An Improved A-Star Algorithm Considering Water Current, Traffic Separation and Berthing for Vessel Path Planning
Abstract
:1. Introduction
2. Risk Modelling
2.1. Obstacle Modelling With Current
2.2. Traffic Separation Modelling
2.3. Berthing Modelling Considering Current
2.4. Manoeuvrability Restriction Modelling
3. Improved A-Star Algorithm
3.1. Traditional A-Star Algorithm
Algorithm 1 Traditional A-Star algorithm () |
|
3.2. A-Star Algorithm Considering Risk Models
3.2.1. Normal Path Generation of Vessels
Algorithm 2 Normal path generation with the improved A-Star algorithm () |
|
3.2.2. Berthing Path Generation of Vessels
Algorithm 3 Berthing path generation algorithm () |
|
3.2.3. Combined Path Generation of Vessels
Algorithm 4 Smoothing the combined path algorithm () |
|
4. Case Study
4.1. Case 1: Normal Path Planning
4.1.1. Setup
4.1.2. Results
4.2. Case 2: Berthing Path Planning
4.2.1. Setup
4.2.2. Results
4.3. Case 3: Combined Path Planning
4.3.1. Setup
4.3.2. Results
4.4. Case 4: Path Planning in Real Scenario
5. Conclusions and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Wuthishuwong, C.; Traechtler, A.; Bruns, T. Safe trajectory planning for autonomous intersection management by using vehicle to infrastructure communication. EURASIP J. Wirel. Commun. Networking 2015, 2015, 33. [Google Scholar] [CrossRef]
- Fernandes, E.; Costa, P.; Lima, J.; Veiga, G. Towards an orientation enhanced Astar algorithm for robotic navigation. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain, 18 June 2015; pp. 3320–3325. [Google Scholar]
- Raja, P.; Pugazhenthi, S. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 2012, 7, 1314–1320. [Google Scholar] [CrossRef]
- Szlapczynski, R. A new method of ship routing on raster grids, with turn penalties and collision avoidance. J. Navig. 2005, 59, 27–42. [Google Scholar] [CrossRef]
- Kim, H.; Park, B.; Myung, H. Curvature path planning with high resolution graph for unmanned surface vehicle. In Proceedings of the Robot Intelligence Technology and Applications (RiTA); Springer: Gwangju, Korea, 2013; pp. 147–154. [Google Scholar]
- Lyu, H.; Yin, Y. Fast path planning for autonomous ships in restricted waters. Appl. Sci. 2018, 8, 2592. [Google Scholar] [CrossRef]
- Lyu, H.; Yin, Y. COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields. J. Navig. 2018, 1–21. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, M.; Yan, X. Multi-objective path planning for unmanned surface vehicle with currents effects. ISA Trans. 2018, 75, 137–156. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Kim, H.; Chung, H.; Bang, Y.; Myung, H. Energy efficient path planning for a marine surface vehicle considering heading angle. Ocean Eng. 2015, 107, 118–131. [Google Scholar] [CrossRef]
- Murdoch, E. A Master’s Guide to Berthing; The Standard; Witherby & Company: Witherby, UK, 2004. [Google Scholar]
- Rafal, S. Evolutionary Sets of Safe Ship Trajectories Within Traffic Separation Schemes. J. Navig. 2013, 66, 65–81. [Google Scholar]
- Kim, H.; Kim, D.; Shin, J.U.; Kim, H.; Myung, H. Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Eng. 2014, 84, 37–44. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.G.H. Hyperstar: A multi-path Astar algorithm for risk averse vehicle navigation. Transp. Res. Part B Methodol. 2009, 43, 97–107. [Google Scholar] [CrossRef]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Rahman, S.M.M.; Al-Arif, A.H.M.; Ferdous, I.; Nizami, M.S.H. Path planning for robotic boats in a rescue system. Int. J. Comput. Appl. 2012, 45, 50–57. [Google Scholar]
- Sathyaraj, B.M.; Jain, L.C.; Finn, A.; Drake, S. Multiple UAVs path planning algorithms: A comparative study. Fuzzy Optim. Decis. Mak. 2008, 7, 257–267. [Google Scholar] [CrossRef]
- Yao, J.; Lin, C.; Xie, X.; Wang, A.J.A.; Hung, C.C. Path planning for virtual human motion using improved A* star algorithm. In Proceedings of the Seventh International Conference on Information Technology: New Generations (ITNG), Las Vegas, NV, USA, 1 July 2010; pp. 1154–1158. [Google Scholar]
- Pochmara, J.; Grygiel, W.; Koppa, R.; Kaminski, K. Mobile robot platform for real-time search algorithms. In Proceedings of the 20th International Conference on Mixed Design of Integrated Circuits and Systems, Gdynia, Poland, 10 October 2013; pp. 615–620. [Google Scholar]
Parameters | Value |
---|---|
node range of x axis | |
node range of y axis | |
grid length | 30 m |
minimum radius of vessel | 27 m |
100 | |
0.2 | |
0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Mao, Q.; Chu, X.; Xie, S. An Improved A-Star Algorithm Considering Water Current, Traffic Separation and Berthing for Vessel Path Planning. Appl. Sci. 2019, 9, 1057. https://doi.org/10.3390/app9061057
Liu C, Mao Q, Chu X, Xie S. An Improved A-Star Algorithm Considering Water Current, Traffic Separation and Berthing for Vessel Path Planning. Applied Sciences. 2019; 9(6):1057. https://doi.org/10.3390/app9061057
Chicago/Turabian StyleLiu, Chenguang, Qingzhou Mao, Xiumin Chu, and Shuo Xie. 2019. "An Improved A-Star Algorithm Considering Water Current, Traffic Separation and Berthing for Vessel Path Planning" Applied Sciences 9, no. 6: 1057. https://doi.org/10.3390/app9061057
APA StyleLiu, C., Mao, Q., Chu, X., & Xie, S. (2019). An Improved A-Star Algorithm Considering Water Current, Traffic Separation and Berthing for Vessel Path Planning. Applied Sciences, 9(6), 1057. https://doi.org/10.3390/app9061057