# Accurate Evaluation of the Average Probability of Error of Pulse Position Modulation in Amplified Optical Wireless Communications under Turbulence

^{*}

## Abstract

**:**

## 1. Introduction

## 2. PPM Reception

#### 2.1. Receiver Model

#### 2.2. PPM PER

#### 2.3. PER Results

## 3. Average PER in Turbulent Channels

#### 3.1. Channel Model

#### 3.2. Weak and Moderate Fading

#### 3.3. Strong Fading

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

EGC | Equal-gain combiner |

OSNR | Optical signal-to-noise-ratio |

OWC | Optical wireless communication |

PER | Probability of error |

PPM | Pulse position modulation |

RV | Random variable |

SER | Symbol error probability |

## References

- Wilson, S.G.; Brandt-Pearce, M.; Cao, Q.; Leveque, J.H. Free-space optical MIMO transmission with Q-ary PPM. IEEE Trans. Commun.
**2005**, 53, 1402–1412. [Google Scholar] [CrossRef] - Cvijetic, N.; Wilson, S.G.; Brandt-Pearce, M. Performance Bounds for Free-Space Optical MIMO Systems with APD Receivers in Atmospheric Turbulence. IEEE J. Sel. Areas Commun.
**2008**, 26, 3–12. [Google Scholar] [CrossRef] - Phillips, A.J.; Cryan, R.A.; Senior, J.M. Novel laser intersatellite communication system employing optically preamplified PPM receivers. IEE Proc.-Commun.
**1995**, 142, 15–20. [Google Scholar] [CrossRef] - Stevens, M.L.; Boroson, D.M. A simple delay-line 4-PPM demodulator with near-optimum performance. Opt. Express
**2012**, 20, 5270–5280. [Google Scholar] [CrossRef] [PubMed] - Fletcher, A.S.; Hamilton, S.A.; Moores, J.D. Undersea laser communication with narrow beams. IEEE Commun. Mag.
**2015**, 53, 49–55. [Google Scholar] [CrossRef] - Humblet, P.A.; Azizoglu, M. On the bit error rate of lightwave systems with optical amplifiers. J. Lightwave Technol.
**1991**, 9, 1576–1582. [Google Scholar] [CrossRef] [Green Version] - Razavi, M.; Shapiro, J.H. Wireless optical communications via diversity reception and optical preamplification. IEEE Trans. Wirel. Commun.
**2005**, 4, 975–983. [Google Scholar] [CrossRef] - Karimi, M.; Nasiri-Kenari, M. Free Space Optical Communications via Optical Amplify-and-Forward Relaying. J. Lightwave Technol.
**2011**, 29, 242–248. [Google Scholar] [CrossRef] - Kashani, M.A.; Rad, M.M.; Safari, M.; Uysal, M. All-Optical Amplify-and-Forward Relaying System for Atmospheric Channels. IEEE Commun. Lett.
**2012**, 16, 1684–1687. [Google Scholar] [CrossRef] - Zhao, W.; Han, Y.; Yi, X. Error performance analysis for FSO systems with diversity reception and optical preamplification over gamma–gamma atmospheric turbulence channels. J. Mod. Opt.
**2013**, 60, 1060–1068. [Google Scholar] [CrossRef] - Aladeloba, A.O.; Phillips, A.J.; Woolfson, M.S. Performance evaluation of optically preamplified digital pulse position modulation turbulent free-space optical communication systems. IET Optoelectron.
**2012**, 6, 66–74. [Google Scholar] [CrossRef] - Hughes, L.W. A simple upper bound on the error probability for orthogonal signals in white noise. IEEE Trans. Commun.
**1992**, 40, 670. [Google Scholar] [CrossRef] - Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover: New York, NY, USA, 1964. [Google Scholar]
- Yiannopoulos, K.; Sagias, N.C.; Boucouvalas, A.C.; Peppas, K. Optimal Combining for Optical Wireless Systems With Amplification: The χ
^{2}Noise Regime. IEEE Photonics Technol. Lett.**2018**, 30, 119–122. [Google Scholar] [CrossRef] - Andrews, L.C.; Phillips, R.L. Laser Beam Propagation through Random Media, 2nd ed.; SPIE Press: Bellingham, WA, USA, 2005. [Google Scholar]
- Vetelino, F.S.; Young, C.; Andrews, L.; Recolons, J. Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence. Appl. Opt.
**2007**, 46, 2099–2108. [Google Scholar] [CrossRef] [PubMed] - Jurado-Navas, A.; Garrido-Balsells, J.M.; Paris, J.F.; Puerta-Notario, A. A Unifying Statistical Model for Atmospheric Optical Scintillation. In Numerical Simulations of Physical and Engineering Processes; Awrejcewicz, J., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapter 8. [Google Scholar] [Green Version]
- Yacoub, M.D. The α-μ Distribution: A Physical Fading Model for the Stacy Distribution. IEEE Trans. Veh. Technol.
**2007**, 56, 27–34. [Google Scholar] [CrossRef] - Peppas, K.P. A Simple, Accurate Approximation to the Sum of Gamma-Gamma Variates and Applications in MIMO Free-Space Optical Systems. IEEE Photonics Technol. Lett.
**2011**, 23, 839–841. [Google Scholar] [CrossRef]

**Figure 2.**Probability of error (PER) vs. ${E}_{b}/{N}_{0}$ for $Q=2,16,256$. The plot lines and points correspond to the exact and approximated results, respectively.

**Figure 3.**Average PER vs $\overline{{E}_{b}}/{N}_{0}$ for $Q=2,16,256$ in weak (

**top row**) and moderate (

**bottom row**) $\gamma -\gamma $ fading. The plot lines and points correspond to the exact and approximated results, respectively. The optical noise modes are equal to $k=2$ (

**left column**) and $k=8$ (

**right column**).

**Figure 4.**Average PER vs $\overline{{E}_{b}}/{N}_{0}$ for $Q=2,16,256$ in strong fading. The plot lines and points correspond to the exact and approximated results, respectively. $k=2$ (

**a**) and $k=8$ (

**b**).

l (m) | ${\mathbf{m}}_{\mathbf{x}}$ | ${\mathbf{m}}_{\mathbf{y}}$ |
---|---|---|

100 | 16.53 | 14.91 |

500 | 4.04 | 1.53 |

l–100 m | l–500 m | |||||
---|---|---|---|---|---|---|

L-2 | L-5 | L-10 | L-2 | L-5 | L-10 | |

$\alpha $ | 0.49 | 0.48 | 0.47 | 0.51 | 0.46 | 0.43 |

$\mu $ | 64.76 | 167.71 | 339.61 | 7.72 | 23.09 | 50.45 |

$L\phantom{\rule{0.166667em}{0ex}}\widehat{y}$ | 1.97 | 4.97 | 9.97 | 1.78 | 4.73 | 9.71 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Boucouvalas, A.C.; Sagias, N.C.; Yiannopoulos, K.
Accurate Evaluation of the Average Probability of Error of Pulse Position Modulation in Amplified Optical Wireless Communications under Turbulence. *Appl. Sci.* **2019**, *9*, 749.
https://doi.org/10.3390/app9040749

**AMA Style**

Boucouvalas AC, Sagias NC, Yiannopoulos K.
Accurate Evaluation of the Average Probability of Error of Pulse Position Modulation in Amplified Optical Wireless Communications under Turbulence. *Applied Sciences*. 2019; 9(4):749.
https://doi.org/10.3390/app9040749

**Chicago/Turabian Style**

Boucouvalas, Anthony C., Nikos C. Sagias, and Konstantinos Yiannopoulos.
2019. "Accurate Evaluation of the Average Probability of Error of Pulse Position Modulation in Amplified Optical Wireless Communications under Turbulence" *Applied Sciences* 9, no. 4: 749.
https://doi.org/10.3390/app9040749