Experimental and Theoretical Determination of the Frost-Heave Cracking Law and the Crack Propagation Criterion of Slab Track with Water in the Crack
Abstract
:1. Introduction
2. Experimental Program
2.1. Specimen and Equipment Preparation
2.2. Description of the Experimental Method
2.2.1. Digital Image Correlation (DIC) Method and Instrumentation
2.2.2. Acoustic Emission (AE) Method and Instrumentation
3. Results and Discussion
3.1. Determination of the Frost-Heave Crack Propagation Law
3.1.1. Frost-Heave Crack Propagation Process
3.1.2. Crack Frost-Heave Propagation Process AE and DIC Comparison
3.1.3. Mechanism of Frost-Heave Crack Propagation
3.2. Determination of the Crack Initiation Criterion Based on Strain
3.2.1. Double-Strain Criterion of Crack Propagation
3.2.2. Experimental Verification of the Double-Strain Criterion
3.3. Analysis of Factors Affecting Frost-Heave Crack Propagation
3.3.1. Influence of Crack Width
3.3.2. Influence of External Temperature
3.3.3. Influence of Initial Crack Moisture Content
3.3.4. Suggestions for Maintenance Measures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gautier, P.E. Slab track: Review of existing systems and optimization potentials including very high speed. Constr. Build. Mater. 2015, 92, 9–15. [Google Scholar] [CrossRef]
- Wang, Z.J.; Shu, X.; Rutherford, T.; Huang, B.; Clarke, D. Effects of asphalt emulsion on properties of fresh cement emulsified asphalt mortar. Constr. Build. Mater. 2015, 75, 25–30. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, F.; Li, X.; Li, A.; Liu, M.; Luo, J.; Shao, Z. Characteristics and controlling factors of frost heave in high-speed railway subgrade northwest China. Cold Reg. Sci. Technol. 2018, 153, 33–44. [Google Scholar] [CrossRef]
- Ministry of Railways of China. Maintenance Rules for Slab Track Lines of High-Speed Railway (Trial Implementation); TG/GW 115-2012; China Railway Press: Beijing, China, 2012. [Google Scholar]
- Gong, J.Q.; Zhang, W.J. The effects of pozzolanic powder on foam concrete pore structure and frost resistance. Constr. Build. Mater. 2019, 208, 135–143. [Google Scholar] [CrossRef]
- Qin, Z.P.; Lai, Y.M.; Tian, Y.; Yu, F. Frost-heaving mechanical model for concrete face slabs of earthen dams in cold regions. Cold Reg. Sci. Technol. 2019, 161, 91–98. [Google Scholar] [CrossRef]
- Hu, Z.; Hao, D.; Lai, J.; Wang, H.; Wang, X.; He, S. The durability of shotcrete in cold region tunnel: A review. Constr. Build. Mater. 2018, 185, 670–683. [Google Scholar] [CrossRef]
- Zeng, Z.P.; Wang, J.D. Experimental study on evolution of mechanical properties of CRTS III Ballastless slab track under fatigue load. Constr. Build. Mater. 2019, 210, 639–649. [Google Scholar]
- Chen, L.; Chen, J.J.; Wang, J.X. Calculation of reasonable tension value for longitudinal connecting reinforcement of CRTSII Ballastless slab track. Appl. Sci. 2018, 8, 2139. [Google Scholar] [CrossRef]
- Ren, J.; Li, X.; Yang, R.; Wang, P.; Xie, P. Criteria for repairing damages of CA mortar for prefabricated framework-type slab track. Constr. Build. Mater. 2016, 110, 300–311. [Google Scholar] [CrossRef]
- Liu, L.; Shen, D.; Chen, H.; Sun, W.; Qian, Z.; Zhao, H.; Jiang, J. Analysis of damage development in cement paste due to ice nucleation at different temperatures. Cem. Concr. Compos. 2014, 53, 1–9. [Google Scholar] [CrossRef]
- Liu, Q.S.; Huang, S.B.; Kang, Y.S.; Liu, J.P. Preliminary study of frost heaving pressure and its influence on crack and deterioration mechanisms of rock mass. Rock Soil Mech. 2016, 37, 1530–1542. [Google Scholar]
- Hu, L.D.; Wu, Y.H.; Li, X.Y. A field study on the freezing characteristics of freeze-sealing pipe roof used in ultra-shallow buried tunnel. Appl. Sci. 2019, 9, 1532. [Google Scholar] [CrossRef]
- Tan, X.J.; Chen, W.Z.; Liu, H.Y.; Wang, L.Y.; Ma, W.; Chan, A.H.C. A unified model for frost heave pressure in the rock with a penny-shaped fracture during freezing. Cold Reg. Sci. Technol. 2018, 153, 1–9. [Google Scholar] [CrossRef]
- Huang, S.B.; Liu, Q.S.; Liu, Y.Z.; Kang, Y.S.; Cheng, A.P.; Ye, Z.Y. Frost heaving and frost cracking of elliptical cavities (fractures) in low permeability rock. Eng. Geol. 2018, 234, 1–10. [Google Scholar] [CrossRef]
- Hassanzadeh, M.; Fagerlund, G. Residual strength of the frost-damaged reinforced concrete beams. In III European Conference on Computational Mechanics; Springer: Berlin, Germany, 2006; p. 366. [Google Scholar]
- Zandi Hanjari, K.; Kettil, P.; Lundgren, K. Modelling the structural behaviour of frost-damaged reinforced concrete structures. Struct. Infrastruct. Eng. 2013, 9, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.B.; Liu, Q.S.; Cheng, A.P.; Liu, Y.Z. Preliminary experimental study of frost heaving pressure in crack and frost heaving propagation in rock mass under low temperature. Rock Soil Mech. 2018, 39, 1–8. [Google Scholar]
- Cai, C.X.; Zhi, T.L. Transversely isotropic frost heave of saturated rock under unidirectional freezing condition and induced frost heaving force in cold region tunnels. Cold Reg. Sci. Technol. 2018, 152, 48–58. [Google Scholar]
- Roubin, E.; Andò, E.; Roux, S. The colours of concrete as seen by X-rays and neutrons. Cem. Concr. Compos. 2019, 104, 1–10. [Google Scholar] [CrossRef]
- Tian, W.; Han, N. Analysis on meso-damage processes in concrete by X-ray computed tomographic scanning techniques based on divisional zones. Measurement 2019, 140, 382–387. [Google Scholar] [CrossRef]
- Promentilla, M.A.B.; Cortez, S.M.; Papel, R.; Tablada, B.; Sugiyama, T. Evaluation of microstructure and transport properties of deteriorated cementitious materials from their X-ray computed tomography (CT) images. Materials 2016, 9, 388. [Google Scholar] [CrossRef]
- Ren, W.; Yang, Z.; Sharma, R.; Zhang, C.H.; Withers, P.J. Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete. Eng. Fract. Mech. 2015, 133, 24–39. [Google Scholar] [CrossRef]
- Schock, J.; Liebl, S.; Achterhold, K.; Pfeiffer, F. Obtaining the spacing factor of microporous concrete using high-resolution Dual Energy X-ray Micro CT. Cem. Concr. Res. 2016, 89, 200–205. [Google Scholar] [CrossRef]
- Hoegh, K.; Khazanovich, L.; Yu, H.T. Ultrasonic tomography for evaluation of concrete pavements. Transp. Res. Rec. J. Transp. Res. Board 2011, 2232, 85–94. [Google Scholar] [CrossRef]
- Perlin, L.P.; Pinto, R.C.D. Use of network theory to improve the ultrasonic tomography in concrete. Ultrasonics 2019, 96, 185–195. [Google Scholar] [CrossRef]
- Sause, M.G.R. In-Situ Monitoring of Fiber-Reinforced Composites; Springer: Berlin, Germany, 2016; pp. 110–140. [Google Scholar]
- Grosse, C.U.; Ohtsu, M. Acoustic Emission Testing; Springer: Berlin, Germany, 2008; pp. 3–5. [Google Scholar]
- Sagasta, F.; Zitto, M.E. Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings. Mech. Syst. Signal Process. 2018, 102, 262–277. [Google Scholar] [CrossRef]
- Benavent-Climent, A.; Gallego, A. An acoustic emission energy index for damage evaluation of reinforced concrete slabs under seismic loads. Struct. Health Monit. 2012, 11, 69–81. [Google Scholar] [CrossRef]
- Sagasta, F.; Benavent-Climent, A.; Roldán, A.; Gallego, A. Correlation of plastic strain energy and acoustic emission energy in reinforced concrete structures. Appl. Sci. 2016, 6, 84. [Google Scholar] [CrossRef]
- Castillo, E.D.; Allen, T.; Henry, R.; Griffith, M.; Ingham, J. Digital image correlation (DIC) for measurement of strains and displacements in coarse, low volume-fraction FRP composites used in civil infrastructure. Compos. Struct. 2019, 212, 43–57. [Google Scholar] [CrossRef]
- Dzaye, E.D.; Tsangouri, E.; Spiessens, K.; De Schutter, G.; Aggelis, D.G. Digital image correlation (DIC) on fresh cement mortar to quantify settlement and shrinkage. Arch. Civ. Mech. Eng. 2019, 19, 205–214. [Google Scholar] [CrossRef]
- Tetsuya, I.; Kolneath, P.; Tanaka, Y.; Kashimura, K.; Iwaki, I. Numerical simulation of early age cracking of reinforced concrete bridge decks with a full-3D multiscale and multi-chemo-physical integrated analysis. Appl. Sci. 2018, 8, 394. [Google Scholar]
- Zhu, S.Y.; Wang, M.Z.; Zhai, W.; Cai, C.; Zhao, C.; Zeng, D.; Zhang, J. Mechanical property and damage evolution of concrete interface of slab track in high-speed railway: Experiment and simulation. Constr. Build. Mater. 2018, 187, 460–473. [Google Scholar] [CrossRef]
- The National Railway Administration of China. Code for Design of High-Speed Railways; TB 10621-2014; China Railway Press: Beijing, China, 2014. [Google Scholar]
- Ministry of Construction of China. Standard for Test Methods of Mechanical Properties of Ordinary Concrete State; GB/T50081-2002; China Architecture & Building Press: Beijing, China, 2002. [Google Scholar]
- Wang, L.M.; HAN, W.W.; Chen, T.; Wang, H.Y.; Han, D.P. On the linking of microcrack damage and macro fracture of quasi-brittle materials. Chin. J. Solid Mech. 2015, 36, 20–25. [Google Scholar]
- Bhowmik, S.; Ray, S. An experimental approach for characterization of fracture process zone in concrete. Eng. Fract. Mech. 2019, 211, 401–419. [Google Scholar] [CrossRef]
- Carpinteri, A.; Massabó, R. Reversal in failure scaling transition of fibrous composites. J. Eng. Mech. ASCE 1997, 123, 107–114. [Google Scholar] [CrossRef]
- Ooi, E.T.; Yang, Z.J. Modelling crack propagation in reinforced concrete using a hybrid finite element–scaled boundary finite element method. Eng. Fract. Mech. 2011, 78, 252–263. [Google Scholar] [CrossRef]
- Wu, Z.M.; Dong, W.; Liu, K.; Yang, S.T. Mode I crack propagation criterion of concrete and numerical simulation on complete process of cracking. J. Hydraul. Eng. 2007, 38, 1453–1459. [Google Scholar]
- Dong, W.; Wu, Z.; Zhou, X. Calculating crack extension resistance of concrete based on a new crack propagation criterion. Constr. Build. Mater. 2013, 38, 879–889. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.M. Fracture Mechanics, Version 1; Tsinghua University Press: Beijing, China, 2012; pp. 12–27. [Google Scholar]
- Yu, M.H. Linear and nonlinear unified strength theory. Chin. J. Rock Mech. Eng. 2007, 26, 662–669. [Google Scholar]
- Yu, M.H.; Zan, Y.W.; Xu, S.Q. Rock Strength Theory and Its Application, Version 1; Science Press: Beijing, China, 2017; pp. 145–163. [Google Scholar]
- Malumela, G.; Alexander, M.; Moyo, P. Lateral deformation of RC beams under simultaneous load and steel corrosion. Constr. Build. Mater. 2010, 24, 17–24. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Code for Design of Standard Concrete Structures; GB/50010-2010; China Architecture & Building Press: Beijing, China, 2010. [Google Scholar]
Component | Cement (/m3) | Sand (kg/m3) | Gravel (kg/m3) | Fly Ash (kg/m3) | Slag (kg/m3) | Water (kg/m3) | Admixture (kg/m3) | 28 d Compressive Strength (MPa) | Modulus of Elasticity (GPa) |
---|---|---|---|---|---|---|---|---|---|
Track-slab concrete | 467 | 694 | 1041 | 55 | 28 | 165 | 6.6 | 53.5 | 34.7 |
Specimen ID | Specimen Size/mm | Crack Size/mm | Moisture Content/% | Test Box Temperature/°C | ||||
---|---|---|---|---|---|---|---|---|
Length | Width | Height | Length | Width | Height | |||
A1 | 300 | 150 | 150 | 150 | 1 | 75 | 100 | −20 |
A2 | 300 | 150 | 150 | 150 | 0.6 | 75 | 100 | −20 |
A3 | 300 | 150 | 150 | 150 | 0.4 | 75 | 100 | −20 |
A4 | 300 | 150 | 150 | 150 | 0.2 | 75 | 100 | −20 |
B1 | 300 | 150 | 150 | 150 | 0.6 | 75 | 100 | −20 |
B2 | 300 | 150 | 150 | 150 | 0.6 | 75 | 100 | −15 |
B3 | 300 | 150 | 150 | 150 | 0.6 | 75 | 100 | −10 |
B4 | 300 | 150 | 150 | 150 | 0.6 | 75 | 100 | −5 |
C1 | 300 | 150 | 150 | 150 | 1 | 75 | 0 | −20 |
C2 | 300 | 150 | 150 | 150 | 1 | 75 | 60 | −20 |
C3 | 300 | 150 | 150 | 150 | 1 | 75 | 80 | −20 |
C4 | 300 | 150 | 150 | 150 | 1 | 75 | 100 | −20 |
Specimen ID | εini/με | εun/με | εini/εun |
---|---|---|---|
A1 | 220 | 240 | 0.917 |
A2 | 241 | 260 | 0.927 |
B1 | 230 | 250 | 0.92 |
B2 | 224 | 243 | 0.922 |
C2 | 223 | 242 | 0.921 |
C3 | 215 | 233 | 0.923 |
C4 | 217 | 236 | 0.919 |
Average | 224 | 243 | 0.9218 |
Damage Site | Grade/Crack Width (mm) | Maintenance Regulations | Maintenance Recommendations | Note |
---|---|---|---|---|
Track slab | I/0.1 | II: pressure-free grouting; III: low-pressure grouting | Areas with temperatures above 6.6 °C: II: pressure-free grouting; III: low-pressure grouting. Areas with temperatures below 6.6 °C: I: surface closure; II: pressure-free grouting; III: low-pressure grouting | Measures should be taken to keep cracks dry before repairing the cracks in the slab-track structure. Areas with temperatures above 6.6 °C: II: surface closure; III: pressure-free grouting |
II/0.2 | ||||
III/0.3 | ||||
Bearing layer | I/0.2 | II: surface closure; III: pressure-free grouting | Areas with temperatures above 6.6 °C: II: surface closure; III: pressure-free grouting. Areas with temperatures below 6.6 °C: I and II: surface closure; III: pressure-free grouting | |
II/0.5 | ||||
III/1.0 | ||||
Base plate | I/0.2 | II: surface closure; III: pressure-free grouting | ||
II/0.3 | ||||
III/0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, F.; Gao, L.; Cai, X.; Zhong, Y.; Zhao, W.; Huang, Y. Experimental and Theoretical Determination of the Frost-Heave Cracking Law and the Crack Propagation Criterion of Slab Track with Water in the Crack. Appl. Sci. 2019, 9, 4592. https://doi.org/10.3390/app9214592
Tong F, Gao L, Cai X, Zhong Y, Zhao W, Huang Y. Experimental and Theoretical Determination of the Frost-Heave Cracking Law and the Crack Propagation Criterion of Slab Track with Water in the Crack. Applied Sciences. 2019; 9(21):4592. https://doi.org/10.3390/app9214592
Chicago/Turabian StyleTong, Fengzhuang, Liang Gao, Xiaopei Cai, Yanglong Zhong, Wenqiang Zhao, and Yichen Huang. 2019. "Experimental and Theoretical Determination of the Frost-Heave Cracking Law and the Crack Propagation Criterion of Slab Track with Water in the Crack" Applied Sciences 9, no. 21: 4592. https://doi.org/10.3390/app9214592
APA StyleTong, F., Gao, L., Cai, X., Zhong, Y., Zhao, W., & Huang, Y. (2019). Experimental and Theoretical Determination of the Frost-Heave Cracking Law and the Crack Propagation Criterion of Slab Track with Water in the Crack. Applied Sciences, 9(21), 4592. https://doi.org/10.3390/app9214592