Electronically Controllable Phase Shifter with Progressive Impedance Transformation at K Band
Abstract
:1. Introduction
2. Materials and Methods: Phase Shifter Working Principle and Design
2.1. Baseline 3 dB/90° Coupler
2.2. Reflective LC Circuit with Progressive Impedance Transformation
2.3. Complete Phase Shifter Design and Performance
3. Results: Phase Shifter Prototype Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bhattacharyya, A.K. Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems, 1st ed.; Wiley-Interscience: Newark, NJ, USA, 2006. [Google Scholar]
- Bhartia, P.; Bahl, I.; Garg, R.; Ittipiboon, A. Microstrip Antenna Design Handbook; Artech House Publishers: Norwood, MA, USA, 2000. [Google Scholar]
- Lee, K.; Tong, K. Microstrip Patch Antennas—Basic Characteristics and Some Recent Advances. Proc. IEEE 2012, 100, 2169–2180. [Google Scholar]
- Carrasco, E.; Barba, M.; Encinar, J.A. Aperture-coupled reflectarray element with wide range of phase delay. Electron. Lett. 2006, 42, 667–668. [Google Scholar] [CrossRef]
- Padilla, P.; Muñoz-Acevedo, A.; Sierra-Castañer, M.; Sierra-Pérez, M. Electronically reconfigurable transmitarray at Ku band for microwave applications. IEEE Trans. Antennas Propag. 2010, 58, 2571–2579. [Google Scholar] [CrossRef]
- Hum, S.V.; Perruisseau-Carrier, J. Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review. IEEE Trans. Antennas Propag. 2014, 62, 183–198. [Google Scholar] [CrossRef]
- Lau, J.Y.; Hum, S.V. A Planar Reconfigurable Aperture With Lens and Reflectarray Modes of Operation. IEEE Trans. Microw. Theory Tech. 2010, 58, 3547–3555. [Google Scholar] [CrossRef]
- Padilla, J.L.; Padilla, P.; Valenzuela-Valdés, J.F.; Fernández, J.M. High-frequency radiating element and modified 3dB/90° electronic shifting circuit with circular polarization for broadband reflectarray device cells. Electron. Lett. 2014, 50, 1042–1043. [Google Scholar] [CrossRef]
- Silva, J.S.; Lima, E.B.; Costa, J.R.; Fernandes, C.A.; Mosig, J.R. Tx-Rx Lens-Based Satellite-on-the-Move Ka-Band Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1408–1411. [Google Scholar] [CrossRef]
- Padilla, P.; Valenzuela-Valdés, J.F.; Padilla, J.L.; Fernández-González, J.M.; Sierra-Castañer, M. Electronically Reconfigurable Reflective Phase Shifter for Circularly Polarized Reflectarray Systems. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 705–707. [Google Scholar] [CrossRef]
- Lin, C.; Chang, S.; Chang, C.; Shu, Y. Design of a Reflection-Type Phase Shifter With Wide Relative Phase Shift and Constant Insertion Loss. IEEE Trans. Microw. Theory Tech. 2007, 55, 1862–1868. [Google Scholar] [CrossRef]
- Burdin, F.; Iskandar, Z.; Podevin, F.; Ferrari, P. Design of Compact Reflection-Type Phase Shifters With High Figure-of-Merit. IEEE Trans. Microw. Theory Tech. 2015, 63, 1883–1893. [Google Scholar] [CrossRef]
- An, B.; Chaudhary, G.; Jeong, Y. Wideband tunable phase shifter with low in-band phase deviation error using coupled line. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 678–680. [Google Scholar] [CrossRef]
- Chaudhary, G.; An, B.; Jeong, Y. In-band phase minimization method for wideband tunable phase shifter. Microw. Opt. Technol. Lett. 2019, 61, 537–541. [Google Scholar] [CrossRef]
- ElKhorassani, M.T.; Vaquero, M.A.; Palomares, A.; Valenzuela-Valdés, J.F.; Padilla, P.; Touhami, N.A. Electronically tunable phase shifter with enhanced phase behaviour at Ku Band. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
Lx1 | Lx2 | Lx3 | Lx4 | Lx5 | Lx6 | Lx7 | Lx8 | Ly1 | Ly2 | Ly3 | Ly4 |
---|---|---|---|---|---|---|---|---|---|---|---|
3.43 | 3.06 | 3.49 | 2.5 | 0.47 | 0.3 | 1 | 0.75 | 0.75 | 2.25 | 1.75 | 1.25 |
Work | Central Frequency | Bandwidth | Insertion Losses | Phase Shifting Range |
---|---|---|---|---|
[11] | 2 GHz | 200 MHz | <4.6 dB | 240° |
[12] | 2 GHz | 200 MHz | <1.6 dB | 385° |
[13] | 2.5 GHz | 500 MHz | <1.3 dB | 150° |
[14] | 2.5 GHz | 500 MHz | <1.2 dB | 130° |
[15] | 12 GHz | >1 GHz | <3.2 dB | 290° |
[10] | 12.5 GHz | >2 GHz | <3 dB | 460° |
This work | 18 GHz | >1.5 GHz | <8 dB | 600° |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
ElKhorassani, M.T.; Palomares-Caballero, A.; Alex-Amor, A.; Segura-Gómez, C.; Escobedo, P.; Valenzuela-Valdés, J.F.; Padilla, P. Electronically Controllable Phase Shifter with Progressive Impedance Transformation at K Band. Appl. Sci. 2019, 9, 5229. https://doi.org/10.3390/app9235229
ElKhorassani MT, Palomares-Caballero A, Alex-Amor A, Segura-Gómez C, Escobedo P, Valenzuela-Valdés JF, Padilla P. Electronically Controllable Phase Shifter with Progressive Impedance Transformation at K Band. Applied Sciences. 2019; 9(23):5229. https://doi.org/10.3390/app9235229
Chicago/Turabian StyleElKhorassani, Mohamed T., Angel Palomares-Caballero, Antonio Alex-Amor, Cleofás Segura-Gómez, Pablo Escobedo, Juan F. Valenzuela-Valdés, and Pablo Padilla. 2019. "Electronically Controllable Phase Shifter with Progressive Impedance Transformation at K Band" Applied Sciences 9, no. 23: 5229. https://doi.org/10.3390/app9235229
APA StyleElKhorassani, M. T., Palomares-Caballero, A., Alex-Amor, A., Segura-Gómez, C., Escobedo, P., Valenzuela-Valdés, J. F., & Padilla, P. (2019). Electronically Controllable Phase Shifter with Progressive Impedance Transformation at K Band. Applied Sciences, 9(23), 5229. https://doi.org/10.3390/app9235229