No Evidence That Frontal Optical Flow Affects Perceived Locomotor Speed and Locomotor Biomechanics When Running on a Treadmill
Abstract
:1. Introduction
2. Experiment 1
2.1. Introduction
2.2. Methods
2.2.1. Participants
2.2.2. Experimental Setup
2.2.3. Procedure
- No optical flow (noOF)
- An optical flow matching the treadmill speed (matchOF)
- A faster optical flow (+5 km/h) (fastOF)
- A slower optical flow (−5 km/h) (slowOF).
2.3. Results
2.4. Discussion
3. Experiment 2
3.1. Introduction
3.2. Methods
3.2.1. Participants
3.2.2. Experimental Setup
3.2.3. Procedure
- no optical flow (noOF)
- matching optical flow with a visual speed corresponding to the PSE (matchOF)
- faster optical flow with a visual speed that was 40% higher than the PSE (fastOF)
- slower optical flow with a visual speed that was 40% lower than the PSE (slowOF).
3.2.4. Spatiotemporal Parameter Analysis
3.3. Results
3.4. Discussion
4. General Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, H.-J.; Campos, J.L.; Chan, G.S.W. Multisensory integration in the estimation of relative path length. Exp. Brain Res. 2004, 154, 246–254. [Google Scholar] [CrossRef]
- Mergner, T.; Rosemeier, T. Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions—A conceptual model. Brain Res. Rev. 1998, 28, 118–135. [Google Scholar] [CrossRef]
- Dietz, V. Proprioception and locomotor disorders. Nat. Rev. Neurosci. 2002, 3, 781. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.J.; Lee, A.J.; Campos, J.L.; Chan, G.S.W.; Zhang, D.H. Multisensory integration in speed estimation during self-motion. Cyberpsychol. Behav. 2003, 6, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Angelaki, D.E.; Cullen, K.E. Vestibular system: The many facets of a multimodal sense. Annu. Rev. Neurosci. 2008, 31, 125–150. [Google Scholar] [CrossRef]
- Warren, W.H.; Hannon, D.J. Direction of self-motion is perceived from optical flow. Nature 1988, 336, 162–163. [Google Scholar] [CrossRef]
- Larish, J.F.; Flach, J.M. Sources of optical information useful for perception of speed of rectilinear self-motion. J. Exp. Psychol. Hum. Percept. Perform. 1990, 16, 295. [Google Scholar] [CrossRef]
- Lee, D.N. A theory of visual control of braking based on information about time-to-collision. Perception 1976, 5, 437–459. [Google Scholar] [CrossRef]
- Bruggeman, H.; Zosh, W.; Warren, W.H. Optic flow drives human visuo-locomotor adaptation. Curr. Biol. 2007, 17, 2035–2040. [Google Scholar] [CrossRef]
- Rushton, S.K.; Harris, J.M.; Lloyd, M.R.; Wann, J.P. Guidance of locomotion on foot uses perceived target location rather than optic flow. Curr. Biol. 1998, 8, 1191–1194. [Google Scholar] [CrossRef][Green Version]
- Warren, W.H.; Kay, B.A.; Zosh, W.D.; Duchon, A.P.; Sahuc, S. Optic flow is used to control human walking. Nat. Neurosci. 2001, 4, 213. [Google Scholar] [CrossRef] [PubMed]
- Bremmer, F.; Lappe, M. The use of optical velocities for distance discrimination and reproduction during visually simulated self motion. Exp. Brain Res. 1999, 127, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Riecke, B.E.; Veen, H.A.H.C.V.; Bülthoff, H.H. Visual homing is possible without landmarks: A path integration study in virtual reality. Presence Teleoper. Virtual Environ. 2002, 11, 443–473. [Google Scholar] [CrossRef]
- Harris, L.R.; Jenkin, M.; Zikovitz, D.C. Visual and non-visual cues in the perception of linear self motion. Exp. Brain Res. 2000, 135, 12–21. [Google Scholar] [CrossRef]
- Prokop, T.; Schubert, M.; Berger, W. Visual influence on human locomotion modulation to changes in optic flow. Exp. Brain Res. 1997, 114, 63–70. [Google Scholar] [CrossRef]
- Varraine, E.; Bonnard, M.; Pailhous, J. Interaction between different sensory cues in the control of human gait. Exp. Brain Res. 2002, 142, 374–384. [Google Scholar] [CrossRef]
- Pailhous, J.; Ferrandez, A.-M.; Flückiger, M.; Baumberger, B. Unintentional modulations of human gait by optical flow. Behav. Brain Res. 1990, 38, 275–281. [Google Scholar] [CrossRef]
- Durgin, F.H.; Fox, L.F.; Schaffer, E.; Whitaker, R. The perception of linear self-motion. In Proceedings of the Electronic Imaging 2005, San Jose, CA, USA, 18 March 2005; pp. 503–514. [Google Scholar]
- Mohler, B.J.; Thompson, W.B.; Creem-Regehr, S.; Pick, H.L.; Warren, W.; Rieser, J.J.; Willemsen, P. Visual motion influences locomotion in a treadmill virtual environment. In Proceedings of the 1st Symposium on Applied Perception in Graphics and Visualization, Los Angeles, CA, USA, 7–8 August 2004; pp. 19–22. [Google Scholar]
- Konczak, J. Effects of optic flow on the kinematics of human gait: A comparison of young and older adults. J. Mot. Behav. 1994, 26, 225–236. [Google Scholar] [CrossRef]
- Baumberger, B.; Flückiger, M.; Roland, M. Walking in an environment of moving ground texture. Jpn. Psychol. Res. 2000, 42, 238–250. [Google Scholar] [CrossRef]
- Zijlstra, W.; Rutgers, A.W.F.; Hof, A.L.; Van Weerden, T.W. Voluntary and involuntary adaptation of walking to temporal and spatial constraints. Gait Posture 1995, 3, 13–18. [Google Scholar] [CrossRef]
- Brandt, T. Vestibulopathic gait: you’re better off running than walking. Curr. Opin. Neurol. 2000, 13, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Jahn, K.; Strupp, M.; Schneider, E.; Dieterich, M.; Brandt, T. Visually induced gait deviations during different locomotion speeds. Exp. Brain Res. 2001, 141, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Jahn, K.; Deutschländer, A.; Stephan, T.; Strupp, M.; Wiesmann, M.; Brandt, T. Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 2004, 22, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Durgin, F.H.; Gigone, K.; Scott, R. Perception of visual speed while moving. J. Exp. Psychol. Hum. Percept. Perform. 2005, 31, 339. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, J.; van den Bergh, D.; Bohm, U.; Dablander, F.; Derks, K.; Draws, T.; Evans, N.J.; Gronau, Q.F.; Hinne, M.; Kucharský, Š. The JASP Guidelines for Conducting and Reporting a Bayesian Analysis. PsyArXiv 2019. [Google Scholar] [CrossRef][Green Version]
- Powell, W.; Hand, S.; Stevens, B.; Simmonds, M.J. Optic flow with a stereoscopic display: Sustained influence on speed of locomotion. Annu. Rev. Cyber Ther. Telemed. 2006, 4, 65–70. [Google Scholar]
- Brandt, T.; Strupp, M.; Benson, J. You are better off running than walking with acute vestibulopathy. Lancet 1999, 354, 746. [Google Scholar] [CrossRef]
- Ernst, M.O.; Banks, M.S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 2002, 415, 429. [Google Scholar] [CrossRef]
- Keshner, E.A.; Kenyon, R.V. The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses. J. Vestib. Res. 2000, 10, 207–219. [Google Scholar]
- Wright, W.G. Using virtual reality to induce cross-axis adaptation of postural control: Implications for rehabilitation. In Proceedings of the 2013 International Conference on Virtual Rehabilitation (ICVR), Philadelphia, PA, USA, 26–29 August 2013; pp. 289–294. [Google Scholar]
- Wright, W.G. Using virtual reality to augment perception, enhance sensorimotor adaptation, and change our minds. Front. Syst. Neurosci. 2014, 8. [Google Scholar] [CrossRef]
- Slobounov, S.; Sebastianelli, W.; Newell, K.M. Incorporating virtual reality graphics with brain imaging for assessment of sport-related concussions. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 1383–1386. [Google Scholar]
- Hollman, J.H.; Brey, R.H.; Bang, T.J.; Kaufman, K.R. Does walking in a virtual environment induce unstable gait? An examination of vertical ground reaction forces. Gait Posture 2007, 26, 289–294. [Google Scholar] [CrossRef]
- Hollman, J.H.; Brey, R.H.; Robb, R.A.; Bang, T.J.; Kaufman, K.R. Spatiotemporal gait deviations in a virtual reality environment. Gait Posture 2006, 23, 441–444. [Google Scholar] [CrossRef]
- Kastavelis, D.; Mukherjee, M.; Decker, L.M.; Stergiou, N. The effect of virtual reality on gait variability. Nonlinear Dyn. Psychol. Life Sci. 2010, 14, 239–256. [Google Scholar]
- Guerin, P.; Bardy, B.G. Optical modulation of locomotion and energy expenditure at preferred transition speed. Exp. Brain Res. 2008, 189, 393–402. [Google Scholar] [CrossRef]
- Parfitt, G.; Rose, E.A.; Markland, D. The effect of prescribed and preferred intensity exercise on psychological affect and the influence of baseline measures of affect. J. Health Psychol. 2000, 5, 231–240. [Google Scholar] [CrossRef]
- Parfitt, G.; Rose, E.A.; Burgess, W.M. The psychological and physiological responses of sedentary individuals to prescribed and preferred intensity exercise. Br. J. Health Psychol. 2006, 11, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Kingdom, F.A.A.; Prins, N. Psychophysics: A Practical Introduction; Elsevier Science: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Leek, M.R. Adaptive procedures in psychophysical research. Percept. Psychophys. 2001, 63, 1279–1292. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dubois, A.; Bresciani, J.-P. Validation of an ambient system for the measurement of gait parameters. J. Biomech. 2018, 69, 175–180. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Banton, T.; Stefanucci, J.; Durgin, F.; Fass, A.; Proffitt, D.R. The perception of walking speed in a virtual environment. Presence 2005, 14, 394–406. [Google Scholar] [CrossRef]
- Powell, W.; Stevens, B.; Hand, S.; Simmonds, M. Blurring the boundaries: The perception of visual gain in treadmill-mediated virtual environments. In Proceedings of the 3rd IEEE VR 2011 Workshop on Perceptual Illusions in Virtual Environments, Singapore, 19 March 2011. [Google Scholar]
- Kassler, L.; Feasel, J.; Lewek, M.D.; Brooks, F.P., Jr.; Whitton, M.C. Matching actual treadmill walking speed and visually perceived walking speed in a projection virtual environment. In Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, Los Angeles, CA, USA, 23–24 July 2010; p. 161. [Google Scholar]
- Caramenti, M.; Lafortuna, C.L.; Mugellini, E.; Abou Khaled, O.; Bresciani, J.-P.; Dubois, A. Matching optical flow to motor speed in virtual reality while running on a treadmill. PLoS ONE 2018, 13, e0195781. [Google Scholar] [CrossRef]
- Caramenti, M.; Lafortuna, C.L.; Mugellini, E.; Abou Khaled, O.; Bresciani, J.-P.; Dubois, A. Regular physical activity modulates perceived visual speed when running in treadmill-mediated virtual environments. PLoS ONE 2019, 14, e0219017. [Google Scholar] [CrossRef] [PubMed]
- Caramenti, M.; Pretto, P.; Lafortuna, C.; Bresciani, J.-P.; Dubois, A. Influence of the size of the field of view on visual perception while running in a treadmill-mediated virtual environment. Front. Psychol. 2019, 10, 2344. [Google Scholar] [CrossRef]
- Abernethy, B.; Hanna, A.; Plooy, A. The attentional demands of preferred and non-preferred gait patterns. Gait Posture 2002, 15, 256–265. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Age-related differences in walking stability. Age Ageing 2003, 32, 137–142. [Google Scholar] [CrossRef][Green Version]
- Krebs, D.E.; Goldvasser, D.; Lockert, J.D.; Portney, L.G.; Gill-Body, K.M. Is base of support greater in unsteady gait? Phys. Ther. 2002, 82, 138–147. [Google Scholar] [CrossRef]
- Nigg, B.M.; De Boer, R.W.; Fisher, V. A kinematic comparison of overground and treadmill running. Med. Sci. Sports Exerc. 1995, 27, 98–105. [Google Scholar] [CrossRef]
- Obrist, P.A. Cardiovascular Psychophysiology: A Perspective; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Annesi, J.J.; Mazas, J. Effects of virtual reality-enhanced exercise equipment on adherence and exercise-induced feeling states. Percept. Mot. Skills 1997, 85, 835–844. [Google Scholar] [CrossRef]
- Mestre, D.; Dagonneau, V.; Mercier, C.-S. Does virtual reality enhance exercise performance, enjoyment, and dissociation? An exploratory study on a stationary bike apparatus. Presence 2011, 20, 1–14. [Google Scholar] [CrossRef]
- Bingham, G.; Romack, J.L. The rate of adaptation to displacement prisms remains constant despite acquisition of rapid calibration. J. Exp. Psychol. Hum. Percept. Perform. 1999, 25, 1331. [Google Scholar] [CrossRef]
- Redding, G.M.; Wallace, B. Prism adaptation during target pointing from visible and nonvisible starting locations. J. Mot. Behav. 1997, 29, 119–130. [Google Scholar] [CrossRef]
- Kong, P.W.; Candelaria, N.G.; Tomaka, J. Perception of self-selected running speed is influenced by the treadmill but not footwear. Sports Biomech. 2009, 8, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.W.; Koh, T.M.C.; Tan, W.C.R.; Wang, Y.S. Unmatched perception of speed when running overground and on a treadmill. Gait Posture 2012, 36, 46–48. [Google Scholar] [CrossRef] [PubMed]
- Marsh, A.P.; Katula, J.A.; Pacchia, C.F.; Johnson, L.C.; Koury, K.L.; Rejeski, W.J. Effect of treadmill and overground walking on function and attitudes in older adults. Med. Sci.Sports Exerc. 2006, 38, 1157. [Google Scholar] [CrossRef] [PubMed]
- White, S.C.; Yack, H.J.; Tucker, C.A.; Lin, H.-Y. Comparison of vertical ground reaction forces during overground and treadmill walking. Med. Sci. Sports Exerc. 1998, 30, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Riley, P.O.; Dicharry, J.; Franz, J.A.S.O.N.; Croce, U.D.; Wilder, R.P.; Kerrigan, D.C. A kinematics and kinetic comparison of overground and treadmill running. Med. Sci. Sports Exerc. 2008, 40, 1093. [Google Scholar] [CrossRef] [PubMed]
- Thurrell, A.E.I.; Pelah, A.; Distler, H.K. The influence of non-visual signals of walking on the perceived speed of optic flow. Perception 1998, 27, 147–148. [Google Scholar]
- Thurrell, A.E.I.; Pelah, A. Reduction of perceived visual speed during walking: Effect dependent upon stimulus similarity to the visual consequences of locomotion. J. Vis. 2002, 2, 628. [Google Scholar] [CrossRef]
- Nilsson, N.C.; Serafin, S.; Nordahl, R. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion. IEEE Trans. Vis. Comput. Graph. 2014, 20, 569–578. [Google Scholar] [CrossRef]
- Kober, S.E.; Kurzmann, J.; Neuper, C. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. Int. J. Psychophysiol. 2012, 83, 365–374. [Google Scholar] [CrossRef]
- Slobounov, S.M.; Ray, W.; Johnson, B.; Slobounov, E.; Newell, K.M. Modulation of cortical activity in 2D versus 3D virtual reality environments: An EEG study. Int. J. Psychophysiol. 2015, 95, 254–260. [Google Scholar] [CrossRef]
- Sharples, S.; Cobb, S.; Moody, A.; Wilson, J.R. Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays 2008, 29, 58–69. [Google Scholar] [CrossRef]
- Jahn, K.; Strupp, M.; Schneider, E.; Dieterich, M.; Brandt, T. Differential effects of vestibular stimulation on walking and running. Neuroreport 2000, 11, 1745–1748. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.M. The supraspinal control of mammalian locomotion. J. Physiol. 1988, 405, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Dietz, V. Spinal cord pattern generators for locomotion. Clin. Neurophysiol. 2003, 114, 1379–1389. [Google Scholar] [CrossRef]
- Drew, T.; Prentice, S.; Schepens, B. Cortical and brainstem control of locomotion. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2004; Volume 143, pp. 251–261. [Google Scholar]
- Mohler, B.J.; Thompson, W.B.; Creem-Regehr, S.H.; Pick, H.L., Jr.; Warren, W.H., Jr. Visual flow influences gait transition speed and preferred walking speed. Exp. Brain Res. 2007, 181, 221–228. [Google Scholar] [CrossRef]
- Lavcanska, V.; Taylor, N.F.; Schache, A.G. Familiarization to treadmill running in young unimpaired adults. Hum. Mov. Sci. 2005, 24, 544–557. [Google Scholar] [CrossRef]
- White, S.C.; Gilchrist, L.A.; Christina, K.A. Within-day accommodation effects on vertical reaction forces for treadmill running. J. Appl. Biomech. 2002, 18, 74–82. [Google Scholar] [CrossRef]
- Schieb, D.A. Kinematic accommodation of novice treadmill runners. Res. Q. Exerc. Sport 1986, 57, 1–7. [Google Scholar] [CrossRef]
- Thompson Coon, J.; Boddy, K.; Stein, K.; Whear, R.; Barton, J.; Depledge, M.H. Does participating in physical activity in outdoor natural environments have a greater effect on physical and mental wellbeing than physical activity indoors? A systematic review. Environ. Sci. Technol. 2011, 45, 1761–1772. [Google Scholar] [CrossRef]
- Plante, T.G.; Aldridge, A.; Bogden, R.; Hanelin, C. Might virtual reality promote the mood benefits of exercise? Comput. Hum. Behav. 2003, 19, 495–509. [Google Scholar] [CrossRef]
Spatiotemporal Parameters | Estimation |
---|---|
Step duration (s) | The duration between the local minima of the left and right heel |
Step length (m) | Treadmill speed (m/s) × Step duration (s) |
Step frequency (steps/s) | 1/step duration |
Step width (cm) | The distance on the x-axis between the left and right heel |
Variable | Condition | Minute | Interaction |
---|---|---|---|
Step length | F(3,57) = 1.695, p = 0.178 | F(2,38) = 10.000, p < 0.001 *** | F(6,114) = 1.423, p = 0.212 |
Step duration | F(3,57) = 1.747, p = 0.168 | F(2,38) = 10.085, p < 0.001 *** | F(6,114) = 1.357, p = 0.238 |
Step frequency | F(3,57) = 1.977, p = 0.128 | F(2,38) = 9.492, p < 0.001 *** | F(6,114) = 1.534, p = 0.173 |
Step width | F(3,57) = 1.011, p = 0.395 | F(2,38) = 11.514, p < 0.001 *** | F(6,114) = 0.255, p = 0.956 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caramenti, M.; Lafortuna, C.L.; Mugellini, E.; Abou Khaled, O.; Bresciani, J.-P.; Dubois, A. No Evidence That Frontal Optical Flow Affects Perceived Locomotor Speed and Locomotor Biomechanics When Running on a Treadmill. Appl. Sci. 2019, 9, 4589. https://doi.org/10.3390/app9214589
Caramenti M, Lafortuna CL, Mugellini E, Abou Khaled O, Bresciani J-P, Dubois A. No Evidence That Frontal Optical Flow Affects Perceived Locomotor Speed and Locomotor Biomechanics When Running on a Treadmill. Applied Sciences. 2019; 9(21):4589. https://doi.org/10.3390/app9214589
Chicago/Turabian StyleCaramenti, Martina, Claudio L. Lafortuna, Elena Mugellini, Omar Abou Khaled, Jean-Pierre Bresciani, and Amandine Dubois. 2019. "No Evidence That Frontal Optical Flow Affects Perceived Locomotor Speed and Locomotor Biomechanics When Running on a Treadmill" Applied Sciences 9, no. 21: 4589. https://doi.org/10.3390/app9214589