# Detecting Grounding Grid Orientation: Transient Electromagnetic Approach

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. Transient Electromagnetic Method

## 4. Performance Evaluation and Results’ Analysis

#### 4.1. Simulation Model

#### 4.2. Grounding Grid with a Diagonal Branch

#### 4.3. Grounding Grid with Unequal Mesh Spacing

## 5. Conclusions and Future Work

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Aamir, Q.; Wilayat, K.; Syed, R.N.; Farooq, A.O. Non-destructive depth detection approach for substation grounding grids based on magnetostatics. IET Electron. Lett.
**2019**, 55, 1121–1123. [Google Scholar] [CrossRef] - Gouda, O.E.; Dessouky, S.S.; Kalas, A.E.; Hamdy, M.A. Current distribution in grounding grid conductors with and without vertical rods buried in two-layer soil model. IEEJ Trans. Electr. Electron. Eng.
**2018**, 13, 1276–1284. [Google Scholar] [CrossRef] - Bo, Z.; Wu, J.; He, J.; Zeng, R. Analysis of transient performance of grounding system considering soil ionization by time domain method. IEEE Trans. Magn.
**2013**, 49, 1837–1840. [Google Scholar] [CrossRef] - Hideki, M. Electromagnetic transient response of buried bare wire and ground grid. IEEE Trans. Power Deliv.
**2007**, 22, 1673–1679. [Google Scholar] [CrossRef] - IEEE Std 80-2013 (Revision of IEEE Std 80-2000/Incorporates IEEE Std 80-2013/Cor 1-2015). IEEE Guide for Safety in AC Substation Grounding; IEEE: Piscataway, NJ, USA, 2015.
- El-Refaie El-Sayed, M.; Elmasry, S.E.; Elrahman MKAbd Abdo, M.H. Achievement of the best design for unequally spaced grounding grids. Ain Shams Eng. J.
**2018**, 6, 171–179. [Google Scholar] [CrossRef] [Green Version] - Ferrante, N. A new evolutionary method for designing grounding grids by touch voltage control. In Proceedings of the IEEE International Symposium on Industrial Electronics, Ajaccio, France, 4–7 May 2004; Volume 2, pp. 1501–1505. [Google Scholar] [CrossRef]
- Farkoush, S.G.; Wadood, A.; Khurshaid, T.; Kim, C.-H.; Irfan, M.; Rhee, S.-B. Reducing the Effect of Lightning on Step and Touch Voltages in a Grounding Grid Using a Nature-Inspired Genetic Algorithm With ATP-EMTP. IEEE Access
**2019**, 7, 81903–81910. [Google Scholar] [CrossRef] - Farkoush, S.G.; Khurshaid, T.; Wadood, A.; Kim, C.-H.; Kharal, K.H.; Kim, K.-H.; Cho, N.; Rhee, S.-B. Investigation and optimization of grounding grid based on lightning response by using ATP-EMTP and genetic algorithm. Complexity
**2018**, 2018, 8261413. [Google Scholar] [CrossRef] - Aamir, Q.; Muhammad, U.; Fan, Y.; Muhammad, U.; Zeeshan, K. Derivative Method Based Orientation Detection of Substation Grounding Grid. Energies
**2018**, 11, 1873. [Google Scholar] [CrossRef] [Green Version] - Li, X.; Yang, F.; Ming, J.; Jadoon, A.; Han, S. Imaging the Corrosion in Grounding Grid Branch with Inner-Source Electrical Impedance Tomography. Energies
**2018**, 11, 1739. [Google Scholar] [CrossRef] [Green Version] - Yuan, J.; Yang, H.; Zhang, L.; Cui, X.; Ma, X. Simulation of substation grounding grids with unequal-potential. IEEE Trans. Magn.
**2000**, 36, 1468–1471. [Google Scholar] [CrossRef] - Yang, F.; Wang, Y.; Dong, M.; Kou, X.; Yao, D.; Li, X.; Gao, B.; Ullah, I. A Cycle Voltage Measurement Method and Application in Grounding Grids Fault Location. Energies
**2017**, 10, 1929. [Google Scholar] [CrossRef] [Green Version] - Liu, K.; Yang, F.; Wang, X.; Gao, B.; Kou, X.; Dong, M.; Ammad, J. A novel resistance network node potential measurement method and application in grounding grids corrosion diagnosis. Prog. Electromagn. Res. M
**2016**, 52, 9–20. [Google Scholar] [CrossRef] [Green Version] - Liu, Y.; Cui, X.; Zhao, Z. A magnetic detecting and evaluation method of substations grounding grids with break and corrosion. Front. Electr. Electron. Eng. China
**2010**, 5, 501–504. [Google Scholar] [CrossRef] - Yu, C.; Fu, Z.; Wang, Q.; Tai, H.M.; Qin, S. A novel method for fault diagnosis of grounding grids. IEEE Trans. Ind. Appl.
**2015**, 51, 5182–5188. [Google Scholar] [CrossRef] - Aamir, Q.; Nadir, S.; Zeeshan, K.; Zahoor, U.; Farooq, A.O. Breakpoint Diagnosis of Substation Grounding Grid Using Derivative Method. Prog. Electromagn. Res. M
**2017**, 57, 73–80. [Google Scholar] [CrossRef] [Green Version] - Dawalibi, F. Electromagnetic fields generated by overhead and buried short conductors, Part 2—Ground networks. IEEE Trans. Power Deliv.
**1986**, 1, 112–119. [Google Scholar] [CrossRef] - Zhang, X.-L.; Zhao, X.-H.; Wang, Y.-G.; Mo, N. Development of an electrochemical in situ detection sensor for grounding grid corrosion. Corrosion
**2010**, 66, 076001. [Google Scholar] [CrossRef] - Yu, C.; Fu, Z.; Hou, X.; Tai, H.M.; Su, X. Break-point diagnosis of grounding grids using transient electromagnetic apparent resistivity imaging. IEEE Trans. Power Deliv.
**2015**, 30, 2485–2491. [Google Scholar] [CrossRef] - Li, C.; He, W.; Yao, D.; Yang, F.; Kou, X.; Wang, X. Topological measurement and characterization of substation grounding grids based on derivative method. Int. J. Electr. Power Energy Syst.
**2014**, 63, 158–164. [Google Scholar] [CrossRef] - Aamir, Q.; Fan, Y.; Wei, H.; Ammad, J.; Muhammad, Z.K.; Xu, N. Topology measurement of substation’s grounding grid by using electromagnetic and derivative method. Prog. Electromagn. Res. B
**2016**, 67, 71–90. [Google Scholar] [CrossRef] [Green Version] - Yu, C.; Fu, Z.; Wu, G.; Zhou, L.; Zhu, X.; Bao, M. Configuration detection of substation grounding grid using transient electromagnetic method. IEEE Trans. Ind. Electron.
**2017**, 64, 6475–6483. [Google Scholar] [CrossRef] - Fu, Z.; Song, S.; Wang, X.; Li, J.; Tai, H.M. Imaging the topology of grounding grids based on wavelet edge detection. IEEE Trans. Magn.
**2018**, 54, 1–8. [Google Scholar] [CrossRef] - Liu, K.; Yang, F.; Zhang, S.; Zhu, L.; Hu, J.; Wang, X.; Irfan, U. Research on Grounding Grids Imaging Reconstruction Based on Magnetic Detection Electrical Impedance Tomography. IEEE Trans. Magn.
**2018**, 54, 1–4. [Google Scholar] [CrossRef] - Qamar, A.; Yang, F.; Xu, N.; Syed, A.S. Solution to the inverse problem regarding the location of substations grounding grid by using the derivative method. Int. J. Appl. Electromagn. Mech.
**2018**, 56, 549–558. [Google Scholar] [CrossRef] - Mohamed, M.; Gad, E.-Q.; Usama, M.; Abeer, E.-K.; Jun, M.; Naseer, A.-A. Integrated geoelectrical survey for groundwater and shallow subsurface evaluation: Case study at siliyin spring, el-fayoum, egypt. Int. J. Earth Sci.
**2010**, 99, 1427–1436. [Google Scholar] - Xue, G.; Yan, Y.; Li, X.; Di, Q. Transient electromagnetic s-inversion in tunnel prediction. Geophys. Res. Lett.
**2007**, 34. [Google Scholar] [CrossRef] - Adel, K.M.; Maxwell, A.M.; Sergio, L.F. Deep structure of the northeastern margin of the parnaiba basin, brazil, from magnetotelluric imaging. Geophys. Prospect.
**2008**, 50, 589–602. [Google Scholar] [CrossRef] - Yu, C.; Fu, Z.; Zhang, H.; Tai, H.M.; Zhu, X. Transient process and optimal design of receiver coil for small-loop transient electromagnetics. Geophys. Prospect.
**2014**, 62, 377–384. [Google Scholar] [CrossRef] - Misac, N.N. Quasi-static transient response of a conducting half-spacean approximate representation. Geophysics
**1979**, 44, 1700–1705. [Google Scholar] [CrossRef] - Stanley, H.W.; Gerald, W.H.; Misac, N. Electromagnetic theory for geophysical applications. Electromagn. Methods Appl. Geophys.
**1988**, 1, 131–311. [Google Scholar] [CrossRef]

**Figure 2.**Grounding grid orientation with respect to the substation boundary. (

**a**) Grounding grid oriented parallel along the substation boundary. (

**b**) Grounding grid with non-parallel orientation along the substation boundary.

**Figure 3.**Influence of the surrounding electromagnetic environment (EME) on the derivative method. (

**a**) Surface magnetic flux density $\overrightarrow{{B}_{z}}$ pertaining to the grounding grid in [26]. (

**b**) Surrounding EME. (

**c**) Mixed signal $\overrightarrow{{M}_{z}}$ of magnetic flux density $\overrightarrow{{B}_{z}}$ and the surrounding EME. (

**d**) Derivative of mixed signal $\overrightarrow{{M}_{z}}$. This signal contains fake peaks due to the presence of EME, which causes the identification of true peaks to be impossible.

**Figure 4.**A typical transient electromagnetic method (TEM) system probing the underground grid. The primary magnetic field due to the transmitter coil interacts with the grid buried in the soil and induces eddy currents. Induced eddy currents produce a secondary magnetic field that travels upward to the Earth’s surface and collected by the receiver coil placed in the center of the transmitter coil.

**Figure 5.**Simulation model featuring the square grounding grid of dimensions 4 m × 4 m and mesh spacing 2 m. Conductors are labeled ${C}_{1}$ to ${C}_{12}$ and nodes 1 to 9. ${I}_{1}$ to ${I}_{4}$ are the induced eddy currents whose direction of flow is indicated by arrows. The TEM system is moved 0.05 m above the surface along circle of radius 1 m from point ${P}_{1}$ to ${P}_{8}$.

**Figure 6.**Equivalent resistivity ${\rho}_{r}$ along the circle from ${P}_{1}$ to ${P}_{8}$. High ${\rho}_{r}$ at ${P}_{1}$, ${P}_{3}$, ${P}_{5}$, and ${P}_{7}$ corresponds to the presence of conductors ${C}_{4}$, ${C}_{10}$, ${C}_{3}$, and ${C}_{9}$. ${C}_{4}$ at 0 rad, ${C}_{10}$ at 1.57 rad, ${C}_{3}$ at 3.14 rad, and ${C}_{9}$ at 4.71 rad along the circle showed the parallel orientation of the grid in the plane.

**Figure 7.**Average magnetic field intensity $\overline{{H}_{z}}$ along the circle from ${P}_{1}$ to ${P}_{8}$. $\overline{{H}_{z}}$ is low at ${P}_{1}$, ${P}_{3}$, ${P}_{5}$, and ${P}_{7}$, confirming the presence of ${C}_{4}$, ${C}_{10}$, ${C}_{3}$ and ${C}_{9}$, and the parallel orientation of the grid in the plane of the Earth.

**Figure 8.**Grounding grid with diagonal conductor ${C}_{13}$. ${C}_{13}$ connects Nodes 1 and 5 while carrying ${I}_{1}\u2013{I}_{2}$.

**Figure 9.**Equivalent resistivity ${\rho}_{r}$ of Figure 8. High ${\rho}_{r}$ at ${P}_{6}$ validates the presence of diagonal conductor ${C}_{13}$. Unequal magnetic coupling due to an unequal mesh size results in low ${\rho}_{r}$ at ${P}_{5}$ and ${P}_{7}$.

**Figure 10.**Average magnetic field intensity $\overline{{H}_{z}}$ along ${P}_{1}$ to ${P}_{8}$ related to Figure 8. Here, diagonal conductor ${C}_{13}$ is indicated by low $\overline{{H}_{z}}$ at ${P}_{6}$.

**Figure 11.**Grounding grid with an unequal mesh configuration. The dimensions of meshes ${M}_{1}$ and ${M}_{2}$ are 2.5 m × 2 m and ${M}_{3}$ and ${M}_{4}$ are 1.5 m × 2 m.

**Figure 12.**Average magnetic field intensity $\overline{{H}_{z}}$ along ${P}_{1}$ to ${P}_{8}$ related to Figure 11. The large size of meshes ${M}_{1}$ and ${M}_{2}$ results in weak magnetic coupling, and therefore, $\overline{{H}_{z}}$ at ${P}_{4}$ and ${P}_{6}$ is less than $\overline{{H}_{z}}$ at ${P}_{2}$ and ${P}_{8}$.

**Figure 13.**Equivalent resistivity ${\rho}_{r}$ related to Figure 11. The large size of meshes ${M}_{1}$ and ${M}_{2}$ results in weak magnetic coupling and, therefore, ${\rho}_{r}$ at ${P}_{4}$ and ${P}_{6}$ is higher than ${\rho}_{r}$ at ${P}_{2}$ and ${P}_{8}$.

Measuring Point | Average Magnetic Field Intensity (A/m) | ||
---|---|---|---|

Equal Mesh Spacing | Equal Mesh Spacing and Diagonal Branch | Unequal Mesh Spacing | |

${P}_{1}$ | 147.0995 | 264.8785 | 274.8785 |

${P}_{2}$ | 313.9748 | 340.748 | 330.748 |

${P}_{3}$ | 114.8244 | 280.854 | 114.8244 |

${P}_{4}$ | 343.3893 | 313.9748 | 90.345 |

${P}_{5}$ | 114.8244 | 313.9748 | 276.74 |

${P}_{6}$ | 343.3893 | 200.051 | 75.632 |

${P}_{7}$ | 114.2897 | 313.9748 | 114.8244 |

${P}_{8}$ | 313.9748 | 313.9748 | 330.748 |

Measuring Point | Average Equivalent Resistivity ($\mathbf{\Omega}$m) | ||
---|---|---|---|

Equal Mesh spacing | Equal Mesh Spacing and Diagonal Branch | Unequal Mesh Spacing | |

${P}_{1}$ | 0.2889 | 0.2976 | 0.2916 |

${P}_{2}$ | 0.2752 | 0.2736 | 0.2758 |

${P}_{3}$ | 0.2889 | 0.2911 | 0.2889 |

${P}_{4}$ | 0.2752 | 0.2752 | 0.2933 |

${P}_{5}$ | 0.2944 | 0.2752 | 0.2900 |

${P}_{6}$ | 0.2752 | 0.2982 | 0.2944 |

${P}_{7}$ | 0.2889 | 0.2752 | 0.2889 |

${P}_{8}$ | 0.2752 | 0.2752 | 0.2758 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Qamar, A.; Ul Haq, I.; Alhaisoni, M.; Qadri, N.N.
Detecting Grounding Grid Orientation: Transient Electromagnetic Approach. *Appl. Sci.* **2019**, *9*, 5270.
https://doi.org/10.3390/app9245270

**AMA Style**

Qamar A, Ul Haq I, Alhaisoni M, Qadri NN.
Detecting Grounding Grid Orientation: Transient Electromagnetic Approach. *Applied Sciences*. 2019; 9(24):5270.
https://doi.org/10.3390/app9245270

**Chicago/Turabian Style**

Qamar, Aamir, Inzamam Ul Haq, Majed Alhaisoni, and Nadia Nawaz Qadri.
2019. "Detecting Grounding Grid Orientation: Transient Electromagnetic Approach" *Applied Sciences* 9, no. 24: 5270.
https://doi.org/10.3390/app9245270