Next Article in Journal
Proof-of-Familiarity: A Privacy-Preserved Blockchain Scheme for Collaborative Medical Decision-Making
Next Article in Special Issue
Environmental Pollutants Impair Transcriptional Regulation of the Vitellogenin Gene in the Burrowing Mud Crab (Macrophthalmus Japonicus)
Previous Article in Journal
Optimal Configuration of Integrated Energy System Based on Energy-Conversion Interface
Previous Article in Special Issue
Biodegradation of Picolinic Acid by Rhodococcus sp. PA18
Article Menu
Issue 7 (April-1) cover image

Export Article

Open AccessFeature PaperArticle

A Novel Method to Characterise Levels of Pharmaceutical Pollution in Large-Scale Aquatic Monitoring Campaigns

Environment and Geography Department, University of York, York YO10 5NG, UK
U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA 52240, USA
Author to whom correspondence should be addressed.
Appl. Sci. 2019, 9(7), 1368;
Received: 11 February 2019 / Revised: 8 March 2019 / Accepted: 20 March 2019 / Published: 1 April 2019
(This article belongs to the Special Issue Environmental Fate of Emerging Organic Micro-Contaminants)
PDF [2497 KB, uploaded 1 April 2019]


Much of the current understanding of pharmaceutical pollution in the aquatic environment is based on research conducted in Europe, North America and other select high-income nations. One reason for this geographic disparity of data globally is the high cost and analytical intensity of the research, limiting accessibility to necessary equipment. To reduce the impact of such disparities, we present a novel method to support large-scale monitoring campaigns of pharmaceuticals at different geographical scales. The approach employs the use of a miniaturised sampling and shipping approach with a high throughput and fully validated direct-injection High-Performance Liquid Chromatography-Tandem Mass Spectrometry method for the quantification of 61 active pharmaceutical ingredients (APIs) and their metabolites in tap, surface, wastewater treatment plant (WWTP) influent and WWTP effluent water collected globally. A 7-day simulated shipping and sample stability assessment was undertaken demonstrating no significant degradation over the 1–3 days which is typical for global express shipping. Linearity (r2) was consistently ≥0.93 (median = 0.99 ± 0.02), relative standard deviation of intra- and inter-day repeatability and precision was <20% for 75% and 68% of the determinations made at three concentrations, respectively, and recovery from Liquid Chromatography Mass Spectrometry grade water, tap water, surface water and WWTP effluent were within an acceptable range of 60–130% for 87%, 76%, 77% and 63% of determination made at three concentrations respectively. Limits of detection and quantification were determined in all validated matrices and were consistently in the ng/L level needed for environmentally relevant API research. Independent validation of method results was obtained via an interlaboratory comparison of three surface-water samples and one WWTP effluent sample collected in North Liberty, Iowa (USA). Samples used for the interlaboratory validation were analysed at the University of York Centre of Excellence in Mass Spectrometry (York, UK) and the U.S. Geological Survey National Water Quality Laboratory in Denver (Colorado, USA). These results document the robustness of using this method on a global scale. Such application of this method would essentially eliminate the interlaboratory analytical variability typical of such large-scale datasets where multiple methods were used. View Full-Text
Keywords: pharmaceuticals; organic pollutants; liquid chromatography tandem mass spectrometry; validation; global monitoring pharmaceuticals; organic pollutants; liquid chromatography tandem mass spectrometry; validation; global monitoring

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

Printed Edition Available!
A printed edition of this Special Issue is available here.

Share & Cite This Article

MDPI and ACS Style

Wilkinson, J.L.; Boxall, A.B.; Kolpin, D.W. A Novel Method to Characterise Levels of Pharmaceutical Pollution in Large-Scale Aquatic Monitoring Campaigns. Appl. Sci. 2019, 9, 1368.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Appl. Sci. EISSN 2076-3417 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top