Optimal Day-Ahead Scheduling of a Smart Micro-Grid via a Probabilistic Model for Considering the Uncertainty of Electric Vehicles’ Load
Abstract
:1. Introduction
1.1. Related Works
1.2. Novelty and Contribution
- A model for considering the uncertainty of the EVs charging station load is presented using MCS.
2. System Model
3. EVs Charging Station Load Modeling
3.1. Probability Distributions for Stochastic Parameters of EVs
3.1.1. Type of EV j ()
3.1.2. Price Sensitivity of EV j ()
3.1.3. Type of Charger Used by EV j ()
3.1.4. The SoC of EV j ()
3.1.5. The Battery Capacity of EV j ()
3.2. Probabilistic Estimation of EVs Charging Station Load
- g = 1.
- Set MCS counter M = 1.
- j = 1.
- Randomly generate samples for type of charger used by EV j, type of EV j, charging or discharging of EV j, SoC of EV j and battery capacity of EV j all based on their distribution functions assigned in Section 3.1.
- With and equal to 1, if is equal to 1, then the charging time of EV j can be calculated via (3) with the rate of a level 2 charger (i.e., cl = 2). Otherwise the discharging time of EV j can be calculated via (4) with cl = 2. If is equal to 0, thus the EV j can only be charged with the charging time as (3).
- The charging or discharging energy of EV j or is calculated using (5).
- If j < , j = j + 1 and go back to 4; otherwise calculate the charger load using (6).
- Evaluation of . is the average consuming power of charger g in all repetitions.
- Check if is converged then go to 10, else M = M + 1 and go to 3.
- If g < , g = g + 1 and go back to 2; otherwise calculate the EVs charging station load through the sum of the calculated chargers loads using (7).
- Finish.
4. Uncertainties of Price, Load and PV Generation
5. Model Implementation
- Receiving the forecasted values of upstream market prices, demand power of loads and PV historical data.
- Organizing the normal and Beta PDFs of the uncertain parameters at all 24 operation time slots.
- Generating stochastic scenarios based on the mentioned PDFs and then reducing them by the Kantorovich distance algorithm. Each scenario consists of three parts as described before.
- Computing the EVs charging station load by the proposed method.
- Applying the scenarios and EVs charging station load to the optimal operation problem of smart MGs.
- Solving the optimal operation problem for all scenarios and saving the results for each decision variable, for each scenario and at each time slot.
6. Problem Formulation
6.1. Objective Function
6.2. Constraints
6.2.1. Operating Constraints for Micro-Turbines
6.2.2. PV Operation Cost
6.2.3. Technical Constraints
6.2.4. Power Balance
7. Numerical Results
7.1. System Data
7.2. Simulation Results
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Indices | |
In scenario s at time t | |
cl | Charger level index |
g | Charger index |
i | Micro-turbine unit index |
j | EVs index |
p | PV unit index |
t | Time index |
Parameters and Constants | |
Generation cost coefficients of micro-turbine i. | |
Externality cost of generation CO2 ($/kg) | |
Carbon dioxide pollutant of micro-turbines i (kg/kW) | |
Operation and maintenance cost of PV unit p($) | |
Capacity factor of PV unit p | |
Capital cost of PV unit p ($) | |
int | Interest rate |
Startup constant cost of microturbines ($) | |
Minimum up time of microturbine i (h). | |
Minimum down time of micro-turbine i (h). | |
Number of time slots | |
Number of micro-turbines | |
Number of PV unit | |
Number of chargers | |
Number of EVs | |
Loan repayment term (yr) | |
Loads (kW) | |
Maximum power limits of micro-turbine i (kW). | |
Minimum power limits of micro-turbine i (kW). | |
Maximum exchangeable power (kW) | |
EVs charging station load | |
Available output power of PV unit p (kW) | |
Rated power of PV unit p (kW) | |
Ramp up rate of micro-turbine i (kW/h) | |
Ramp down rate of micro-turbine i (kW/h). | |
Charging rates of charger level cl (kW) and charger g | |
Discharging rates of charger level cl (kW) and charger g | |
Maximum SoC of EVs | |
Minimum SoC of EVs | |
State of charge EV j | |
Charging time of EV j with charger level cl (h) using charger g | |
Discharging time of EV j with charger level cl (h) using charger g | |
Duration of time slot (h) | |
Day-ahead market prices ($/kWh) | |
Variables | |
Operation cost of micro-turbine i ($) | |
Generation cost of PV unit p ($/h) | |
Generation cost of micro-turbine i ($) | |
Startup cost of micro-turbine i ($) | |
Emission cost of micro-turbine i ($) | |
Startup indicators of micro-turbine i | |
Shutdown indicators of micro-turbine i | |
DA electricity market transactions (bids) (kW) | |
Output power of micro-turbine i (kW) | |
Commitment status of micro-turbine i | |
Abbreviations | |
DA | Day-ahead |
EVs | Electric vehicles |
MG | Micro-grid |
PEVs | Plug-in electric vehicles |
PHEVs | Plug-in hybrid electric vehicles |
PV | Photovoltaic |
Probability density function | |
SoC | State of charge |
V2G | Vehicle-to-grid |
References
- Sioshansi, F.P. Smart Grid: Integrating Renewable, Distributed and Efficient Energy; Academic Press: Canmbridge, MA, USA, 2011. [Google Scholar]
- Monfared, H.J.; Ghasemi, A.; Loni, A.; Marzband, M. A hybrid price-based demand response program for the residential micro-grid. Energy 2019, 185, 274–285. [Google Scholar] [CrossRef]
- Mirzaei, M.A.; Yazdankhah, A.S.; Mohammadi-Ivatloo, B.; Marzband, M.; Shafie-khah, M.; Catalão, J.P.S. Stochastic network-constrained co-optimization of energy and reserve products in renewable energy integrated power and gas networks with energy storage system. J. Clean. Prod. 2019, 223, 747–758. [Google Scholar] [CrossRef]
- Nejad, R.R.; Tafreshi, S.M.M. Operation Planning of a Smart Microgrid Including Controllable Loads and Intermittent Energy Resources by Considering Uncertainties. Arab. J. Sci. Eng. 2014, 39, 6297–6315. [Google Scholar] [CrossRef]
- Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerrero, J.M.; Lightbody, G. Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations. Renew. Energy 2018, 126, 95–106. [Google Scholar] [CrossRef]
- Ehsani, Y.G.M.; Gay, S.E.; Emadi, A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design; CRC Press: Boca raton, FL, USA, 2004. [Google Scholar]
- Su, H.E.W.; Zeng, W.; Chow, M.Y. A Survey on the Electrification of Transportation in a Smart Grid Environment. IEEE Trans. Ind. Inform. 2012, 8, 1–10. [Google Scholar] [CrossRef]
- Peng, M.; Liu, L.; Jiang, C. A review on the economic dispatch and risk management of the large-scale plug-in electric vehicles (PHEVs)-penetrated power systems. Renew. Sustain. Energy Rev. 2012, 16, 1508–1515. [Google Scholar] [CrossRef]
- Thomas, D.; Deblecker, O.; Ioakimidis, C.S. Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule. Appl. Energy 2018, 210, 1188–1206. [Google Scholar] [CrossRef]
- Battistelli, C.; Baringo, L.; Conejo, A.J. Optimal energy management of small electric energy systems including V2G facilities and renewable energy sources. Electr. Power Syst. Res. 2012, 92, 50–59. [Google Scholar] [CrossRef]
- Ahmadian, A.; Sedghi, M.; Aliakbar-Golkar, M. Fuzzy Load Modeling of Plug-in Electric Vehicles for Optimal Storage and DG Planning in Active Distribution Network. IEEE Trans. Veh. Technol. 2017, 66, 3622–3631. [Google Scholar] [CrossRef]
- Ju, L.; Li, H.; Zhao, J.; Chen, K.; Tan, Q.; Tan, Z. Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response. Energy Convers. Manag. 2016, 128, 160–177. [Google Scholar] [CrossRef]
- Shojaabadi, S.; Abapour, S.; Abapour, M.; Nahavandi, A. Simultaneous planning of plug-in hybrid electric vehicle charging stations and wind power generation in distribution networks considering uncertainties. Renew. Energy 2016, 99, 237–252. [Google Scholar] [CrossRef]
- Andersson, M.G.V.a.G. Optimal Bidding Strategy of a Plug-In Electric Vehicle Aggregator in Day-Ahead Electricity Markets Under Uncertainty. IEEE Trans. Power Syst. 2015, 30, 2375–2385. [Google Scholar]
- Korolko, N.; Sahinoglu, Z.; Nikovski, D. Modeling and Forecasting Self-Similar Power Load Due to EV Fast Chargers. IEEE Trans. Smart Grid 2016, 7, 1620–1629. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, W.; Wang, B.; Chu, C.-C.; Gadh, R. Optimal operation of stationary and mobile batteries in distribution grids. Appl. Energy 2017, 190, 1289–1301. [Google Scholar] [CrossRef]
- Zhao, T.; Li, Y.; Pan, X.; Wang, P.; Zhang, J. Real-Time Optimal Energy and Reserve Management of Electric Vehicle Fast Charging Station: Hierarchical Game Approach. IEEE Trans. Smart Grid 2018, 9, 5357–5370. [Google Scholar] [CrossRef]
- Zhou, Y.; Yau, D.K.Y.; You, P.; Cheng, P. Optimal-Cost Scheduling of Electrical Vehicle Charging Under Uncertainty. IEEE Trans. Smart Grid 2018, 9, 4547–4554. [Google Scholar] [CrossRef]
- Faridimehr, S.V.S.; Chinnam, R.B. A Stochastic Programming Approach for Electric Vehicle Charging Network Design. IEEE Trans. Intell. Transp. 2017, 20, 1870–1882. [Google Scholar] [CrossRef]
- Domínguez-Navarro, J.A.; Dufo-López, R.; Yusta-Loyo, J.M.; Artal-Sevil, J.S.; Bernal-Agustín, J.L. Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems. Int. J. Electr. Power Energy Syst. 2019, 105, 46–58. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Wang, H.; Peng, J.-C.; Jiang, H.; Liu, Y.; Wu, C.; Xu, Z.; Liu, W. Robust Planning of Electric Vehicle Charging Facilities With an Advanced Evaluation Method. IEEE Trans. Ind. Inform. 2018, 14, 866–876. [Google Scholar] [CrossRef]
- DeForest, N.; MacDonald, J.S.; Black, D.R. Day ahead optimization of an electric vehicle fleet providing ancillary services in the Los Angeles Air Force Base vehicle-to-grid demonstration. Appl. Energy 2018, 210, 987–1001. [Google Scholar] [CrossRef]
- Faddel, S.; Aldeek, A.; Al-Awami, A.T.; Sortomme, E.; Al-Hamouz, Z. Ancillary Services Bidding for Uncertain Bidirectional V2G Using Fuzzy Linear Programming. Energy 2018, 160, 986–995. [Google Scholar] [CrossRef]
- Arévalo, J.C.; Santos, F.; Rivera, S. Uncertainty cost functions for solar photovoltaic generation, wind energy generation, and plug-in electric vehicles: Mathematical expected value and verification by Monte Carlo simulation. Int. J. Power Energy Convers. 2019, 10, 171–207. [Google Scholar] [CrossRef]
- Mehrjerdi, H.; Rakhshani, E. Vehicle-to-grid technology for cost reduction and uncertainty management integrated with solar power. J. Clean. Prod. 2019, 229, 463–469. [Google Scholar] [CrossRef]
- Şengör, O.E.İ.; Yener, B.; Taşcıkaraoğlu, A.; Catalão, J.P.S. Optimal Energy Management of EV Parking Lots Under Peak Load Reduction Based DR Programs Considering Uncertainty. IEEE Trans. Sustain. Energy 2019, 10, 1034–1043. [Google Scholar] [CrossRef]
- Z.E.C.C.101. Types of Charging, Charging Networks, Apps, & More. 2015. Available online: www.evobsession.com (accessed on 21 May 2019).
- Muñiz, R.; Díaz, J.; Nuño, F.; Prieto, M.J.; Pernía, A.M. A Smart Power Meter to Recharge Electric Vehicles in Communal Parking Areas. IEEE Inter. Things J. 2019, 6, 3448–3454. [Google Scholar] [CrossRef]
- Billinton, R.; Allan, R.N. Reliability Evaluation of Engineering Systems; Springer: New York, NY, USA, 1983. [Google Scholar]
- Landi, M.M.; Mohammadi, M.; Rastegar, M. Simultaneous determination of optimal capacity and charging profile of plug-in electric vehicle parking lots in distribution systems. Energy 2018, 158, 504–511. [Google Scholar] [CrossRef]
- Kamankesh, H.; Agelidis, V.G.; Kavousi-Fard, A. Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy 2016, 100, 285–297. [Google Scholar] [CrossRef]
- Mohammadi, S.; Soleymani, S.; Mozafari, B. Scenario-based stochastic operation management of MicroGrid including Wind, Photovoltaic, Micro-Turbine, Fuel Cell and Energy Storage Devices. Int. J. Electr. Power Energy Syst. 2014, 54, 525–535. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X. Modeling of Plug-in Hybrid Electric Vehicle Charging Demand in Probabilistic Power Flow Calculations. IEEE Trans. Smart Grid 2012, 3, 492–499. [Google Scholar] [CrossRef]
- Aien, M.; Hajebrahimi, A.; Fotuhi-Firuzabad, M. A comprehensive review on uncertainty modeling techniques in power system studies. Renew. Sustain. Energy Rev. 2016, 57, 1077–1089. [Google Scholar] [CrossRef]
- Arabali, A.; Ghofrani, M.; Etezadi-Amoli, M.; Fadali, M.S. Stochastic Performance Assessment and Sizing for a Hybrid Power System of Solar/Wind/Energy Storage. IEEE Trans. Sustain. Energy 2014, 5, 363–371. [Google Scholar] [CrossRef]
- Moghaddas-Tafreshi, S.M.; Salehpour, M.J. A two-stage stochastic optimization based-on monte carlo simulation for maximizing the profitability of a smart microgrid. J. Hyperstructures 2018, 7, 1–15. [Google Scholar]
- Al-Awami, A.T.; El-Sharkawi, M.A. Coordinated Trading of Wind and Thermal Energy. IEEE Trans. Sustain. Energy 2011, 2, 277–287. [Google Scholar] [CrossRef]
- Atwa, Y.M.; El-Saadany, E.F.; Salama, M.M.A.; Seethapathy, R. Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization. IEEE Trans. Power Syst. 2010, 25, 360–370. [Google Scholar] [CrossRef]
- Growe-kuska, H.H.N.; Romisch, W. Scenario reduction and scenario tree construction for power management problems. Power Manag. Probl. IEEE Bologna Power Tech Proc. 2003, 3. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Liu, W.; Wu, W.; Lim, S.-J. An asynchronous clustering and mobile data gathering schema based on timer mechanism in wireless sensor networks. Comput. Mater. Contin. 2019, 58, 711–725. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ju, C.; Gao, Y.; Sangaiah, A.K.; Kim, G.J. A PSO based Energy Efficient Coverage Control Algorithm for Wireless Sensor Networks. Comput. Mater. Contin. 2018, 56, 433–446. [Google Scholar]
- Wang, J.; Gao, Y.; Yin, X.; Li, F.; Kim, H.J. An Enhanced PEGASIS Algorithm with Mobile Sink Support for Wireless Sensor Networks. Wirel. Commun. Mobile Comput. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.-J. An intelligent data gathering schema with data fusion supported for mobile sink in WSNs. Int. J. Distrib. Sens. Netw. 2019, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.J. Energy Efficient Routing Algorithm with Mobile Sink Support for Wireless Sensor Networks. Sensors 2019, 19, 1494. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gu, X.; Liu, W.; Sangaiah, A.K.; Kim, H.J. An empower hamilton loop based data collection algorithm with mobile agent for WSNs. Hum.-Cent. Comput. Inf. Sci. 2019, 9, 18. [Google Scholar] [CrossRef]
- JSalehpour, M.; Radmanesh, H.; Rostami, M.S.H.; Wang, J.; Kim, H.-J. Effect of Load Priority Modeling on the Size of Fuel Cell as an Emergency Power Unit in a More-Electric Aircraft. Appl. Sci. 2019, 9, 3241. [Google Scholar] [CrossRef] [Green Version]
- Carrion, M.; Arroyo, J.M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 2006, 21, 1371–1378. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Le, L.B. Risk-Constrained Profit Maximization for Microgrid Aggregators With Demand Response. IEEE Trans. Smart Grid 2015, 6, 135–146. [Google Scholar] [CrossRef]
- Pourakbari-Kasmaei, M.; Lehtonen, M.; Fotuhi-Firuzabad, M.; Marzband, M.; Mantovani, J.R.S. Optimal power flow problem considering multiple-fuel options and disjoint operating zones: A solver-friendly MINLP model. Int. J. Electr. Power Energy Syst. 2019, 113, 45–55. [Google Scholar] [CrossRef]
- Valinejad, J.; Barforoshi, T.; Marzband, M.; Pouresmaeil, E.; Godina, R.; Catalão, J.P.S. Investment Incentives in Competitive Electricity Markets. Appl. Sci. 2018, 8, 1978. [Google Scholar] [CrossRef] [Green Version]
- Alavi, S.A.; Ahmadian, A.; Aliakbar-Golkar, M. Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method. Energy Convers. Manag. 2015, 95, 314–325. [Google Scholar] [CrossRef]
- Liu, G.; Xu, Y.; Tomsovic, K. Bidding Strategy for Microgrid in Day-Ahead Market Based on Hybrid Stochastic/Robust Optimization. IEEE Trans. Smart Grid 2016, 7, 227–237. [Google Scholar] [CrossRef]
- CERTS Microgrid Concept. 2003. Available online: http://certs.lbl.gov/certs-der-micro.html (accessed on 15 May 2019).
- IEEE Draft Guide for Design, Operation, and Integration of Distributed Resource Island Systems With Electric Power Systems; IEEE: Piscataway, NJ, USA, 2011.
- Salehpour, M.J.; Tafreshi, S.M.M. The effect of price responsive loads uncertainty on the risk-constrained optimal operation of a smart micro-grid. Int. J. Electr. Power Energy Syst. 2019, 106, 546–560. [Google Scholar] [CrossRef]
- Jamshidi, M.; Askarzadeh, A. Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system. Sustain. Cities Soc. 2019, 44, 310–320. [Google Scholar] [CrossRef]
- Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R. GAMS User’s Guide; GAMS development corporation: Washington, DC, USA, 1998. [Google Scholar]
Time | Discharging (V2G) | Charging (G2V) |
---|---|---|
Off-peak | 5% | 95% |
Peak | 85% | 15% |
Charger Level | Probability |
---|---|
2 | 0.6 |
3 | 0.4 |
Discharging Mode | Charging Mode | ||
---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation |
0.72 | 0.26 | 0.26 | 0.17 |
Value of Each Scenario | Probability of Each Scenario |
---|---|
0.025 | |
0.13 | |
0.69 | |
0.13 | |
0.025 |
Class | Market Share | ||
---|---|---|---|
Micro car | 20% | 10 | 30 |
Economic car | 30% | 30 | 60 |
Mid-size car | 30% | 30 | 60 |
Light truck | 30% | 60 | 100 |
Unit | a ($) | b ($/kW) | c ($/kW2) | (kW) | (kW) |
---|---|---|---|---|---|
MT 1 | 0.4 | 0.0397 | 0.00051 | 20 | 60 |
MT 2 | 0.4 | 0.0397 | 0.00051 | 20 | 60 |
Unit | MUT (h) | MDT (h) | RU (kW/h) | RD (kW/h) | CO2 (kg/kWh) |
MT 1 | 1 | 1 | 40 | 40 | 0.7 |
MT 2 | 1 | 1 | 40 | 40 | 0.7 |
Time (h) | Solar Irradiance (W/m2) | Market Price (ct/kWh) | Load (kW) | ||||
---|---|---|---|---|---|---|---|
Beta Distribution | Normal Distribution | Normal Distribution | |||||
Mean | α | β | Mean | SD | Mean | SD | |
1 | 0 | 0 | 0 | 8.62 | 0.83 | 220.43 | 21.8 |
2 | 0 | 0 | 0 | 8.2 | 0.82 | 217.58 | 21.95 |
3 | 0 | 0 | 0 | 8.18 | 0.82 | 221.02 | 21.54 |
4 | 0 | 0 | 0 | 8.12 | 0.77 | 218.88 | 21.77 |
5 | 0 | 0 | 0 | 8.17 | 0.91 | 225.35 | 21.01 |
6 | 214.68 | 0.005 | 0.14 | 8.12 | 0.82 | 238.54 | 25.17 |
7 | 598.91 | 23.85 | 15.98 | 8.31 | 0.84 | 261.67 | 28.02 |
8 | 779.75 | 118.25 | 33.41 | 9.43 | 0.96 | 313.23 | 35.45 |
9 | 865.53 | 322.65 | 50.12 | 11.95 | 1.083 | 326.57 | 28.82 |
10 | 913.05 | 691.13 | 65.81 | 9.28 | 0.85 | 336.09 | 30.99 |
11 | 940.98 | 1475.97 | 92.57 | 12.38 | 1.19 | 345.79 | 32.38 |
12 | 956.4 | 4389.02 | 200.08 | 20.61 | 2.09 | 334.57 | 34.62 |
13 | 962.05 | 44921.35 | 1772.01 | 26.99 | 2.46 | 334.73 | 32.05 |
14 | 958.48 | 4947.62 | 214.3 | 27.31 | 2.92 | 329.28 | 32.35 |
15 | 945.23 | 1628.31 | 94.34 | 13.75 | 1.3 | 341.7 | 34.66 |
16 | 920.1 | 821.102 | 71.3 | 17.48 | 1.65 | 346.75 | 32.56 |
17 | 877.45 | 353.54 | 49.37 | 16.39 | 1.62 | 331.61 | 31.57 |
18 | 800.48 | 143.56 | 35.78 | 9.8 | 0.91 | 328.75 | 32.37 |
19 | 643.73 | 33.53 | 18.56 | 8.61 | 0.82 | 327.88 | 32.22 |
20 | 289.95 | 0.0145 | 0.19 | 8.85 | 0.84 | 329.31 | 35.01 |
21 | 0 | 0 | 0 | 8.4 | 0.73 | 335.89 | 33.88 |
22 | 0 | 0 | 0 | 16.38 | 1.67 | 318.75 | 30.68 |
23 | 0 | 0 | 0 | 16.15 | 1.69 | 292.11 | 26.47 |
24 | 0 | 0 | 0 | 8.84 | 0.87 | 238.67 | 22.25 |
Time (h) | Micro-Turbines (kW) | Upstream Grid (kW) | PV Unit (kW) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
1 | 45 | 30 | 223 | 38 | 0 | 0 |
2 | 32 | 28 | 235 | 34 | 0 | 0 |
3 | 32 | 29 | 241 | 33 | 0 | 0 |
4 | 33 | 28 | 235 | 33 | 0 | 0 |
5 | 30 | 23 | 243 | 31 | 0 | 0 |
6 | 31 | 25 | 243 | 36 | 2 | 10 |
7 | 32 | 23 | 198 | 39 | 36 | 4 |
8 | 25 | 29 | 231 | 48 | 46 | 2 |
9 | 58 | 33 | 185 | 48 | 52 | 1 |
10 | 45 | 30 | 189 | 44 | 54 | 1 |
11 | 73 | 25 | 153 | 43 | 56 | 0 |
12 | 110 | 23 | 102 | 36 | 57 | 0 |
13 | 115 | 0 | 99 | 32 | 57 | 0 |
14 | 120 | 0 | 98 | 32 | 57 | 0 |
15 | 93 | 21 | 143 | 43 | 56 | 0 |
16 | 107 | 20 | 138 | 40 | 54 | 1 |
17 | 99 | 20 | 142 | 39 | 52 | 1 |
18 | 59 | 23 | 189 | 44 | 47 | 2 |
19 | 47 | 22 | 214 | 41 | 38 | 4 |
20 | 48 | 20 | 253 | 50 | 3 | 10 |
21 | 44 | 21 | 265 | 42 | 0 | 0 |
22 | 90 | 24 | 205 | 47 | 0 | 0 |
23 | 83 | 22 | 186 | 48 | 0 | 0 |
24 | 50 | 24 | 165 | 39 | 0 | 0 |
Time (h) | Proposed Model | Remove Uncertainty of Type of EVs | Remove Uncertainty of Type of Chargers | Remove Uncertainty of SoC | Remove Uncertainty of Battery Capacity | Remove Price Sensitivity |
---|---|---|---|---|---|---|
1 | 48.45 | 48.402 | 26.349 | 150.672 | 150.504 | 49.76 |
2 | 50.085 | 48.264 | 44.76 | 138.042 | 141.735 | 50.01 |
3 | 52.545 | 54.744 | 53.427 | 130.332 | 128.253 | 56.16 |
4 | 50.52 | 49.923 | 46.494 | 106.83 | 134.043 | 51.95 |
5 | 48.945 | 47.757 | 41.022 | 55.686 | 116.157 | 54.15 |
6 | 38.61 | 39.588 | 40.548 | 37.824 | 69.042 | 87.48 |
7 | 5.46 | 4.629 | 50.442 | 18.738 | 30.756 | 118.37 |
8 | −11.31 | −9.966 | 51.999 | 11.388 | 31.743 | 128.29 |
9 | −31.905 | −28.707 | 32.109 | 3.756 | 17.214 | 137.31 |
10 | −48.99 | −48.303 | 5.625 | 0.33 | 16.041 | 141.63 |
11 | −63.705 | −63.024 | −16.509 | 2.961 | 5.04 | 145.02 |
12 | −65.34 | −67.908 | −33 | 12.432 | 9.789 | 147.02 |
13 | −63.24 | −63.486 | −43.323 | 16.797 | 15.636 | 147.81 |
14 | −54.345 | −54.501 | −49.53 | 9.714 | 24.975 | 148.34 |
15 | −49.305 | −49.521 | −53.328 | −6.147 | 31.551 | 147.74 |
16 | −47.295 | −43.47 | −54.807 | −25.311 | 38.55 | 147.68 |
17 | −38.505 | −39.483 | −54.459 | −34.821 | 40.785 | 147.44 |
18 | −33.39 | −33.591 | −54.348 | −41.964 | 39.513 | 147.55 |
19 | −28.47 | −31.629 | −54.864 | −41.496 | −47.427 | 147.77 |
20 | −25.995 | −25.725 | −55.014 | −39.846 | −42.72 | 147.74 |
21 | −26.745 | −21.678 | −55.356 | −36.879 | −30.567 | 136.89 |
22 | −23.895 | −22.845 | −55.332 | −37.116 | −34.782 | 120.57 |
23 | −23.37 | −21.504 | −55.188 | −32.853 | −34.728 | 109.2 |
24 | −23.91 | −23.307 | −55.518 | −34.515 | −28.164 | 79.08 |
Removed Parameter | Micro-Turbines Generation (kWh) | Main Grid (kWh) | Cost ($) |
---|---|---|---|
Type of EVs | 998 (−4%) | 5177 (0.8%) | 717.6 (0.08%) |
Type of chargers | 1012 (−2.7%) | 5182 (0.1%) | 721 (0.55%) |
SoC | 1028 (−1.15%) | 5387 (4.97%) | 752 (4.88%) |
Batteries capacity | 1034 (−0.6%) | 5533 (7.8%) | 771 (7.5%) |
Price sensitivity | 995 (−4.32%) | 6230 (21%) | 869 (21.2%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasouli, B.; Salehpour, M.J.; Wang, J.; Kim, G.-j. Optimal Day-Ahead Scheduling of a Smart Micro-Grid via a Probabilistic Model for Considering the Uncertainty of Electric Vehicles’ Load. Appl. Sci. 2019, 9, 4872. https://doi.org/10.3390/app9224872
Rasouli B, Salehpour MJ, Wang J, Kim G-j. Optimal Day-Ahead Scheduling of a Smart Micro-Grid via a Probabilistic Model for Considering the Uncertainty of Electric Vehicles’ Load. Applied Sciences. 2019; 9(22):4872. https://doi.org/10.3390/app9224872
Chicago/Turabian StyleRasouli, Behnam, Mohammad Javad Salehpour, Jin Wang, and Gwang-jun Kim. 2019. "Optimal Day-Ahead Scheduling of a Smart Micro-Grid via a Probabilistic Model for Considering the Uncertainty of Electric Vehicles’ Load" Applied Sciences 9, no. 22: 4872. https://doi.org/10.3390/app9224872
APA StyleRasouli, B., Salehpour, M. J., Wang, J., & Kim, G.-j. (2019). Optimal Day-Ahead Scheduling of a Smart Micro-Grid via a Probabilistic Model for Considering the Uncertainty of Electric Vehicles’ Load. Applied Sciences, 9(22), 4872. https://doi.org/10.3390/app9224872