Wearables, Biomechanical Feedback, and Human Motor-Skills’ Learning & Optimization
Abstract
:- Biofeedback and its types
- Biomechanical feedback in motor learning—how far is it from a real-time application?
- Milestones of biofeedback training in human motor-skill learning
- Defines and clarifies the problem—why is biomechanical one different from other biofeedback?
- Significant gaps in the current research
- How past and current developments influencing new endeavors—ideas of where research might break through.
1. Biofeedback and Its Types
2. Biomechanical Feedback in Motor Learning—How Far Is It from a Real-Time Application?
3. Milestones of Biofeedback Training in Human Motor Skill Learning and Training
3.1. Historical Overview
3.2. The Present Aspects
3.3. The Current Success of Wearables in Sports Is Not Yet Linked to the Human Motor-Skill Learning
4. Defines and Clarifies the Problems—Why Is Biomechanical One Different from Other Biofeedback?
4.1. Unique Aspects of Biomechanical Feedback
4.2. Biomechanical Steps Required in Developing Wearables for Biomechanical Feedback
- (1)
- selection of a specific motor skill,
- (2)
- 3D motion analysis of the skill,
- (3)
- verification of post-measurement feedback in practice, and
- (4)
- development of feedback device for monitoring the critical/vital parameter(s) (e.g., coordination among certain segments or joints) for the given motor skill.
4.3. Challenges Faced by Developing Wearables for Biomechanical Feedback
5. Significant Gaps in the Current Research
5.1. The Lack of a General Full-Body Biomechanical Model Supported by a Practical Number of Wearables
5.2. The Lack of a General Method for Identifying Motor-Control Patterns
6. How Past and Current Developments Influencing New Endeavors—Ideas of Where Research Might Break Through
- Developing a wearable-based full-body biomechanical model that is equivalent to the current 3D 15-segment one
- Searching new method for wearable data interpretation, i.e., motor control characterization
- Generalizing the approach to various sports and arts performance.
6.1. A Two-Chain Model as a General Full-Body Biomechanical Model for Wearable-Data Collection?
6.2. AI for Motor-Control Quantification
6.3. The Diversification of Deep-Learning Training Datasets for Increasing Feedback Reliability
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- MayoClinic. Biofeedback. Available online: https://www.mayoclinic.org/tests-procedures/biofeedback/about/pac-20384664 (accessed on 8 August 2018).
- Tate, J.J.; Milner, C.E. Real-time kinematic, temporospatial, and kinetic biofeedback during gait retraining in patients: A systematic review. Phys. Ther. 2010, 90, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Wang, J. Non-invasive wearable electrochemical sensors: A review. Trends Biotechnol. 2014, 32, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Basmajian, J.V. Biofeedback: Principles and Practice for Clinicians, 3rd ed.; Williams & Wilkins: Baltimore, MD, USA, 1989. [Google Scholar]
- Seshadri, D.R.; Drummond, C.; Craker, J.; Rowbottom, J.R.; Voos, J.E. Wearable devices for sports: New integrated technologies allow coaches, physicians, and trainers to better understand the physical demands of athletes in real time. IEEE Pulse 2017, 8, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Neal, R. Smart Soccer: MLS, Chelsea FC Using Adidas Wearable Technology to Improve Training. Available online: https://www.ibtimes.com/smart-soccer-mls-chelsea-fc-using-adidas-wearable-technology-improve-training-1360145 (accessed on 6 March 2018).
- Mischke, J. Wearable Technology: The Latest Trend in Professional Sports. Available online: https://www.wearable-technologies.com/2018/05/wearable-technology-the-latest-trend-in-professional-sports/ (accessed on 28 July 2018).
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Ennis, C. Goals, Interests, and Learning in Physical Education. J. Educ. Res. 2004, 97, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Lee, T. Motor Learning and Performance: From Principles to Application, 5th ed.; Human Kinetics: Windsor, ON, Canada, 2013; p. 336. [Google Scholar]
- Visentin, P.; Shan, G.; Wasiak, E.B. Informing music teaching and learning using movement analysis technology. Int. J. Music Educ. 2008, 26, 73–87. [Google Scholar] [CrossRef]
- Shan, G.; Bohn, C.; Sust, M.; Nicol, K. How can dynamic rigid-body modeling be helpful in motor learning?—Learning performance using dynamic modeling. Kinesiology 2004, 36, 182–191. [Google Scholar]
- Shan, G.; Visentin, P.; Schultz, A. Multidimensional signal analysis as a means of better understanding factors associated with repetitive use in violin performance. Med. Probl. Perform. Artists 2004, 19, 129–139. [Google Scholar]
- Shan, G.B.; Visentin, P. A quantitative three-dimensional analysis of arm kinematics in violin performance. Med. Probl. Perform. Artists 2003, 18, 3–10. [Google Scholar]
- Shan, G. Influences of Gender and Experience on the Maximal Instep Soccer Kick. Eur. J. Sport Sci. 2009, 9, 107–114. [Google Scholar] [CrossRef]
- Schmidt, R.A. Motor Control and Learning: A Behavioral Emphasis, 2nd ed.; Human Kinetics: Champagne, IL, USA, 1988. [Google Scholar]
- Markovska-Simoska, S.; Pop-Jordanova, N.; Georgiev, D. Simultaneous EEG and EMG biofeedback for peak performance in musicians. Prilozi 2008, 29, 239–252. [Google Scholar] [PubMed]
- Egner, T.; Gruzelier, J.H. Ecological validity of neurofeedback: Modulation of slow wave EEG enhances musical performance. Neuroreport 2003, 14, 1221–1224. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.; Sajid, I.; Parkinson, L.A.; Gruzelier, J.H. Biofeedback and dance performance: A preliminary investigation. Appl. Psychophysiol. Biofeedback 2005, 30, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Loschner, C. Biomechanics feedback for rowing. J. Sports Sci. 2002, 20, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Page, P.N.; Hawkins, D.A. A real-time biomechanical feedback system for training rowers. Sports Eng. 2003, 6, 67–79. [Google Scholar] [CrossRef]
- Landers, D.M.; Han, M.; Salazar, W.; Petruzzello, S.J.; Kubitz, K.A.; Gannon, T.L. Effect of learning on electroencephalographic and electrocardiographic patterns in novice archers. Int. J. Sports Psychol. 1994, 22, 56–71. [Google Scholar]
- Jonsdottir, J.; Cattaneo, D.; Regola, A.; Crippa, A.; Recalcati, M.; Rabuffetti, M.; Ferrarin, M.; Casiraghi, A. Concepts of Motor Learning Applied to a Rehabilitation Protocol Using Biofeedback to Improve Gait in a Chronic Stroke Patient: An A-B System Study with Multiple Gait Analyses. Neurorehabil. Neural Repair 2007, 21, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Marzano, R.J.; Frontier, T.; Livingston, D. Effective Supervision: Supporting the Art and Science of Teaching; Ascd: Alexandria, Egypt, 2011. [Google Scholar]
- Sleight, D.A. A developmental history of training in the United States and Europe. 1993, unpublished article. [Google Scholar]
- Mukhopadhyay, S.C. Wearable sensors for human activity monitoring: A review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Baca, A. Feedback systems. WIT Trans. State-of-the-Art Sci. Eng. 2008, 32. [Google Scholar] [CrossRef]
- Seshadri, D.R.; Rowbottom, J.R.; Drummond, C.; Voos, J.E.; Craker, J. A review of wearable technology: Moving beyond the hype: From need through sensor implementation. In Proceedings of the 8th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, Egypt, 15–17 December 2016; pp. 52–55. [Google Scholar]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zijlstra, A.; Mancini, M.; Chiari, L.; Zijlstra, W. Biofeedback for training balance and mobility tasks in older populations: A systematic review. J. Neuroeng. Rehabil. 2010, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Giggins, O.M.; Persson, U.M.; Caulfield, B. Biofeedback in rehabilitation. J. Neuroeng. Rehabil. 2013, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwenk, M.; Grewal, G.S.; Honarvar, B.; Schwenk, S.; Mohler, J.; Khalsa, D.S.; Najafi, B. Interactive balance training integrating sensor-based visual feedback of movement performance: A pilot study in older adults. J. Neuroeng. Rehabil. 2014, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Attal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical human activity recognition using wearable sensors. Sensors 2015, 15, 31314–31338. [Google Scholar] [CrossRef] [PubMed]
- Heikenfeld, J. Bioanalytical devices: Technological leap for sweat sensing. Nature 2016, 529, 475. [Google Scholar] [CrossRef] [PubMed]
- Sonner, Z.; Wilder, E.; Heikenfeld, J.; Kasting, G.; Beyette, F.; Swaile, D.; Sherman, F.; Joyce, J.; Hagen, J.; Kelley-Loughnane, N. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 2015, 9, 031301. [Google Scholar] [CrossRef] [Green Version]
- RADIN, E.L. Role of muscles in protecting athletes from injury. Acta Med. Scand. 1986, 220, 143–147. [Google Scholar] [CrossRef]
- Shan, G.; Sust, M.; Simard, S.; Bohn, C.; Nicol, K. How can dynamic rigid-body modeling be helpful in motor learning?—Diagnosing performance using dynamic modeling. Kinesiology 2004, 36, 5–14. [Google Scholar]
- Shan, G.; Bohn, C. Anthropometrical data and coefficients of regression related to gender and race. Appl. Ergon. 2003, 34, 327–337. [Google Scholar] [CrossRef]
- Shan, G.; Visentin, P. Arts Biomechanics—An Infant Science: Its Challenges and Future. In Biomechanics: Principles, Trends and Applications; Levy, J., Ed.; Nova Science Publishers: New York, NY, USA, 2011; pp. 1–55. [Google Scholar]
- Petruzzello, S.J.; Landers, D.M.; Salazar, W. Biofeedback and sport/exercise performance: Applications and limitations. Behav. Ther. 1991, 22, 379–392. [Google Scholar] [CrossRef]
- Vernon, D.J. Can Neurofeedback Training Enhance Performance? An Evaluation of the Evidence with Implications for Future Research. Appl. Psychophysiol. Biofeedback 2005, 30, 347–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballreich, R.; Baumann, W. Grundlagen der Biomechanik des Sports (The Basics of Biomechanics in Sports); Enke Verlag: Stuttgart, Germany, 1996. [Google Scholar]
- Hall, S.J. Basic Biomechanics, 8th ed.; Mc Graw Hill: Boston, MA, USA, 2018. [Google Scholar]
- Wan, B.; Shan, G. Biomechanical modeling as a practical tool for predicting injury risk related to repetitive muscle lengthening during learning and training of human complex motor skills. SpringerPlus 2016, 5, 441. [Google Scholar] [CrossRef] [PubMed]
- Visentin, P.; Li, S.; Tardif, G.; Shan, G. Unraveling mysteries of personal performance style; biomechanics of left-hand position changes (shifting) in violin performance. PeerJ 2015, 3, e1299. [Google Scholar] [CrossRef]
- Colborne, G.R.; Olney, S.J.; Griffin, M.P. Feedback of ankle joint angle and soleus electromyography in the rehabilitation of hemiplegic gait. Arch. Phys. Med. Rehabil. 1993, 74, 1100–1106. [Google Scholar] [CrossRef]
- Ceceli, E.; Dursun, E.; Cacki, A. Comparison of joint-position biofeedback and conventional therapy methods in genu recurvatum after stroke: 6 months’ follow-up. Eur. J. Phys. Rehabil. Med. 1996, 6, 141–144. [Google Scholar]
- Isakov, E. Gait rehabilitation: A new biofeedback device for monitoring and enhancing weight-bearing over the affected lower limb. Eur. Med. 2007, 43, 21–26. [Google Scholar]
- White, S.C.; Lifeso, R.M. Altering asymmetric limb loading after hip arthroplasty using real-time dynamic feedback when walking. Arch. Phys. Med. Rehabil. 2005, 86, 1958–1963. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Wan, B.; Zhang, X.; Shan, G. Obtaining Vital Distances Using Wearable Inertial Measurement Unit for Real-Time, Biomechanical Feedback Training in Hammer-Throw. Appl. Sci. 2018, 8, 2470. [Google Scholar] [CrossRef]
- Shan, G.; Visentin, P.; Tardif, G.; Robinson, A.; Evans, J.; Crowe, S. Quantifying Compensation Strategies between Gross and Fine Motor Control in Violin Performance. Arts BioMech. 2012, 1, 143–163. [Google Scholar]
- Zhang, X.; Shan, G. Where do golf driver swings go wrong?—Factors Influencing Driver Swing Consistency. Scand. J. Med. Sci. Sports 2014, 24, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, J.K.; Xia, L. Human activity recognition from 3d data: A review. Pattern Recognit. Lett. 2014, 48, 70–80. [Google Scholar] [CrossRef]
- Shan, G.; Westerhoff, P. Full body kinematic characteristics of the maximal instep Soccer kick by male soccer players and parameters related to kick quality. Sports Biomech. 2005, 4, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Z.; Wan, B.; Wilde, B.; Shan, G. The relevance of body positioning and its training effect on badminton smash. J. Sports Sci. 2017, 35, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Yu, Y.; Wilde, B.; Shan, G. Biomechanical characteristics of the axe kick in Tae Kwon-Do. Arch. Budo 2012, 8, 213–218. [Google Scholar] [CrossRef]
- Wan, B.; Shan, G.; Wang, Y.; Zhang, X.; Li, H. 3D Quantification of Key Parameters for Developing Wearables of Biomechanical Feedback Training in Hammer Throw. 2018, unpublished article. [Google Scholar]
- Zhang, Z.; Li, S.; Wan, B.; Visentin, P.; Jiang, Q.; Dyck, M.; Li, H.; Shan, G. The influence of X-factor (trunk rotation) and experience on the quality of the badminton forehand smash. J. Hum. Kinet. 2016, 53, 9–22. [Google Scholar] [CrossRef]
- Shan, G.; Visentin, P.; Zhang, X.; Hao, W.; Yu, D. Bicycle kick in soccer: Is the virtuosity systematically entrainable? Sci. Bull. 2015, 60, 819–821. [Google Scholar] [CrossRef]
- Visentin, P.; Staples, T.; Wasiak, E.B.; Shan, G. A pilot study on the efficacy of line-of-sight gestural compensation while conducting music. Percept. Motor Skills 2010, 110, 647–653. [Google Scholar] [CrossRef]
- Aminian, K.; Najafi, B. Capturing human motion using body-fixed sensors: Outdoor measurement and clinical applications. Comput. Anim. Virtual Worlds 2004, 15, 79–94. [Google Scholar] [CrossRef]
- Shan, G.B.; Visentin, P.; Wooldridge, L.; Wang, C.D.; Connolly, D. A frequency-based characterization of spiccato bowing in violin performance. Percept. Motor Skills 2007, 105, 1027–1051. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Zhang, X.; Li, X.; Hao, W.; Witte, K. Quantification of Golfer-club Interaction and Club-type’s Affect on Dynamic Balance during a Golf Swing. Int. J. Perform. Anal. Sport 2011, 11, 417–426. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, B.; Li, H.; Shan, G. A wireless sensor system for a biofeedback training of hammer throwers. SpringerPlus 2016, 5, 1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Reilly, M.A.; Slevin, P.; Ward, T.; Caulfield, B. A Wearable Sensor-Based Exercise Biofeedback System: Mixed Methods Evaluation of Formulift. JMIR mHealth uHealth 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Zhang, X. From 2D leg kinematics to 3D full-body biomechanics-the past, present and future of scientific analysis of maximal instep kick in soccer. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2011, 3, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Hasselbach, J. Für‚ lebendige’ und‚ beziehungsfähige’ Töne im Streichinstrumentspiel. Eine Reaktion auf Peter Röbkes Einleitung zu Das Musizieren und die Gefühle. In The Musik und Gefühl, Interdisziplinäre Annäherungen in Musikpädagogischer Perspektive; Hildesheim: Olms, Germany, 2012. [Google Scholar]
- Sun, L. Real-Time Sonification of Muscle Tension for Piano Players. Ph.D. Thesis, University of York, York, UK, 2017. [Google Scholar]
- Bronner, S.; Shippen, J. Biomechanical metrics of aesthetic perception in dance. Exp. Brain Res. 2015, 233, 3565–3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, G.; Daniels, D.; Wang, C.; Wutzke, C.; Lemire, G. Biomechanical analysis of maximal instep kick by female soccer players. J. Hum. Mov. Stud. 2005, 49, 149–168. [Google Scholar]
- Chang, S.T.; Evans, J.; Crowe, S.; Zhang, X.; Shan, G. An innovative approach for Real Time Determination of Power and Reaction Time in a Martial Arts Quasi-Training Environment Using 3D Motion Capture and EMG Measurements. Arch. Budo 2011, 7, 185–196. [Google Scholar]
- Shan, G.; Yuan, J.; Hao, W.; Gu, M.; Zhang, X. Regression Equations related to the Quality Evaluation of Soccer Maximal Instep Kick for Males and Females. Kinesiology 2012, 44, 139–147. [Google Scholar]
- Visentin, P.; Shan, G. An innovative approach to understand overuse injuries: Biomechanical modeling as a platform to integrate information obtained from various analytic tools. Med. Probl. Perform. Artists 2004, 19, 90–97. [Google Scholar]
- Dunn, B.; Bocksnick, J.; Hagen, B.; Fu, Y.; Li, X.; Yuan, J.; Shan, G. Impact of Exercise on Seniors’ Motor Control Response to External Dynamics. Res. Sports Med. 2008, 16, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Shan, G. Biomechanical Evaluation of Bike Power Saver. Appl. Ergon. 2008, 39, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Johansson, G. Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 1973, 14, 201–211. [Google Scholar] [CrossRef]
- Anderson, R.; Harrison, A.; Lyons, G.M. Rowing: Accelerometry-based feedback-can it improve movement consistency and performance in Rowing? Sports Biomech. 2005, 4, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Mullineaux, D.; Underwood, S.; Shapiro, R.; Hall, J. Real-time biomechanical biofeedback effects on top-level rifle shooters. Appl. Ergon. 2012, 43, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Y.; Nan, X.; Ebken, V.; Wang, Y.; Pottie, G.J.; Kaiser, W.J. Integrated inertial sensors and mobile computing for real-time cycling performance guidance via pedaling profile classification. IEEE J. Biomed. Health Inform. 2015, 19, 440–445. [Google Scholar] [CrossRef] [PubMed]
- James, D.A.; Leadbetter, R.I.; Neeli, M.R.; Burkett, B.J.; Thiel, D.V.; Lee, J.B. An integrated swimming monitoring system for the biomechanical analysis of swimming strokes. Sports Technol. 2011, 4, 141–150. [Google Scholar] [CrossRef]
- Shan, G. Comparison of repetitive movements between ballet dancers and martial artists: Risk assessment of muscle overuse injuries and prevention strategies. Res. Sports Med. 2005, 13, 63–76. [Google Scholar] [CrossRef]
- Baca, A.; Kornfeind, P. Rapid feedback systems for elite sports training. IEEE Perv. Comput. 2006, 5, 70–76. [Google Scholar] [CrossRef]
- Dadashi, F.; Crettenand, F.; Millet, G.P.; Aminian, K. Front-crawl instantaneous velocity estimation using a wearable inertial measurement unit. Sensors 2012, 12, 12927–12939. [Google Scholar] [CrossRef]
- Wikipedia. Adrian Anantawan. Available online: http://en.wikipedia.org/wiki/Adrian_Anantawan#Media_coverage (accessed on 14 August 2012).
- Anantawan, A. Adrian Anantawan Violinist. Available online: http://www.adriananantawan.com/video.php (accessed on 12 August 2012).
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ridder, H.-G. The theory contribution of case study research designs. Bus. Res. 2017, 10, 281–305. [Google Scholar] [CrossRef] [Green Version]
- Visentin, P.; Shan, G. The kinetic characteristics of the bow arm during violin performance; an examination of internal loads as a function of tempo. Med. Probl. Perform. Artists 2003, 18, 91–98. [Google Scholar]
- Shan, G.; Zhang, X.; Wan, B.; Yu, D.; Wilde, B.; Visentin, P. Biomechanics of coaching maximal instep soccer kick for practitioners. Interdiscip. Sci. Rev. 2018, 1–9. [Google Scholar] [CrossRef]
- Tian, Y.; Meng, X.; Tao, D.; Liu, D.; Feng, C. Upper limb motion tracking with the integration of IMU and Kinect. Neurocomputing 2015, 159, 207–218. [Google Scholar] [CrossRef]
- Ligorio, G.; Sabatini, A.M. A Novel Kalman Filter for Human Motion Tracking with an Inertial-Based Dynamic Inclinometer. IEEE Trans. Biomed. Eng. 2015, 62, 2033–2043. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Zhang, X.; Meng, M.; Wilde, B. A Biomechanical Study for Developing Wearable-Sensor System to Prevent Hip Fractures among Seniors. Appl. Sci. 2017, 7, 771. [Google Scholar] [CrossRef]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef] [PubMed]
- Karatsidis, A.; Richards, R.E.; Konrath, J.M.; van den Noort, J.C.; Schepers, H.M.; Bellusci, G.; Harlaar, J.; Veltink, P.H. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset. J. Neuroeng. Rehabil. 2018, 15, 78. [Google Scholar] [CrossRef]
- Schepers, M.; Giuberti, M.; Bellusci, G. Xsens MVN: Consistent Tracking of Human Motion Using Inertial Sensing; Technical Report; XSENS Technologies B.V.: Enschede, The Netherlands, March 2018; pp. 1–8. [Google Scholar]
- Zhang, Z.; Shan, G. Developing Novel Devices to Predict and Prevent Age-Related Falls. In Proceedings of the International Conference on Energy, Environment and Materials Engineering (EEME 2014), Shenzhen, China, 22–23 February 2014; pp. 1077–1081. [Google Scholar]
- Shan, J.; Fu, Y.; Dunn, B.; Shan, G. A Novel Measurement System for Quantitative Assessment of Age related Sensori-motor Degradation. Biomed. Eng. Appl. Basis Commun. 2009, 21, 17–29. [Google Scholar] [CrossRef]
- Al-Jarrah, O.Y.; Yoo, P.D.; Muhaidat, S.; Karagiannidis, G.K.; Taha, K. Efficient machine learning for big data: A review. Big Data Res. 2015, 2, 87–93. [Google Scholar] [CrossRef]
- Faust, O.; Hagiwara, Y.; Hong, T.J.; Lih, O.S.; Acharya, U.R. Deep learning for healthcare applications based on physiological signals: A review. Comput. Methods Prog. Biomed. 2018. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Daniels, D.; Gu, R. Artificial neural networks and center-of-pressure modeling: A practical method for sensori-motor degradation assessment. J. Aging Phys. Act. 2004, 11, 79–93. [Google Scholar] [CrossRef]
- Shan, G.; Wu, G.; Haugh, L. A method to determine the interdependent relationships between biomechanical variables in artificial neural network models: The case of lower extremity muscle activity and body sway. Neurocomputing 2004, 61, 241–258. [Google Scholar] [CrossRef]
- Brock, H.; Ohgi, Y. Assessing motion style errors in ski jumping using inertial sensor devices. IEEE Sens. J. 2017, 17, 3794–3804. [Google Scholar] [CrossRef]
- Längkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognit. Lett. 2014, 42, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Bengio, Y.; Delalleau, O. On the expressive power of deep architectures. In Proceedings of the International Conference on Algorithmic Learning Theory, Bari, Italy, 19–21 October 2016; pp. 18–36. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef]
- Brock, H. Deep learning—Accelerating Next Generation Performance Analysis Systems? In Proceedings of the Multidisciplinary Digital Publishing Institute Proceedings, Brisbane, Queensland, Australia, 26–29 March 2018; p. 303. [Google Scholar]
- Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.; Krishnaswamy, S. Deep Convolutional Neural Networks on Multichannel Time Series for Human Activity Recognition. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI’ 2015), Place of Publication, Buenos Aires, Argentina, 25–31 July 2015; pp. 3995–4001. [Google Scholar]
- Wei, K.; Kording, K.P. Behavioral tracking gets real. Nat. Neurosci. 2018, 21, 1146. [Google Scholar] [CrossRef]
- Ofli, F.; Chaudhry, R.; Kurillo, G.; Vidal, R.; Bajcsy, R. Berkeley mhad: A comprehensive multimodal human action database. In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV), Clearwater, FL, USA, 15–17 January 2013; pp. 53–60. [Google Scholar]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef]
- Ranjan, R.; Sankaranarayanan, S.; Bansal, A.; Bodla, N.; Chen, J.-C.; Patel, V.M.; Castillo, C.D.; Chellappa, R. Deep learning for understanding faces: Machines may be just as good, or better, than humans. IEEE Signal Process. Mag. 2018, 35, 66–83. [Google Scholar] [CrossRef]
- Barros, P.; Parisi, G.I.; Weber, C.; Wermter, S. Emotion-modulated attention improves expression recognition: A deep learning model. Neurocomputing 2017, 253, 104–114. [Google Scholar] [CrossRef]
Biofeedback Training | Biomechanical Feedback Training | Biomechanical Feedback Training & Real-Time & Sport | Biomechanical Feedback Training & Real-Time & Dancing |
---|---|---|---|
5588 | 569 | 23 | 1 |
Motor Learning/Training | Method/Development | Injury Prevention/Rehabilitation | Review Articles | Patents | Total | |
---|---|---|---|---|---|---|
Sport | 2 | 10 | 7 | 2 | 2 | 23 |
Dancing | 0 | 1 | 0 | 0 | 0 | 1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Shan, G.; Wang, Y.; Wan, B.; Li, H. Wearables, Biomechanical Feedback, and Human Motor-Skills’ Learning & Optimization. Appl. Sci. 2019, 9, 226. https://doi.org/10.3390/app9020226
Zhang X, Shan G, Wang Y, Wan B, Li H. Wearables, Biomechanical Feedback, and Human Motor-Skills’ Learning & Optimization. Applied Sciences. 2019; 9(2):226. https://doi.org/10.3390/app9020226
Chicago/Turabian StyleZhang, Xiang, Gongbing Shan, Ye Wang, Bingjun Wan, and Hua Li. 2019. "Wearables, Biomechanical Feedback, and Human Motor-Skills’ Learning & Optimization" Applied Sciences 9, no. 2: 226. https://doi.org/10.3390/app9020226
APA StyleZhang, X., Shan, G., Wang, Y., Wan, B., & Li, H. (2019). Wearables, Biomechanical Feedback, and Human Motor-Skills’ Learning & Optimization. Applied Sciences, 9(2), 226. https://doi.org/10.3390/app9020226