Combined Effect of Spirulina Platensis and Punica Granatum Peel Extacts: Phytochemical Content and Antiphytophatogenic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algal Culture and Growth Conditions
2.2. Preparation of Ethanolic Extract of Spirulina platensis (S. platensis)
2.3. Plant Material and Extraction
2.4. Extracts Preparation
2.5. Physico-Chemical Analysis
2.5.1. Dry Matter
2.5.2. Protein Content
2.5.3. Fat Content
2.5.4. Ash Content
2.6. Quantitative Determination of Phenolic Compounds
2.6.1. Total Polyphenols Content (TPC)
2.6.2. Total Flavonoids Content (TFC)
2.6.3. Total Tannins Content (TAC)
2.7. Antimicrobial Activities
2.7.1. Antifungal Assays
2.7.2. Determination of Minimal Inhibitory Concentration (MIC) and the Minimal Fungicidal Concentration (MFC)
2.7.3. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Composition
3.2. Phytochemical Content
3.3. Antifungal Activity against Plant Pathogenic Fungi
3.4. MIC and MFC Determination
3.5. Relationships between Phytochemical Content of Pomegranate Peel, Spirulina and Their Combinations and Antifungal Activities
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, B.; Han, J.W.; Ngo, M.T.; Le Dang, Q.; Kim, J.C.; Kim, H.; Choi, G.J. Identification of novel compounds, oleanane-and ursane-type triterpene glycosides, from Trevesia palmata: Their biocontrol activity against phytopathogenic fungi. Sci. Rep. 2018, 8, 14522–14532. [Google Scholar] [CrossRef] [PubMed]
- Tetz, G.; Collins, M.; Vikina, D.; Tetz, V. In vitro activity of a novel antifungal compound, MYC-053, against clinically significant antifungal-resistant strains of Candida glabrata, Candida auris, Cryptococcus neoformans, and Pneumocystis spp. Antimicrob. Agents Chemother. 2019, 63, e01975-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, S.; Sillanpaa, M.; Varma, R. Reduction of hexavalent chromium using Sorbaria sorbifolia aqueous leaf extract. Appl. Sci. 2017, 7, 715. [Google Scholar] [CrossRef] [Green Version]
- Mtibaa, A.C.; Smaoui, S.; Ben Hlima, H.; Sellem, I.; Ennouri, K.; Mellouli, L. Enterocin BacFL31 from a safety Enterococcus faecium FL31: Natural preservative agent used alone and in combination with aqueous peel onion (Allium cepa) extract in ground beef meat storage. BioMed Res. Int. 2019, 2019, 4094890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fendri, I.; Chamkha, M.; Bouaziz, M.; Labat, M.; Sayadi, S.; Abdelkafi, S. Olive fermentation brine: Biotechnological potentialities and valorization. Environ. Technol. 2013, 34, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Fourati, M.; Smaoui, S.; Ennouri, K.; Ben Hlima, H.; Elhadef, K.; Chakchouk-Mtibaa, A.; Sellem, I.; Mellouli, L. Multiresponse optimization of pomegranate peel extraction by statistical versus artificial intelligence: Predictive approach for foodborne bacterial pathogen inactivation. Evid. Based Complement. Alternat. Med. 2019, 2019, 1542615. [Google Scholar] [CrossRef] [Green Version]
- Smaoui, S.; Hlima, H.B.; Mtibaa, A.C.; Fourati, M.; Sellem, I.; Elhadef, K.; Ennouri, K.; Mellouli, L. Pomegranate peel as phenolic compounds source: Advanced analytical strategies and practical use in meat products. Meat Sci. 2019, 158, 107914–107933. [Google Scholar] [CrossRef]
- Fourati, M.; Smaoui, S.; Ben Hlima, H.; Ennouri, K.; Chakchouk Mtibaa, A.; Sellem, I.; Elhadef, K.; Mellouli, L. Synchronised interrelationship between lipid/protein oxidation analysis and sensory attributes in refrigerated minced beef meat formulated with Punica granatum peel extract. Int. J. Food Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Šavikin, K.; Živković, J.; Alimpić, A.; Zdunić, G.; Janković, T.; Duletić-Laušević, S.; Menković, N. Activity guided fractionation of pomegranate extract and its antioxidant, antidiabetic and antineurodegenerative properties. Ind. Crop. Prod. 2018, 113, 142–149. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Antimicrobial potential of pomegranate peel: A review. Int. J. Food Sci. Technol. 2019, 54, 959–965. [Google Scholar] [CrossRef]
- Kharchoufi, S.; Licciardello, F.; Siracusa, L.; Muratore, G.; Hamdi, M.; Restuccia, C. Antimicrobial and antioxidant features of ‘Gabsi’ pomegranate peel extracts. Ind. Crop Prod. 2018, 111, 345–352. [Google Scholar] [CrossRef]
- Moreno, M.A.; Córdoba, S.; Zampini, I.C.; Mercado, M.I.; Ponessa, G.; Alberto, M.R.; Fatima Nader-Macias, M.E.; Sayago, J.; Burgos-Edwards, A.; Schmeda-Hirschmann, G.; et al. Tetraglochin andina Ciald.: A medicinal plant from the Argentinean highlands with potential use in vaginal candidiasis. J. Ethnopharmacol. 2018, 216, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Tayel, A.A.; Salem, M.F.; El-Tras, W.F.; Brimer, L. Exploration of Islamic medicine plant extracts as powerful antifungals for the prevention of mycotoxigenic Aspergilli growth in organic silage. J. Sci. Food Agric. 2011, 91, 2160–2165. [Google Scholar] [CrossRef] [PubMed]
- Osorio, E.; Flores, M.; Hernández, D.; Ventura, J.; Rodríguez, R.; Aguilar, C.N. Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya Illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Ind. Crop Prod. 2010, 31, 153–157. [Google Scholar] [CrossRef]
- Tehranifar, A.; Selahvarzi, Y.; Kharrazi, M.; Bakhsh, V.J. High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances. Ind. Crop Prod. 2011, 34, 1523–1527. [Google Scholar] [CrossRef]
- Nowicka, A.; Zieliński, M.; Dębowski, M. Microwave support of the alcoholic fermentation process of cyanobacteria Arthrospira platensis. Proceedings 2018, 2, 1315. [Google Scholar] [CrossRef]
- Eleiwa, N.Z.; Galal, A.A.; El-Aziz, R.M.A.; Hussin, E.M. Antioxidant activity of Spirulina platensis alleviates doxorubicin-induced oxidative stress and reprotoxicity in male rats. Orient Pharm. Exp. Med. 2018, 18, 87–95. [Google Scholar] [CrossRef]
- Marangoni, A.; Foschi, C.; Micucci, M.; Palomino, R.A.N.; Toschi, T.G.; Vitali, B.; Camarada, L.; Mandrioli, M.; De Georgio, M.; Aldini, R.; et al. In vitro activity of Spirulina platensis water extract against different Candida species isolated from vulvo-vaginal candidiasis cases. PLoS ONE 2017, 12, e0188567. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.Y.; Sim, J.-H.; Lee, J.-Y.; Kang, D.H.; Lee, H.Y. Increased anti-Inflammatory effects on LPS-Induced microglia cells by Spirulina maxima extract from ultrasonic process. Appl. Sci. 2019, 9, 2144. [Google Scholar] [CrossRef] [Green Version]
- Sarada, R.M.G.P.; Pillai, M.G.; Ravishankar, G.A. Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem. 1999, 34, 795–801. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists Official Methods of Analysis: Changes in Official Methods of Analysis Made at the Annual Meeting. Supplement 1990; Association of Official Analytical Chemists: Washington, DC, USA, 1990; Volume 15. [Google Scholar]
- Fendri, I.; Ben Saad, R.; Khemakhem, B.; Ben Halima, N.; Gdoura, R.; Abdelkafi, S. Effect of treated and untreated domestic wastewater on seed germination, seedling growth and amylase and lipase activities in Avena sativa L. J. Sci. Food Agric. 2013, 93, 1568–1574. [Google Scholar] [CrossRef] [PubMed]
- AFNOR NF 03-713. Céréales et Produits Céréaliers; Association Française de Normalisation: Paris, France, 1984. [Google Scholar]
- Lahaye, M.; Jegou, D. Chemical and physical-chemical characteristics of dietary fibres from Ulva lactuca (L.) Thuret and Enteromorpha compressa (L.) Grev. J. Appl. Phycol. 1993, 5, 195. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.Y.; Gao, W.Y.; Wang, Y.; Wang, H.Y.; Cao, J.G.; Huang, L.Q. Chemical composition and anti-inflammatory and antioxidant activities of eight pear cultivars. J. Agric. Food. Chem. 2012, 60, 8738–8744. [Google Scholar] [CrossRef]
- Smaoui, S.; Ennouri, K.; Chakchouk-Mtibaa, A.; Sellem, I.; Bouchaala, K.; Karray-Rebai, I.; Mellouli, L. Statistical versus artificial intelligence-based modeling for the optimization of antifungal activity against Fusarium oxysporum using Streptomyces sp. strain TN71. J. Mycol. Med. 2018, 28, 551–560. [Google Scholar] [CrossRef]
- Smaoui, S.; Mellouli, L.; Lebrihi, A.; Coppel, Y.; Fguira, L.F.B.; Mathieu, F. Purification and structure elucidation of three naturally bioactive molecules from the new terrestrial Streptomyces sp. TN17 strain. Nat. Prod. Res. 2011, 25, 806–814. [Google Scholar] [CrossRef] [Green Version]
- Talibi, I.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Msanda, F.; Saadi, B.; Aoumar, A.A.B. Antifungal activity of some Moroccan plants against Geotrichum candidum, the causal agent of postharvest citrus sour rot. Crop Prot. 2012, 35, 41–46. [Google Scholar] [CrossRef]
- Spórna-Kucab, A.; Bernaś, K.; Grzegorczyk, A.; Malm, A.; Skalicka-Woźniak, K.; Wybraniec, S. Liquid chromatographic techniques in betacyanin isomers separation from Gomphrena globosa L. flowers for the determination of their antimicrobial activities. J. Pharmaceut. Biomed. 2018, 161, 83–93. [Google Scholar] [CrossRef]
- Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M.A. Antioxidant properties and phenolic profile characterization by LC–MS/MS of selected Tunisian pomegranate peels. J. Food Sci. Technol. 2017, 54, 2890–2901. [Google Scholar] [CrossRef]
- Aouir, A.; Amiali, M.; Bitam, A.; Benchabane, A.; Raghavan, V.G. Comparison of the biochemical composition of different Arthrospira platensis strains from Algeria, Chad and the USA. J. Food Meas. Charact. 2017, 11, 913–923. [Google Scholar] [CrossRef]
- Morais, E.G.D.; Cassuriaga, A.P.A.; Callejas, N.; Martinez, N.; Vieitez, I.; Jachmanián, I.; Santos, L.O.; De Morais, M.G.; Costa, J.A.V. Evaluation of CO2 biofixation and biodiesel production by Spirulina (Arthospira) cultivated in air-lift photobioreactor. Braz. Arch. Biol. Technol 2018, 61, e18161339. [Google Scholar] [CrossRef]
- Bensehaila, S.; Doumandji, A.; Boutekrabt, L.; Manafikhi, H.; Peluso, I.; Bensehaila, K.; Kouache, A.; Bensehaila, A. The nutritional quality of Spirulina platensis of Tamenrasset, Algeria. Afr. J. Biotechnol. 2015, 14, 1649–1654. [Google Scholar] [CrossRef]
- Bai, S.; Dai, J.; Xia, M.; Ruan, J.; Wei, H.; Yu, D.; Li, R.; Jing, H.; Tian, C.; Song, L.; et al. Effects of intermediate metabolite carboxylic acids of TCA cycle on Microcystis with overproduction of phycocyanin. Environ. Sci. Pollut. Res. 2015, 22, 5531–5537. [Google Scholar] [CrossRef]
- Hepaksoy, S.; Aksoy, U.; Can, H.Z.; Ui, M.A. Determination of relationship between fruit cracking and some physiological responses, leaf characteristics and nutritional status of some pomegranate varieties. Cah. Options Méditerranénnes 2000, 42, 87–92. [Google Scholar]
- Capelli, B.; Cysewski, G.R. Potential health benefits of spirulina microalgae. Nutrafoods 2010, 9, 19–26. [Google Scholar] [CrossRef]
- Babadzhanov, A.S.; Abdusamatova, N.; Yusupova, F.M.; Faizullaeva, N.; Mezhlumyan, L.G.; Malikova, M.K. Chemical composition of Spirulina platensis cultivated in Uzbekistan. Chem. Nat. Compd. 2004, 40, 276–279. [Google Scholar] [CrossRef]
- Richmond, A. (Ed.) Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Blackwell Science: Oxford, UK, 2004; Volume 577. [Google Scholar]
- Romelle, F.D.; Rani, P.A.; Manohar, R.S. Chemical composition of some selected fruit peels. Eur. J. Food. Sci. Technol. 2016, 4, 12–21. [Google Scholar]
- De Marco, E.R.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT Food Sci. Technol. 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Gargouri, M.; Magné, C.; El Feki, A. Hyperglycemia, oxidative stress, liver damage and dysfunction in alloxan-induced diabetic rat are prevented by Spirulina supplementation. Nutr. Res. 2016, 36, 1255–1268. [Google Scholar] [CrossRef]
- Al-Zoreky, N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009, 134, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, M.A.; Bullerman, L.B. Comparative antimycotic effects of selected herbs, spices, plant components and commercial antifungal agents. J. Food Protect. 1982, 45, 1298–1301. [Google Scholar] [CrossRef] [PubMed]
- Rongai, D.; Pulcini, P.; Pesce, B.; Milano, F. Antifungal activity of pomegranate peel extract against fusarium wilt of tomato. Eur. J. Plant Pathol. 2017, 147, 229–238. [Google Scholar] [CrossRef]
- Al-ghanayem, A.A. Antimicrobial activity of Spirulina platensis extracts against certain pathogenic bacteria and fungi. Adv. Biores. 2017, 8, 96–101. [Google Scholar] [CrossRef]
- Kumar, V.; Bhatnagar, A.K.; Srivastava, J.N. Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. J. Med. Plants Res. 2011, 5, 7043–7048. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, V.K. Antimicrobial bioactive compounds from marine algae: A mini review. Indian J. Geomar. Sci. 2016, 45, 1076–1085. [Google Scholar]
- Usharani, G.; Srinivasan, G.; Sivasakthi, S.; Saranraj, P. Antimicrobial activity of Spirulina platensis solvent extracts against pathogenic bacteria and fungi. Adv. Biol. Res. 2015, 9, 292–298. [Google Scholar] [CrossRef]
- López-Malo, A.; Alzamora, S.M.; Palou, E. Aspergillus flavus growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds. Int. J. Food Microbiol. 2005, 99, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Da Cruz Cabral, L.; Pinto, V.F.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef]
- Pillai, P.; Ramaswamy, K. Effect of naturally occurring antimicrobials and chemical preservatives on the growth of Aspergillus parasiticus. J. Food Sci. Technol. 2012, 49, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Arokiyaraj, S.; Bharanidharan, R.; Agastian, P.; Shin, H. Chemical composition, antioxidant activity and antibacterial mechanism of action from Marsilea minuta leaf hexane: Methanol extract. Chem. Cent. J. 2018, 12, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Glazer, I.; Masaphy, S.; Marciano, P.; Bar-Ilan, I.; Holland, D.; Kerem, Z.; Amir, R. Partial identification of antifungal compounds from Punica granatum peel extracts. J. Agric. Food Chem. 2012, 60, 4841–4848. [Google Scholar] [CrossRef] [PubMed]
- Özgen, M.; Serçe, S.; Kaya, C. Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Sci. Hortic. 2009, 119, 275–279. [Google Scholar] [CrossRef]
- Duman, A.; Ozgen, M.; Dayisoylu, K.; Erbil, N.; Durgac, C. Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics. Molecules 2009, 14, 1808–1817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solís, C.; Becerra, J.; Flores, C.; Robledo, J.; Silva, M. Antibacterial and antifungal terpenes from Pilgerodendron uviferum (D. Don) Florin. J. Chil. Chem. Soc. 2004, 49, 157–161. [Google Scholar] [CrossRef]
- Randhir, R.; Lin, Y.T.; Shetty, K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 2004, 39, 637–646. [Google Scholar] [CrossRef]
- Castro, H.D.; Ferreira, F.A.; Silva, D.D.; Mosquim, P.R. Contribuição ao Estudo das Plantas Medicinais: Metabólitos Secundários, 2nd ed.; Biblioteca Nacional de Agricultura—BINAGRI Visconde do Rio Branco: Visconde do Rio Branco, Brasil, 2001. [Google Scholar]
S1 | S2 | S3 | S4 | ||
---|---|---|---|---|---|
Chemical Properties | Moisture | 74.25 ± 0.52 c | 8.25 ± 0.07 a | 11.85 ± 0.13 a | 41.35 ± 0.47 b |
Dry matter | 97.51 ± 4.55 c | 94.75±3.77 b | 93.63±3.33 ab | 92.65 ± 2.52 a | |
Protein | 7.68 ± 0.22 a | 69.54 ± 3.44 d | 54.52 ± 3.01 c | 37.42 ± 2.68 b | |
Lipid | Nd | 7.18 ± 0.42 c | 5.15 ± 0.28 b | 2.75 ± 0.19 a | |
Ash | 5.02 ± 0.51 a | 10.69 ± 0.32 c | 8.07 ± 0.49 b | 7.54 ± 0.23 b | |
Phytochemical Content | TPC | 131.14 ± 5.25 d | 4.59 ± 0.21 a | 34.5 ± 1.72 b | 66.75 ± 3.25 c |
TFC | 6.75 ± 0.25 d | 2.75 ± 0.05 a | 3.41 ± 0.12 c | 4.27 ± 0.18 b | |
TAC | 24.51 ± 1.15 d | 0.51 ± 0.01 a | 5.87 ± 0.05 b | 12.02 ± 0.65 c |
Fungal Strains | Inhibition Zones Diameters (mm) | ||||
---|---|---|---|---|---|
S1 | S2 | S3 | S4 | Amphotericin B | |
Fusarium oxysporum (CTM10402) | 12.25 ± 0.25 aB | 15.75 ± 0.75 abB | 22.25 ± 0.50 dB | 16.25 ± 0.50 cC | 14.25 ± 0.25 bB |
Fusarium culmorum (ISPAVE 21w) | 10.00 ± 0.75 aA | 15.00 ± 0.33 bB | 21.75 ± 0.33 dB | 15.00 ± 0.33 cB | 12.50 ± 0.75 bA |
Fusarium graminearum (ISPAVE 271) | 11.75 ± 0.33 aAB | 15.25 ± 0.38 bB | 24.75 ± 0.33 dC | 12.75 ± 0.50 bA | 14.75 ± 0.50 c |
Aspergillus niger (CTM 10099) | 14.00 ± 0.83 aC | 11.25 ± 0.66 bC | 18.25 ± 0.75 cA | 14.75 ± 0.38 abB | 15.25 ± 0.83 bC |
Alternaria alternata (CTM 10230) | 11.75 ± 0.66 aAB | 10.25 ± 0.25 aA | 19.25 ± 0.83 cA | 14.25 ± 0.66 bB | 14.75 ± 0.66 bBC |
Extract | MIC | MFC | Ratio MFC/MIC | Interpretation | |
---|---|---|---|---|---|
Fusarium oxysporum (CTM10402) | S1 | 0.312 | 1.250 | 4 | Fungicidal |
S2 | 0.156 | 0.625 | 4 | Fungicidal | |
S3 | 0.078 | 0.156 | 2 | Fungicidal | |
S3 | 0.156 | 0.312 | 2 | Fungicidal | |
Fusarium culmorum ISPAVE 21w | S1 | 0.312 | 1.250 | 4 | Fungicidal |
S2 | 0.156 | 0.625 | 4 | Fungicidal | |
S3 | 0.078 | 0.156 | 2 | Fungicidal | |
S4 | 0.078 | 0.156 | 2 | Fungicidal | |
Fusarium graminearum ISPAVE 271 | S1 | 0.312 | 1.250 | 4 | Fungicidal |
S2 | 0.156 | 1.250 | 8 | Fungistatic | |
S3 | 0.078 | 0.156 | 2 | Fungicidal | |
S4 | 0.078 | 0.156 | 2 | Fungicidal | |
Aspergillus niger CTM 10099 | S1 | 1.250 | 5 | 4 | Fungicidal |
S2 | 0.625 | 2.5 | 4 | Fungicidal | |
S3 | 0.312 | 0.625 | 2 | Fungicidal | |
S4 | 0.312 | 0.625 | 2 | Fungicidal | |
Alternaria alternata CTM 10230 | S1 | 0.312 | 1.250 | 4 | Fungicidal |
S2 | 0.156 | 0.312 | 2 | Fungicidal | |
S3 | 0.078 | 0.156 | 2 | Fungicidal | |
S4 | 0.156 | 0.312 | 2 | Fungicidal |
Fungi Strains | TPC | TFC | TAC | |
---|---|---|---|---|
F. oxysporum CTM10402 | S1 | −0.700 * | 0.006 | −0.708 * |
S2 | 0.673 * | 0.687 * | −0.172 | |
S3 | 0.878 ** | 0.408 | −0.675 * | |
S4 | 0.723 * | 0.088 | −0.622 * | |
F. culmorum ISPAVE 21w | S1 | −0.774 * | 0.640 | −0.861 ** |
S2 | 0.763 * | 0.641 * | −0.259 | |
S3 | 0.878 ** | 0.408 | −0.675 * | |
S4 | 0.956 ** | 0.457 | −0.664 * | |
F. graminearum ISPAVE 271 | S1 | −0.809 * | 0.268 | −0.756 * |
S2 | 0.652 * | 0.983 ** | −0.335 | |
S3 | 0.994 ** | 0.809 * | −0.747 * | |
S4 | 0.681 * | 0.760 * | −0.157 | |
A. niger CTM 10099 | S1 | −0.732 * | 0.595 | −0.837 * |
S2 | 0.738 * | 0.878 ** | −0.404 | |
S3 | 0.700 * | 0.981 ** | −0.743 * | |
S4 | 0.670 * | 0.726 * | −0.664 * | |
A. alternata CTM 10230 | S1 | −0.758 * | 0.311 | −0.700 * |
S2 | 0.752 * | 0.983 ** | −0.335 | |
S3 | 0.923 ** | 0.758 * | −0.284 | |
S4 | 0.904 ** | 0.657 * | −0.534 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlima, H.B.; Bohli, T.; Kraiem, M.; Ouederni, A.; Mellouli, L.; Michaud, P.; Abdelkafi, S.; Smaoui, S. Combined Effect of Spirulina Platensis and Punica Granatum Peel Extacts: Phytochemical Content and Antiphytophatogenic Activity. Appl. Sci. 2019, 9, 5475. https://doi.org/10.3390/app9245475
Hlima HB, Bohli T, Kraiem M, Ouederni A, Mellouli L, Michaud P, Abdelkafi S, Smaoui S. Combined Effect of Spirulina Platensis and Punica Granatum Peel Extacts: Phytochemical Content and Antiphytophatogenic Activity. Applied Sciences. 2019; 9(24):5475. https://doi.org/10.3390/app9245475
Chicago/Turabian StyleHlima, Hajer Ben, Thouraya Bohli, Mariem Kraiem, Abdelmottaleb Ouederni, Lotfi Mellouli, Philippe Michaud, Slim Abdelkafi, and Slim Smaoui. 2019. "Combined Effect of Spirulina Platensis and Punica Granatum Peel Extacts: Phytochemical Content and Antiphytophatogenic Activity" Applied Sciences 9, no. 24: 5475. https://doi.org/10.3390/app9245475
APA StyleHlima, H. B., Bohli, T., Kraiem, M., Ouederni, A., Mellouli, L., Michaud, P., Abdelkafi, S., & Smaoui, S. (2019). Combined Effect of Spirulina Platensis and Punica Granatum Peel Extacts: Phytochemical Content and Antiphytophatogenic Activity. Applied Sciences, 9(24), 5475. https://doi.org/10.3390/app9245475