Understanding the Fracture Behaviors of Metallic Glasses—An Overview
Abstract
:1. Introduction
2. Fracture Behaviors of MGs
2.1. Typical Mode I Fracture of MGs
2.1.1. Multiple Shear Bands Formation and Sliding
2.1.2. Shear Band Delamination
2.1.3. Rapid Fracture
2.2. Brittle Fracture of MGs
2.3. “Super Ductile” Fracture of MGs
- The Pd-based MGs have better deformability than other MG systems and can more easily form multiple shear bands in different loading conditions.
- The size of the samples used in these studies is small (the thickness and ligament width are not more than 3 mm). Since a smaller sliding distance is needed to release the same stress in a smaller sample, it will be less easy for small samples to reach the critical condition of shear band delamination, i.e. small sample show higher shear band stability. Therefore, sustainable multiple shear banding can be achieved.
2.4. Impact Toughness of MGs
2.5. Fatigue Performance of MGs
3. Fracture Mechanism of MGs
3.1. Discontinuous Stress/Strain Field
3.2. Fracture Resistance
3.3. Plastic Zone
4. Characterizing the Fracture Properties of Metallic Glasses
4.1. Size Limit of MGs
4.2. Fatigue Pre-Crack
4.3. Variability of Fracture Toughness
5. Prospects
5.1. Characterizing the Dynamic Fracture Properties of MGs
5.2. Toughening Method of MGs
5.3. Performance Under Special Conditions
5.4. Rapid Fracture Mechanism of MGs
5.5. Mode II and Mode III Fracture Mechanism of MGs
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R 2004, 44, 45–89. [Google Scholar] [CrossRef]
- Jan, S. Processing of bulk metallic glass. Adv. Mater. 2010, 22, 1566–1597. [Google Scholar]
- Greer, A.L.; Ma, E. Bulk metallic glasses: At the cutting edge of metals research. MRS Bull. 2007, 32, 611–615. [Google Scholar] [CrossRef]
- Akihisa, I.; Baolong, S.; Hisato, K.; Hidemi, K.; Yavari, A.R. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2003, 2, 661–663. [Google Scholar]
- Demetriou, M.D.; Launey, M.E.; Garrett, G.; Schramm, J.P.; Hofmann, D.C.; Johnson, W.L.; Ritchie, R.O. A damage-tolerant glass. Nat. Mater. 2011, 10, 123–128. [Google Scholar] [CrossRef]
- Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N. Superductile bulk metallic glass. Appl. Phys. Lett. 2006, 88, 122106. [Google Scholar] [CrossRef]
- Yao, K.F.; Zhang, C.Q. Fe-based bulk metallic glass with high plasticity. Appl. Phys. Lett. 2007, 90, 061901. [Google Scholar] [CrossRef]
- Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Schuh, C.A.; Hufnagel, T.C.; Ramamurty, U. Overview No.144—Mechanical behavior of amorphous alloys. Acta Mater. 2007, 55, 4067–4109. [Google Scholar] [CrossRef]
- Sun, B.A.; Wang, W.H. The fracture of bulk metallic glasses. Prog. Mater Sci. 2015, 74, 211–307. [Google Scholar] [CrossRef]
- Xu, J.; Ramamurty, U.; Ma, E. The fracture toughness of bulk metallic glasses. JOM 2010, 62, 10–18. [Google Scholar] [CrossRef]
- Yang, G.N.; Chen, S.Q.; Gu, J.L.; Zhao, S.F.; Li, J.F.; Shao, Y.; Wang, H.; Yao, K.F. Serration behaviours in metallic glasses with different plasticity. Philos. Mag. 2016, 96, 2243–2255. [Google Scholar] [CrossRef]
- Wu, Y.; Bei, H.; Wang, Y.L.; Lu, Z.P.; George, E.P.; Gao, Y.F. Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass. Int. J. Plast. 2015, 71, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Lan, S.; Wu, Z.; Wei, X.; Zhou, J.; Lu, Z.; Neuefeind, J.; Wang, X.-L. Structure origin of a transition of classic-to-avalanche nucleation in Zr-Cu-Al bulk metallic glasses. Acta Mater. 2018, 149, 108–118. [Google Scholar] [CrossRef]
- Steif, P.S.; Spaepen, F.; Hutchinson, J.W. Strain localization in amorphous metals. Acta Metall. 1982, 30, 447–455. [Google Scholar] [CrossRef]
- Cao, A.J.; Cheng, Y.Q.; Ma, E. Structural processes that initiate shear localization in metallic glass. Acta Mater. 2009, 57, 5146–5155. [Google Scholar] [CrossRef]
- Schuh, C.A.; Lund, A.C. Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2003, 2, 449–452. [Google Scholar] [CrossRef]
- Zhang, Z.F.; He, G.; Eckert, J.; Schultz, L. Fracture mechanisms in bulk metallic glassy materials. Phys. Rev. Lett. 2003, 91, 045505. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Eckert, J. Unified tensile fracture criterion. Phys. Rev. Lett. 2005, 94, 094301. [Google Scholar] [CrossRef]
- ASTM International. ASTM E399, Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- ASTM International. ASTM E1820, Standard Test Method for Measurement of Fracture Toughness; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Yu, M.; Zhen, L.; Chao, Y.J. An Assessment of Mechanical Properties of A508-3 Steel Used in Chinese Nuclear Reactor Vessels. J. Press. Vess.Technol. ASME 2015, 137, 031402. [Google Scholar] [CrossRef]
- Klaumünzer, D.; Maaß, R.; Löffler, J.F. Stick-slip dynamics and recent insights into shear banding in metallic glasses. J. Mater. Res. 2011, 26, 1453–1463. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.A.; Pauly, S.; Tan, J.; Stoica, M.; Wang, W.H.; Kühn, U.; Eckert, J. Serrated flow and stick–slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass. Acta Mater. 2012, 60, 4160–4171. [Google Scholar] [CrossRef]
- Gu, X.J.; Poon, S.J.; Shiflet, G.J.; Lewandowski, J.J. Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scr. Mater. 2009, 60, 1027–1030. [Google Scholar] [CrossRef]
- Yang, G.N.; Shao, Y.; Yao, K.F. The shear band controlled deformation in metallic glass: A perspective from fracture. Sci. Rep. 2016, 6, 21852. [Google Scholar] [CrossRef] [PubMed]
- Tandaiya, P.; Narasimhan, R.; Ramamurty, U. On the mechanism and the length scales involved in the ductile fracture of a bulk metallic glass. Acta Mater. 2013, 61, 1558–1570. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Gu, X.J.; Shamimi Nouri, A.; Poon, S.J.; Shiflet, G.J. Tough Fe-based bulk metallic glasses. Appl. Phys. Lett. 2008, 92, 091918. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Zhu, Z.D.; Ma, E.; Xu, J. Notch toughness of Cu-based bulk metallic glasses. Scr. Mater. 2009, 61, 137–140. [Google Scholar] [CrossRef]
- Argon, A.S.; Salama, M. Mechanism of fracture in glassy materials capable of some inelastic deformation. Mat. Sci. Eng. 1976, 23, 219–230. [Google Scholar] [CrossRef]
- Saffman, P.G.; Taylor, G. The penetration of a fluid into a porous medium or hele-shaw cell containing a more viscous liquid. Proc. R. Soc. London, Ser. A 1958, 245, 312–329. [Google Scholar]
- Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 1977, 25, 407–415. [Google Scholar] [CrossRef]
- Argon, A.S. Plastic deformation in metallic glasses. Acta Metall. 1979, 27, 47–58. [Google Scholar] [CrossRef]
- Pan, J.; Chen, Q.; Liu, L.; Li, Y. Softening and dilatation in a single shear band. Acta Mater. 2011, 59, 5146–5158. [Google Scholar] [CrossRef]
- Shao, Y.; Yang, G.N.; Yao, K.F.; Liu, X. Direct experimental evidence of nano-voids formation and coalescence within shear bands. Appl. Phys. Lett. 2014, 105, 181909. [Google Scholar] [CrossRef]
- Wang, K.; Fujita, T.; Zeng, Y.Q.; Nishiyama, N.; Inoue, A.; Chen, M.W. Micromechanisms of serrated flow in a Ni50Pd30P20 bulk metallic glass with a large compression plasticity. Acta Mater. 2008, 56, 2834–2842. [Google Scholar] [CrossRef]
- Maaß, R.; Birckigt, P.; Borchers, C.; Samwer, K.; Volkert, C.A. Long range stress fields and cavitation along a shear band in a metallic glass: The local origin of fracture. Acta Mater. 2015, 98, 94–102. [Google Scholar] [CrossRef]
- Lowhaphandu, P.; Ludrosky, L.A.; Montgomery, S.L.; Lewandowski, J.J. Deformation and fracture toughness of a bulk amorphous Zr–Ti–Ni–Cu–Be alloy. Intermetallics 2000, 8, 487–492. [Google Scholar] [CrossRef]
- Raghavan, R.; Murali, P.; Ramamurty, U. On factors influencing the ductile-to-brittle transition in a bulk metallic glass. Acta Mater. 2009, 57, 3332–3340. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, D.Q.; Bai, H.Y.; Pan, M.X.; Xia, A.L.; Han, B.S.; Xi, X.K.; Wu, Y.; Wang, W.H. Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys. Rev. Lett. 2007, 98, 235501. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.T. Size effect on stability of shear-band propagation in bulk metallic glasses: An overview. J. Mater. Sci. 2012, 47, 55–67. [Google Scholar] [CrossRef]
- Gludovatz, B.; Granata, D.; Thurston, K.V.S.; Löffler, J.F.; Ritchie, R.O. On the understanding of the effects of sample size on the variability in fracture toughness of bulk metallic glasses. Acta Mater. 2017, 126, 494–506. [Google Scholar] [CrossRef] [Green Version]
- Jun, H.J.; Lee, K.S.; Kim, C.P.; Chang, Y.W. Ductility enhancement of a Ti-based bulk metallic glass through annealing treatment below the glass transition temperature. Intermetallics 2012, 20, 47–54. [Google Scholar] [CrossRef]
- Raphael, J.; Wang, G.Y.; Liaw, P.K.; Senkov, O.N.; Miracle, D.B. Fatigue and Fracture Behavior of a Ca-Based Bulk-Metallic Glass. Metall. Mater. Trans. A 2010, 41, 1775–1779. [Google Scholar] [CrossRef]
- Wang, G.Y.; Liaw, P.K.; Senkov, O.N.; Miracle, D.B. The Duality of Fracture Behavior in a Ca-based Bulk-Metallic Glass. Metall. Mater. Trans. A 2011, 42, 1499–1503. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Wu, F.F.; Gao, W.; Tan, J.; Wang, Z.G.; Stoica, M.; Das, J.; Eckert, J.; Shen, B.L.; Inoue, A. Wavy cleavage fracture of bulk metallic glass. Appl. Phys. Lett. 2006, 89, 2273. [Google Scholar] [CrossRef]
- Wang, G.; Han, Y.N.; Xu, X.H.; Ke, F.J.; Han, B.S.; Wang, W.H. Ductile to brittle transition in dynamic fracture of brittle bulk metallic glass. J. Appl. Phys. 2008, 103, 093520. [Google Scholar] [CrossRef]
- Xi, X.K.; Zhao, D.Q.; Pan, M.X.; Wang, W.H.; Wu, Y.; Lewandowski, J.J. Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 2005, 94, 125510. [Google Scholar] [CrossRef]
- He, Q.; Cheng, Y.Q.; Ma, E.; Xu, J. Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization. Acta Mater. 2011, 59, 202–215. [Google Scholar] [CrossRef]
- Yang, G.N.; Shao, Y.; Yao, K.F. A non-viscous-featured fractograph in metallic glasses. Philos. Mag. 2016, 96, 542–550. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications, 3rd ed.; Taylor & Francis: Abingdon, UK, 2011. [Google Scholar]
- Gu, J.L.; Yang, X.L.; Zhang, A.L.; Shao, Y.; Zhao, S.F.; Yao, K.F. Centimeter-sized Ti-rich bulk metallic glasses with superior specific strength and corrosion resistance. J. Non-Cryst. Solids 2019, 512, 206–210. [Google Scholar] [CrossRef]
- Ding, H.Y.; Shao, Y.; Gong, P.; Li, J.F.; Yao, K.F. A senary TiZrHfCuNiBe high entropy bulk metallic glass with large glass-forming ability. Mater. Lett. 2014, 125, 151–153. [Google Scholar] [CrossRef]
- Zhao, S.F.; Yang, G.N.; Ding, H.Y.; Yao, K.F. A quinary Ti-Zr-Hf-Be-Cu high entropy bulk metallic glass with a critical size of 12 mm. Intermetallics 2015, 61, 47–50. [Google Scholar] [CrossRef]
- Gong, P.; Wang, X.; Shao, Y.; Chen, N.; Liu, X.; Yao, K.F. A Ti-Zr-Be-Fe-Cu bulk metallic glass with superior glass-forming ability and high specific strength. Intermetallics 2013, 43, 177–181. [Google Scholar] [CrossRef]
- Zhao, S.F.; Shao, Y.; Liu, X.; Chen, N.; Ding, H.Y.; Yao, K.F. Pseudo-quinary Ti20Zr20Hf20Be20(Cu20-xNix) high entropy bulk metallic glasses with large glass forming ability. Mater. Des. 2015, 87, 625–631. [Google Scholar] [CrossRef]
- Zhao, S.F.; Gong, P.; Li, J.F.; Chen, N.; Yao, K.F. Quaternary Ti-Zr-Be-Ni bulk metallic glasses with large glass-forming ability. Mater. Des. 2015, 85, 564–573. [Google Scholar] [CrossRef]
- Chao, Y.J.; Ward, J.D., Jr.; Sands, R.G. Charpy impact energy, fracture toughness and ductile–brittle transition temperature of dual-phase 590 Steel. Mater. Des. 2007, 28, 551–557. [Google Scholar] [CrossRef]
- Tang, M.Q.; Zhang, H.F.; Zhu, Z.W.; Fu, H.M.; Wang, A.M.; Li, H.; Hu, Z.Q. TiZr-base Bulk Metallic Glass with over 50 mm in Diameter. J. Mater. Sci. Technol. 2010, 26, 481–486. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T. Impact Fracture Energy of Bulk Amorphous Zr55Al10Cu30Ni5 Alloy. Mater. Trans. 1996, 37, 1726–1729. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, Y.; Akeno, Y.; Yamasaki, T.; Liaw, P.K.; Buchanan, R.A.; Inoue, A. Evolution of Mechanical Properties of Cast Zr50Cu40Al10 Glassy Alloys by Structural Relaxation. Mater. Trans. 2005, 46, 2755–2761. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.; Zachrisson, C.; Kozachkov, H.; Ullah, A.; Shapiro, A.A.; Johnson, W.L.; Hofmann, D.C. Cryogenic Charpy impact testing of metallic glass matrix composites. Scr. Mater. 2012, 66, 284–287. [Google Scholar] [CrossRef]
- Raghavan, R.; Murali, P.; Ramamurty, U. Ductile to brittle transition in the Zr 41.2Ti 13.75Cu 12.5Ni 10Be 22.5 bulk metallic glass. Intermetallics 2006, 14, 1051–1054. [Google Scholar] [CrossRef]
- Ramamurty, U.; Lee, M.L.; Basu, J.; Li, Y. Embrittlement of a bulk metallic glass due to low-temperature annealing. Scr. Mater. 2002, 47, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Szuecs, F.; Kim, C.P.; Johnson, W.L. Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 2001, 49, 1507–1513. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Nishiyama, N.; Fukaura, K.; Sunada, H.; Inoue, A. Rotating-Beam Fatigue Strength of Pd40Cu30Ni10P20 Bulk Amorphous Alloy. Mater. Trans. 1999, 40, 696–699. [Google Scholar] [CrossRef] [Green Version]
- Song, S.X.; Nieh, T.G. Flow serration and shear-band viscosity during inhomogeneous deformation of a Zr-based bulk metallic glass. Intermetallics 2009, 17, 762–767. [Google Scholar] [CrossRef]
- Maaß, R.; Löffler, J.F. Shear-Band Dynamics in Metallic Glasses. Adv. Funct. Mater. 2015, 25, 2353–2368. [Google Scholar] [CrossRef]
- Ma, W.F.; Kou, H.C.; Li, J.S.; Chang, H.; Zhou, L. Effect of strain rate on compressive behavior of Ti-based bulk metallic glass at room temperature. J. Alloys Compd. 2009, 472, 214–218. [Google Scholar] [CrossRef]
- Mann, J.Y. Fatigue Materials; Melbourne University Press: Melbourne, Australia, 1967. [Google Scholar]
- Davis, L.A. Fracture of Ni-Fe base metallic glasses. J. Mater. Sci. 1975, 10, 1557–1564. [Google Scholar] [CrossRef]
- Ogura, T.; Masumoto, T.; Fukushima, K. Fatigue fracture of amorphous Pd-20at-percent Si alloy. Scr. Metall. 1975, 9, 109–113. [Google Scholar] [CrossRef]
- Ogura, T.; Fukushima, K.; Masumoto, T. Propagation of fatigue cracks in amorphous metals. Mater. Sci. Eng. 1976, 23, 231–235. [Google Scholar] [CrossRef]
- Gilbert, C.J.; Schroeder, V.; Ritchie, R.O. Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall. Mater. Trans. A 1999, 30, 1739–1753. [Google Scholar] [CrossRef]
- Chen, H.S. Glassy metals. Rep. Prog. Phys. 1980, 43, 353. [Google Scholar] [CrossRef]
- Fujita, K.; Zhang, W.; Shen, B.; Amiya, K.; Ma, C.L.; Nishiyama, N. Fatigue properties in high strength bulk metallic glasses. Intermetallics 2012, 30, 12–18. [Google Scholar] [CrossRef]
- Ponnambalam, V.; Poon, S.J.; Shiflet, G.J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 2004, 19, 1320–1323. [Google Scholar] [CrossRef]
- Qiao, D.C.; Wang, G.Y.; Liaw, P.K.; Ponnambalam, V.; Poon, S.J.; Shiflet, G.J. Fatigue behavior of an Fe48Cr15Mo14Er2C15B6 amorphous steel. J. Mater. Res. 2007, 22, 544–550. [Google Scholar] [CrossRef]
- Gilbert, C.J.; Lippmann, J.M.; Ritchie, R.O. Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior. Scr. Mater. 1998, 38, 537–542. [Google Scholar] [CrossRef]
- Wang, G.Y.; Liaw, P.K.; Peker, A.; Yang, B.; Benson, M.L.; Yuan, W.; Peter, W.H.; Huang, L.; Freels, A.; Buchanan, R.A.; et al. Fatigue behavior of Zr-Ti-Ni-Cu-Be bulk-metallic glasses. Intermetallics 2005, 13, 429–435. [Google Scholar] [CrossRef]
- Wang, G.Y.; Liaw, P.K.; Peter, W.H.; Yang, B.; Yokoyama, Y.; Benson, M.L.; Green, B.A.; Kirkham, M.J.; White, S.A.; Saleh, T.A.; et al. Fatigue behavior of bulk-metallic glasses. Intermetallics 2004, 12, 885–892. [Google Scholar] [CrossRef]
- Qiao, D.C.; Fan, G.J.; Liaw, P.K.; Choo, H. Fatigue behaviors of the Cu47.5Zr47.5Al5 bulk-metallic glass (BMG) and Cu(47.5)Zr(38)Hf(9.5)Al(5)BMG composite. Int. J. Fatigue 2007, 29, 2149–2154. [Google Scholar] [CrossRef]
- Peter, W.H.; Liaw, P.K.; Buchanan, R.A.; Liu, C.T.; Brooks, C.R.; Horton, J.A.; Carmichael, C.A.; Wright, J.L. Fatigue behavior of Zr52.5Al10Ti5Cu17.9Ni14.6 bulk metallic glass. Intermetallics 2002, 10, 1125–1129. [Google Scholar] [CrossRef]
- Morrison, M.L.; Buchanan, R.A.; Liaw, P.K.; Green, B.A.; Wang, G.Y.; Liu, C.; Horton, J.A. Four-point-bending-fatigue behavior of the Zr-based Vitreloy 105 bulk metallic glass. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2007, 467, 190–197. [Google Scholar] [CrossRef]
- Wang, G.Y.; Liaw, P.K.; Peter, W.H.; Yang, B.; Freels, M.; Yokoyama, Y.; Benson, M.L.; Green, B.A.; Saleh, T.A.; McDaniels, R.L.; et al. Fatigue behavior and fracture morphology of Zr50Al10Cu40 and Zr50Al10Cu30Ni10 bulk-metallic glasses. Intermetallics 2004, 12, 1219–1227. [Google Scholar] [CrossRef]
- Wang, G.Y.; Liaw, P.K.; Yokoyama, Y.; Freels, M.; Inoue, A. The influence of Pd on tension-tension fatigue behavior of Zr-based bulk-metallic glasses. Int. J. Fatigue 2010, 32, 599–604. [Google Scholar] [CrossRef]
- Wang, G.; Liaw, P.K.; Senkov, O.N.; Miracle, D.B.; Morrison, M.L. Mechanical and Fatigue Behavior of Ca65Mg15Zn20 Bulk-Metallic Glass. Adv. Eng. Mater. 2009, 11, 27–34. [Google Scholar] [CrossRef]
- Gilbert, C.J.; Ritchie, R.O.; Johnson, W.L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 1997, 71, 476–478. [Google Scholar] [CrossRef]
- Menzel, B.C.; Dauskardt, R.H. The fatigue endurance limit of a Zr-based bulk metallic glass. Scr. Mater. 2006, 55, 601–604. [Google Scholar] [CrossRef]
- Launey, M.E.; Busch, R.; Kruzic, J.J. Influence of structural relaxation on the fatigue behavior of a Zr41.25Ti13.75Ni10CU12.5Be22.5 bulk amorphous alloy. Scr. Mater. 2006, 54, 483–487. [Google Scholar]
- Launey, M.E.; Busch, R.; Kruzic, J.J. Effects of free volume changes and residual stresses on the fatigue and fracture behavior of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Acta Mater. 2008, 56, 500–510. [Google Scholar] [CrossRef]
- Launey, M.E.; Hofmann, D.C.; Johnson, W.L.; Ritchie, R.O. Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses. Proc. Natl. Acad. Sci. USA 2009, 106, 4986–4991. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.Y.; Liaw, P.K.; Yokoyama, Y.; Inoue, A. Size effects on the fatigue behavior of bulk metallic glasses. J. Appl. Phys. 2011, 110, 42. [Google Scholar] [CrossRef]
- Song, Z.Q.; He, Q.; Ma, E.; Xu, J. Fatigue endurance limit and crack growth behavior of a high-toughness Zr61Ti2Cu25Al12 bulk metallic glass. Acta Mater. 2015, 99, 165–175. [Google Scholar] [CrossRef] [Green Version]
- Spaepen, F. Metallic glasses: Must shear bands be hot? Nat. Mater. 2006, 5, 7–8. [Google Scholar] [CrossRef]
- Mayr, S.G. Activation energy of shear transformation zones: A key for understanding rheology of glasses and liquids. Phys. Rev. Lett. 2006, 97, 195501. [Google Scholar] [CrossRef] [PubMed]
- Maaß, R.; Klaumünzer, D.; Löffler, J.F. Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass. Acta Mater. 2011, 59, 3205–3213. [Google Scholar] [CrossRef]
- Sun, B.A.; Yu, H.B.; Jiao, W.; Bai, H.Y.; Zhao, D.Q.; Wang, W.H. Plasticity of Ductile Metallic Glasses: A Self-Organized Critical State. Phys. Rev. Lett. 2010, 105, 035501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.T.; Heatherly, L.; Easton, D.S.; Carmichael, C.A.; Schneibel, J.H.; Chen, C.H.; Wright, J.L.; Yoo, M.H.; Horton, J.A.; Inoue, A. Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 1998, 29, 1811–1820. [Google Scholar] [CrossRef]
- Yang, G.N.; Shao, Y.; Yao, K.F. The material-dependence of plasticity in metallic glasses: An origin from shear band thermology. Mater. Des. 2016, 96, 189–194. [Google Scholar] [CrossRef]
- Yang, G.N.; Gu, J.L.; Chen, S.Q.; Shao, Y.; Wang, H.; Yao, K.F. Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions. Metall. Mater. Trans. A 2016, 47, 5395–5400. [Google Scholar] [CrossRef]
- Pan, J.; Zhou, H.F.; Wang, Z.T.; Li, Y.; Gao, H.J. Origin of anomalous inverse notch effect in bulk metallic glasses. J. Mech. Phys. Solids. 2015, 84, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Tandaiya, P.; Ramamurty, U.; Narasimhan, R. Mixed mode (I and II) crack tip fields in bulk metallic glasses. J. Mech. Phys. Solids. 2009, 57, 1880–1897. [Google Scholar] [CrossRef]
- Bernard, C.; Keryvin, V.; Doquet, V.; Hin, S.; Yokoyama, Y. A sequential pre-cracking procedure to measure the mode-I fracture toughness of ultra pure bulk metallic glasses. Scr. Mater. 2017, 141, 58–61. [Google Scholar] [CrossRef]
- Zhu, Z.D.; Jia, P.; Xu, J. Optimization for toughness in metalloid-free Ni-based bulk metallic glasses. Scr. Mater. 2011, 64, 785–788. [Google Scholar] [CrossRef]
- Hassan, H.A.; Kecskes, L.; Lewandowski, J.J. Effects of changes in test temperature and loading conditions on fracture toughness of a Zr-based bulk metallic glass. Metall. Mater. Trans. A 2008, 39, 2077–2085. [Google Scholar] [CrossRef]
- Raut, D.; Narayan, R.L.; Tandaiya, P.; Ramamurty, U. Temperature-dependence of mode I fracture toughness of a bulk metallic glass. Acta Mater. 2018, 144, 325–336. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, H.F.; Liu, Z.; Ketkaew, J.; Li, N.; Yurko, J.; Hutchinson, N.; Gao, H.J.; Schroers, J. Processing effects on fracture toughness of metallic glasses. Scr. Mater. 2017, 130, 152–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.H.; Greer, A.L. Making metallic glasses plastic by control of residual stress. Nat. Mater. 2006, 5, 857–860. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhou, H.F.; Liu, Z.; Ketkaew, J.; Shao, L.; Li, N.; Gong, P.; Samela, W.; Gao, H.J.; Schroers, J. Test sample geometry for fracture toughness measurements of bulk metallic glasses. Acta Mater. 2018, 145, 477–487. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Ma, E.; Xu, J. Reliability of compressive fracture strength of Mg-Zn-Ca bulk metallic glasses: Flaw sensitivity and Weibull statistics. Scr. Mater. 2008, 58, 496–499. [Google Scholar] [CrossRef]
- Conner, R.D.; Rosakis, A.J.; Johnson, W.L.; Owen, D.M. Fracture toughness determination for a beryllium-bearing bulk metallic glass. Scr. Mater. 1997, 37, 1373–1378. [Google Scholar] [CrossRef]
- Narayan, R.L.; Tandaiya, P.; Garrett, G.R.; Demetriou, M.D.; Ramamurty, U. On the variability in fracture toughness of ‘ductile’ bulk metallic glasses. Scr. Mater. 2015, 102, 75–78. [Google Scholar] [CrossRef]
- Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461–476. [Google Scholar] [CrossRef] [PubMed]
Composition | Sample Size (mm × mm × mm) | Deepness and Shape of Notch | Impact Energy (kJ/m2) |
---|---|---|---|
(Ti36.1Zr33.2Ni5.8Be24.9)95Cu5 | 10 × 10 × 55 | U-shape | 50 [60] |
Zr55Al10Cu30Ni5 | 2.6 × 10 × 55 | U-shape | 63 [61] |
Zr50Cu40Al10 | 5 × 10 × 55 | U-shape | 100 [62] |
Zr41.2Ti13.8Cu12.5Ni10Be22.5 | 3 × 3 × 30 | 1 mm V-shape | 80 ~ 160 [63] |
Zr41.2Ti13.8Cu12.5Ni10Be22.5 | 3 × 6 × 30 | 3 mm V-shape | 133 [64] |
La55Al25Cu10Ni5Co5 | 2.6 × 5 × 22 | 1 mm | 77 [65] |
Zr41.2Ti13.8Cu12.5Ni10Be22.5 | 3 × 6 × 30 | 3 mm | 90 ~ 133 [66] |
Pd40Cu30Ni10P20 | 2.5 × 10 × 55 | 2 mm U-shape | 70 [67] |
Ti32.8Zr30.2Be26.6Ni5.3Cu9 | 10 × 10× 55 | 2 mm U-shape | 50 [60] |
(Ti41Zr25Be28Fe6)91Cu9 | 10 × 10 × 55 | 2 mm U-shape | 60 |
AISI-1018 steel | 10 × 10 × 55 | 2 mm V-shape | ~500 [59] |
Constituent | Fatigue Endurance Limit σL (MPa) | Sample Size/mm | Fatigue Ratio | Test Mode | Ref. |
---|---|---|---|---|---|
Pd40Cu30Ni10P20 | 340 | φ5 × 10 | 0.2 | bending | [67] |
Fe48Cr15Mo14Er2C15B6 | 682 | 3 × 3 × 25 | 0.17 | bending | [78,79] |
Vit 1 | 152 | 3 × 3 × 50 | 0.08 | bending | [80] |
Vit 1 | 703 | φ2.98 | 0.38 | tension | [81] |
Vit 1 | 615 | φ2.98 | 0.33 | tension | [81] |
Ti-6Al-4V | 515 | 0.50 | [82] | ||
300 M steel | 800 | 0.4 | [82] | ||
Cu47.5Zr47.5Al5 | 224 | 3 × 3 × 25 | 0.12 | bending | [83] |
2090-T18 Al-Li alloy | 250 | 0.48 | [82] | ||
Zr52.5Ti5Cu17.9Ni14.6Al10 | 907 | φ2.98 | 0.53 | tension | [84] |
Zr52.5Ti5Cu17.9Ni14.6Al10 | 850 | 3.5 × 3.5 × 30 | 0.5 | bending | [85] |
Zr50Cu40Al10 | 752 | φ2.98 | 0.41 | tension | [86] |
Zr50Cu30Al10Ni10 | 865 | φ2.98 | 0.45 | tension | [86] |
Zr50Cu37Al10Pd3 | 983 | φ2.98 | 0.52 | tension | [87] |
Ca65Mg15Zn20 | 140 | 4 × 4 × 4 | 0.38 | compression | [88] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.-N.; Shao, Y.; Yao, K.-F. Understanding the Fracture Behaviors of Metallic Glasses—An Overview. Appl. Sci. 2019, 9, 4277. https://doi.org/10.3390/app9204277
Yang G-N, Shao Y, Yao K-F. Understanding the Fracture Behaviors of Metallic Glasses—An Overview. Applied Sciences. 2019; 9(20):4277. https://doi.org/10.3390/app9204277
Chicago/Turabian StyleYang, Guan-Nan, Yang Shao, and Ke-Fu Yao. 2019. "Understanding the Fracture Behaviors of Metallic Glasses—An Overview" Applied Sciences 9, no. 20: 4277. https://doi.org/10.3390/app9204277
APA StyleYang, G.-N., Shao, Y., & Yao, K.-F. (2019). Understanding the Fracture Behaviors of Metallic Glasses—An Overview. Applied Sciences, 9(20), 4277. https://doi.org/10.3390/app9204277