Aymen, A.A.; Monia, G.; Bouzaza, A.; Aboussaound, W.; Soutrel, I.; Ouederni, A.; Wolbert, D.; Rtmini, S. Abatement of ammonia and butyraldehyde under non-thermal plasma and photocatalysis: Oxidation processes for the removal of mixture pollutants at pilot scale. Chem. Eng. J. 2018, 344, 165–172. [Google Scholar] [CrossRef]
- Wang, D.; Namihira, T.; Akiyama, H. Pulsed discharge plasma for pollution control. In Air Pollution; InTech: London, UK, 2010. [Google Scholar]
- Kolek, J.; Jakubowski, T.; Balcerak, M. Impact of voltage shape on efficiency of ozone generation. In Proceedings of the 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Wasaw, Poland, 11–14 September 2017. [Google Scholar]
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Kolek, J.; Kalisiak, S.; Holub, M. Resonant, high voltage power supply for non-thermal plasma reactors. WZEE 2018, in press. [Google Scholar]
- Denicolai, M. Optimal performance for Tesla transformers. Rev. Sci. Inst. 2002, 73, 1–5. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, L.; Bing, Y.; Ge, Y.; Hu, W.; Lin, F. Resonant charging performance of spiral tesla transformer applied in compact high-voltage repetitive nanosecond pulse generator. IEEE Trans. Plasma Sci. 2013, 41, 3651–3658. [Google Scholar] [CrossRef]
- Balcerak, M.; Jakubowski, T.; Kalisiak, S. Compact pulsed power supply based on Tesla transformer for plasma reactors. In Proceedings of the 19th European Conference on Power Electronics and Applications, Warsaw, Poland, 11–14 September 2017; pp. 1–9. [Google Scholar]
- You, B.G.; Kim, J.S.; Lee, B.L.; Choi, G.B.; Yoo, D.W. Optimization of powder core inductors of buck-boost converters for hybrid electric vehicles. J. Electron. Eng. Technol. 2011, 6, 527–534. [Google Scholar] [CrossRef]
- Kralj, L.; Miljavec, D. Stray losses in power transformer tank walls and construction parts. In Proceedings of the The XIX International Conference on Electrical Machines—ICEM, Rome, Italy, 6–8 September 2010; pp. 1–4. [Google Scholar]
- Williams, D.M. Self-capacitance of high-voltage transformers. IEEE Trans. Power Electron. 2017, 22, 22–26. [Google Scholar]
- Kim, Y.; Cha, M.S.; Shin, W.; Song, Y. Characteristics of dielectric barrier glow discharges with a low-frequency generator in nitrogen. J. Korean Phys. Soc. 2003, 43, 732–737. [Google Scholar] [CrossRef]
- France, P.I.V.; Abb, E. Dielectric-barrier discharges principle and applications. Plasma Processes Polym. 1997, 7, C447–C466. [Google Scholar]
- Pokryvailo, A.; Carp, C.; Scapellati, C. A high-power high_voltage power supply for long-pulse applications. IEEE Trans. Plasma Sci. 2010, 38, 2604–2610. [Google Scholar] [CrossRef]
- SooWon, L.; ChuHyun, C.; Hong-Je, R.; Jong-Soo, K.; Geun-Hie, R.; Yun-Sik, J. Fabrication andoperation testing of a dual resonance pulse transformer for PFL pulse Charging. J. Korean Phys. Soc. 2011, 59, 3679–3682. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kołek, J.; Hołub, M. Practical Design of a High-Voltage Pulsed Power Supply Implementing SiC Technology for Atmospheric Pressure Plasma Reactors. Appl. Sci. 2019, 9, 1451. https://doi.org/10.3390/app9071451
Kołek J, Hołub M. Practical Design of a High-Voltage Pulsed Power Supply Implementing SiC Technology for Atmospheric Pressure Plasma Reactors. Applied Sciences. 2019; 9(7):1451. https://doi.org/10.3390/app9071451
Chicago/Turabian StyleKołek, Jacek, and Marcin Hołub. 2019. "Practical Design of a High-Voltage Pulsed Power Supply Implementing SiC Technology for Atmospheric Pressure Plasma Reactors" Applied Sciences 9, no. 7: 1451. https://doi.org/10.3390/app9071451
APA StyleKołek, J., & Hołub, M. (2019). Practical Design of a High-Voltage Pulsed Power Supply Implementing SiC Technology for Atmospheric Pressure Plasma Reactors. Applied Sciences, 9(7), 1451. https://doi.org/10.3390/app9071451