Optical, Electrical, and Surface Properties of Cu/Plasma Polymer Fluorocarbon Nanocomposite Thin Film Fabricated Using Metal/Polymer Composite Target
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cu/PTFE Composite Sputtering Targets
2.2. Fabrication of Cu/PPFC Nanocomposite Thin Films
2.3. Characterization of Cu/PPFC Nanocomposite Thin Films
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schurmann, U.; Takele, H.; Zaporojtchenko, V.; Faupel, F. Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering. Thin Solid Films 2006, 515, 801–804. [Google Scholar] [CrossRef]
- Kreibig, U.; Vollmer, M. Optical properties of metal clusters; Springer-Verlag: Berlin, Germany, 1995. [Google Scholar]
- Grynko, D.; Grytrsenko, K.; Lozovski, V.; Sopinskyy, M.; Strilchuk, G. Optical absorption of nano-composite thin films of Au in Teflon. Mater. Sci. Appl. 2010, 1, 141–151. [Google Scholar] [CrossRef]
- Schurmann, U.; Hartung, W.; Takele, H.; Zaporojtchenko, V.; Faupel, F. Controlled syntheses of Ag-polytetrafluoroethylene nanocomposite thin films by co-sputtering from two magnetron sources. Nanotechnology 2005, 16, 1078–1082. [Google Scholar] [CrossRef]
- Takele, H.; Greve, H.; Pochstein, C.; Zaporojtchenko, V.; Faupel, F. Plasmonic properties of Ag nanoclusters in various polymer matrices. Nanotechnology 2006, 17, 3499–3505. [Google Scholar] [CrossRef] [PubMed]
- Choukourov, A.; Pihosh, Y.; Stelmashuk, V.; Biederman, H.; Slavínská, D.; Kormunda, M.; Zajíčková, L. Rf sputtering of composite SiOx/plasma polymer films and their basic properties. Surf. Coat. Technol. 2002, 151–152, 214–217. [Google Scholar] [CrossRef]
- Biswas, A.; Aktas, O.C.; Schürmann, U.; Saeed, U.; Zaporojtchenko, V.; Faupel, F.; Strunskus, T. Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems. Appl. Phys. Lett. 2004, 84, 2655–2657. [Google Scholar] [CrossRef]
- Beecroft, L.L.; Ober, C.K. Nanocomposite materials for optical applications. Chem. Mater. 1997, 9, 1302–1317. [Google Scholar] [CrossRef]
- Zaporojtchenko, V.; Chakravadhanula, V.S.K.; Faupel, F.; Tamulevičius, S.; Andrulevičius, M.; Tamulevičiene, A.; Augulis, L. Residual stress in polytetrafluoroethylene-metal nanocomposite films prepared by magnetron sputtering. Thin Solid Films 2010, 518, 5944–5949. [Google Scholar] [CrossRef]
- Wang, M.; Watanabe, S.; Miyake, S. Deposition of C-F thin films by sputtering and their micromechanical properties. Carbon Technol. 2005, 15, 29–36. [Google Scholar]
- Zaporojtchenko, V.; Podschun, R.; Schurmann, U.; Kulkarni, A.; Faupel, F. Physico-chemical and antimicrobial properties of co-sputtered Ag-Au/PTFE nanocomposite coatings. Nanotechnology 2006, 17, 4904–4908. [Google Scholar] [CrossRef]
- Cioffi, N.; Ditaranto, N.; Torsi, L.; Picca, R.A.; Sabbatini, L.; Valentini, A.; Novello, L.; Tantillo, G; Bleve-Zacheo, T.; Zambonin, P.G. Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal. Bioanal. Chem. 2005, 381, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, M.K.; Faupel, F.; Elbahri, M. Tunable broadband plasmonic perfect absorber at visible frequency. Appl. Phys. A 2012, 109, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Hedayati, M.K.; Faupel, F.; Elbahri, M. Review of plasmonic nanocomposite metamaterial absorber. Materials 2014, 7, 1221–1248. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, M.K.; Javaherirahim, M.; Mozooni, B.; Abdelaziz, R.; Tavassolizadeh, A.; Chakravadhanula, V.S.K.; Zaporojtchenko, V.; Strunkus, T.; Faupel, F.; Elbahri, M. Design of a perfect black absorber at visible frequencies using plasmonic metamaterials. Adv. Mater. 2011, 23, 5410–5414. [Google Scholar] [CrossRef]
- Cioffi, N.; Losito, I.; Torsi, L.; Farella, I.; Valentini, A.; Sabbatini, L.; Zambonin, P.G.; Bleve-Zacheo, T. Analysis of the surface chemical composition and morphological structure of vapor-sensing gold-fluoropolymer nanocomposites. Chem. Mater. 2002, 14, 804–811. [Google Scholar] [CrossRef]
- Faupel, F.; Zaporojtchenko, V.; Strunskus, T.; Elbahri, N. Metal-polymer nanocomposites for functional applications. Adv. Eng. Mater. 2010, 12, 1177–1190. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Shi, G.; Araby, S.; Gibson, C.T.; Meng, Q.; Zhu, S.; Ma, J. Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications. Adv. Funct. Mater. 2018, 28, 1706705. [Google Scholar] [CrossRef]
- Idowu, A.; Boesl, B.; Agarwal, A. 3D graphene foam-reinforced polymer composites—A review. Carbon 2018, 135, 52–71. [Google Scholar] [CrossRef]
- Mittal, G.; Rhee, K.Y.; Mišković-Stanković, V.; Hui, D. Reinforcements in multi-scale polymer composites: Processing, properties and applications. Compos. Part B Eng. 2018, 138, 122–139. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, X.; Xie, Y.; Wan, L.; Lv, Z.; Cao, J.J. Feng, Friction stir welding/processing of polymers and polymer matrix composites. Compos. Part A Appl. Sci. Manuf. 2018, 105, 235–257. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Qi, H.J. Composite fluorocarbon/ZnO films prepared by R.F. magnetron sputtering of Zn and PTFE. Surf. Coat. Technol. 2008, 202, 2612–2615. [Google Scholar] [CrossRef]
- Kecskemeti, G.; Hopp, B.; Smausz, T.; Toth, Z.; Szabo, G. Production of porous PTFE-Ag composite thin films by pulsed laser deposition. Appl. Surf. Sci. 2012, 258, 7982–7988. [Google Scholar] [CrossRef]
- Biswas, A.; Aktas, O.C.; Kanzow, J.; Saeed, U.; Strunskus, T.; Zaporojtchenko, V.; Faupel, F. Polymer-metal nanocomposites with tunable particle plasmon resonance prepared by vapor phase co-deposition. Mater. Lett. 2004, 58, 1530–1534. [Google Scholar] [CrossRef]
- Biswas, A.; Márton, Z.; Kanzow, J.; Kruse, J.; Zaporojtchenko, V.; Faupel, F. Controlled generation of Ni nanoparticles in the capping layers of Teflon AF by vapor-phase tandem evaporation. Nano Lett. 2003, 3, 69–73. [Google Scholar] [CrossRef]
- Ouyang, J.; Chu, C.W.; Szmanda, C.R.; Ma, L.; Yang, Y. Programmable polymer thin film and non-volatile memory device. Nat. Mater. 2004, 3, 918–922. [Google Scholar] [CrossRef]
- Liu, C.; Fairhurst, R.G.; Ren, L.; Green, S.M.; Tong, J.; Arnell, R.D. Co-deposition of titanium/polytetrafluoroethylene films by unbalanced magnetron sputtering. Surf. Coat. Technol. 2002, 149, 143–150. [Google Scholar] [CrossRef]
- Greve, H.; Pochstein, C.; Takele, H.; Zaporojtchenko, V.; Faupel, F. Nanostructured magnetic Fe-Ni-Co/Teflon multilayers for high-frequency applications in the gigahertz range. Appl. Phys. Lett. 2006, 89, 242501. [Google Scholar] [CrossRef]
- Kamegawa, T.; Shimizu, Y.; Yamashita, H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Adv. Mater. 2012, 24, 3697–3700. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, C.H.; Choi, W.J.; Lee, T.G.; Cho, S.K.; Yang, Y.S.; Lee, J.H.; Lee, S.-J. Fluorocarbon thin films fabricated using carbon nanotube/polytetrafluoroethylene composite polymer targets via mid-frequency sputtering. Sci. Rep. 2017, 7, 1451. [Google Scholar] [CrossRef]
- Valladares, L.D.L.S.; Salinas, D.H.; Dominguez, A.B.; Najarro, D.A.; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J.A.; Majima, Y. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates. Thin Solid Films 2012, 520, 6368–6374. [Google Scholar] [CrossRef]
- Figueiredo, V.; Elangovan, E.; Goncalves, G.; Barquinha, P.; Pereira, L.; Franco, N.; Alves, E.; Martins, R.; Fortunato, E. Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl. Surf. Sci. 2008, 254, 3949–3954. [Google Scholar] [CrossRef]
- Yamada, Y.; Kurobe, T. X-ray photoelectron spectroscopy of fluorocarbon films deposited by RF sputtering. Jpn. J. Appl. Phys. 1993, 32, 5090–5094. [Google Scholar] [CrossRef]
Target | Power Type | Contact Angle (deg.) | Sheet Resistance (Ω/sq) | Transmittance (%) | b* |
---|---|---|---|---|---|
Pure PTFE | RF | 109.83 ± 0.42 | over | 90.56 ± 0.27 | 0.69 ± 0.06 |
Cu 20/PTFE 80 | RF | 100.34 ± 0.33 | over | 89.92 ± 0.29 | 1.31 ± 0.04 |
Cu 50/PTFE 50 | RF | 95.85 ± 0.44 | over | 89.49 ± 0.32 | 1.37 ± 0.04 |
Cu 80/PTFE 20 | RF | 76.67 ± 0.19 | over | 64.80 ± 0.33 | 14.30 ± 0.08 |
Cu 80/PTFE 20 | MF | 12.10 ± 0.48 | 2.00 ± 0.21 (×104) | 15.68 ± 0.21 | 22.39 ± 0.15 |
Cu 80/PTFE 20 | DC | 48.31 ± 0.33 | 34.55 ± 1.40 | 5.62 ± 0.11 | 6.48 ± 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Kim, M.; Park, J.S.; Lee, S.-J. Optical, Electrical, and Surface Properties of Cu/Plasma Polymer Fluorocarbon Nanocomposite Thin Film Fabricated Using Metal/Polymer Composite Target. Appl. Sci. 2019, 9, 1296. https://doi.org/10.3390/app9071296
Kim SH, Kim M, Park JS, Lee S-J. Optical, Electrical, and Surface Properties of Cu/Plasma Polymer Fluorocarbon Nanocomposite Thin Film Fabricated Using Metal/Polymer Composite Target. Applied Sciences. 2019; 9(7):1296. https://doi.org/10.3390/app9071296
Chicago/Turabian StyleKim, Sung Hyun, Mac Kim, Jae Seong Park, and Sang-Jin Lee. 2019. "Optical, Electrical, and Surface Properties of Cu/Plasma Polymer Fluorocarbon Nanocomposite Thin Film Fabricated Using Metal/Polymer Composite Target" Applied Sciences 9, no. 7: 1296. https://doi.org/10.3390/app9071296
APA StyleKim, S. H., Kim, M., Park, J. S., & Lee, S.-J. (2019). Optical, Electrical, and Surface Properties of Cu/Plasma Polymer Fluorocarbon Nanocomposite Thin Film Fabricated Using Metal/Polymer Composite Target. Applied Sciences, 9(7), 1296. https://doi.org/10.3390/app9071296