A Compact Four-Port Coplanar Antenna Based on an Excitation Switching Reconfigurable Mechanism for Cognitive Radio Applications
Abstract
1. Introduction
2. Antenna Design
3. Antenna Analysis
3.1. Operating Modes of the Proposed Design
3.2. UWB Sensing Mode
3.3. Single Communication Mode
3.3.1. Communication Mode #1
3.3.2. Communication Mode #2
3.3.3. Communication Mode #3
3.4. Multi-Communication Mode
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cognitive Radio: UWB Integration and Related Antenna Design. Available online: https://www.intechopen.com/books/new-trends-in-technologies--control--management--computational-intelligence-and-network-systems/cognitive-radio-uwb-integration-and-related-antenna-design (accessed on 3 July 2019).
- Federal Communications Commission. Spectrum Policy Task Force; Rep. ET Docket; Federal Communications Commission: Washington, DC, USA, November 2002.
- Ojaroudi, M.; Ojaroudi, N. Ultra-Wideband Small Rectangular Slot Antenna with Variable Band-Stop Function. IEEE Trans. Antennas Propag. 2014, 62, 490–494. [Google Scholar] [CrossRef]
- Shakib, M.N.; Moghavvemi, M.; Mahadi, W.N.L. A low-profile patch antenna for ultrawideband application. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1790–1793. [Google Scholar] [CrossRef]
- Malekpoor, H.; Hamidkhani, M. Compact multi-band stacked circular patch antenna for wideband applications with enhanced gain. Electromagnetics 2019, 39, 241–253. [Google Scholar] [CrossRef]
- Kim, S.W.; Choi, D.Y. Implementation of Rectangular Slit-Inserted Ultra-Wideband Tapered Slot Antenna. SpringerPlus 2016, 5, 1387. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tseng, V.; Chang, C.Y. Linear Tapered Slot Antenna for Ultra-Wideband Radar Sensor: Design Consideration and Recommendation. Sensors 2019, 19, 1212. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Hou, S.; Zhao, L.; Guo, L. Wideband-to-Narrowband Tunable Monopole Antenna with Integrated Bandpass Filters for UWB/WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2734–2737. [Google Scholar] [CrossRef]
- Mosallaei, H.; Sarabandi, K. Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. 2004, 52, 2403–2414. [Google Scholar] [CrossRef]
- Yao, J.; Mbanya, T.F.; Jain, A.; Tjuatja, S.; Huang, H. Far-Field Interrogation of Microstrip Patch Antenna for Temperature Sensing Without Electronics. IEEE Sens. J. 2016, 16, 7053–7060. [Google Scholar] [CrossRef]
- Li, L.W.; Li, Y.N.; Yeo, T.S.; Mosing, J.R.; Martin, O.J.F. A Broadband and high-gain metamaterial microstrip antenna. Appl. Phys. Lett. 2010, 96, 164101. [Google Scholar] [CrossRef]
- Zhang, H.T.; Luo, G.Q.; Yuan, B.; Zhang, X.H. A Novel Ultra-Wideband Metamaterial Antenna Using Chessboard-Shaped Patch. Microw. Opt. Technol. Lett. 2016, 58, 3008–3012. [Google Scholar] [CrossRef]
- Simons, R.N. Conventional Coplanar Waveguide. Coplanar Waveguide Circuits, Components, and Systems, 1st ed.; Chang, K., Ed.; Wiley: New York, NY, USA, 2001; Volume 1, pp. 1–2. [Google Scholar]
- Lin, Y.F.; Chang, M.J.; Chen, H.M.; Huang, S.T. Theoretical study of ground radiation tag antenna with Tunable open-slot exciter. Int. J. Microw. Wirel. Techol. 2017, 9, 945–952. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, J.; Kim, H.H.; Kim, H. Ground radiation method using slot with coupling capacitors. Electron. Lett. 2013, 49, 447–448. [Google Scholar] [CrossRef]
- Tawk, Y.; Costantine, J.; Christodoulou, C.G. A rotatable reconfigurable antenna for cognitive radio applications. In Proceedings of the IEEE Radio and Wireless Symposium, Phoenix, AZ, USA, 16–19 January 2011; pp. 158–161. [Google Scholar]
- Ebrahimi, E.; Kelly, J.R. Integrated Wide-Narrowband Antenna for Multi-Standard Radio. IEEE Trans. Antennas Propag. 2011, 59, 2628–2635. [Google Scholar] [CrossRef]
- Tawk, Y.; Costantine, J.; Christodoulou, C.G. Demonstration of a Cognitive Radio Front End Using an Optically Pumped Reconfigurable Antenna System (OPRAS). IEEE Trans. Antennas Propag. 2012, 60, 1075–1083. [Google Scholar] [CrossRef]
- Anvesh Kumar, N.; Gandhi, A.S. A compact novel three-port integrated wide and narrow band antennas system for cognitive radio applications. Int. J. Antennas Propag. 2016, 2016, 2829357. [Google Scholar]
- Anvesh Kumar, N.; Gandhi, A.S. A Five-Port Integrated UWB and Narrowband Antennas System Design for CR Applications. IEEE Trans. Antennas Propag. 2018, 66, 1669–1676. [Google Scholar]
- Jin, G.; Liao, H.; Liu, D. A dual-port frequency reconfigurable antenna for cognitive radio applications. In Proceedings of the IEEE International Conference on Computational Electromagnetics, Guangzhou, China, 23–25 February 2016. [Google Scholar]
- Pahadsingh, S.; Sahu, S. A two port UWB-dual narrowband antenna for cognitive radios. Microw. Opt. Technol. Lett. 2019, 58, 1973–1978. [Google Scholar] [CrossRef]
- Anvesh Kumar, N.; Gandhi, A.S. A Survey on Planar Antenna Designs for Cognitive Radio Applications. Wirel. Pers. Commun. 2018, 98, 541–569. [Google Scholar]
- Shoaib, S.; Shoaib, I.; Shoaib, N.; Chen, X.; Parini, C.G. Design and Performance Study of a Dual-Element Multiband Printed Monopole Antenna Array for MIMO Terminals. IEEE Antennas Wirel. Propag. 2014, 13, 329–332. [Google Scholar] [CrossRef]
- Wu, C.; Chiu, C.; Ma, T. Very Compact Fully Lumped Decoupling Network for a Coupled Two-Element Array. IEEE Antennas Wirel. Propag. 2016, 15, 158–161. [Google Scholar] [CrossRef]
- Alsath, M.G.N.; Kanagasabai, M. Compact Monopole Antenna for Automotive Communications. IEEE Trans. Antennas Propag. 2015, 63, 4204–4208. [Google Scholar] [CrossRef]
- Vainikainen, P.; Ollikainen, J.; Kivekas, O.; Kelander, K. Resonator-based analysis of the combination of mobile handset antenna and chassis. IEEE Trans. Antennas Propag. 2002, 50, 1433–1444. [Google Scholar] [CrossRef]
- Zhao, X.; Yeo, S.P.; Ong, L.C. Planar UWB MIMO Antenna with Pattern Diversity and Isolation Improvement for Mobile Platform Based on the Theory of Characteristic Modes. IEEE Trans. Antennas Propag. 2018, 66, 420–425. [Google Scholar] [CrossRef]
- Li, H.; Lau, B.K.; Ying, Z.; He, S. Decoupling of Multiple Antennas in Terminals with Chassis Excitation Using Polarization Diversity, Angle Diversity and Current Control. IEEE Trans. Antennas Propag. 2012, 60, 5947–5957. [Google Scholar] [CrossRef]
- Jin, Y.; Ko, M.; O, Y.; Choi, J. A planar UWB MIMO antenna with gain enhancement and isolation improvement for the 5G Mobile platform. Microw. Opt. Technol. Lett. 2019, 61, 990–998. [Google Scholar] [CrossRef]
- Chen, J.; Berg, M.; Somero, V.; Pärssinen, A. A Multiple Antenna System Design for Wearable Device Using Theory of Characteristic Mode. In Proceedings of the 12th European Conference on Antennas and Propagation, London, UK, 9–13 April 2018. [Google Scholar]
- Kumar, R.; Naidu, P.V.; Kamble, V. Design of asymmetric slot antenna with meandered narrow rectangular slit for dual band applications. Prog. Electromagn. Res. 2014, 60, 111–123. [Google Scholar] [CrossRef]
- Zhang, C.; Lai, Q.; Gao, C. Measurement of Active S-Parameters on Array Antenna Using Directional Couplers. In Proceedings of the IEEE Asia Pacific Microwave Conference, Kuala Lumpar, Malaysia, 13–16 November 2017. [Google Scholar]
Operative Case | Target Band | Status of p1 | Status of p2 | Status of p3 | Status of p4 | |
---|---|---|---|---|---|---|
UWB Sensing Mode | UWB | ON | OFF | OFF | OFF | |
Single Mode | Mode #1 | Low | OFF | ON | OFF | OFF |
Mode #2 | Mid | OFF | OFF | ON | OFF | |
Mode #3 | High | OFF | OFF | OFF | ON | |
Multi-Mode | Mode #4 | Low & Mid | OFF | ON | ON | OFF |
Mode #5 | Low & High | OFF | ON | OFF | ON | |
Mode #6 | Mid & High | OFF | OFF | ON | ON | |
Mode #7 | Low & Mid & High | OFF | ON | ON | ON |
Frequency | UWB Antenna Simulated/Measured | NB Antenna #1 Simulated/Measured | NB Antenna #2 Simulated/Measured | NB Antenna #3 Simulated/Measured |
---|---|---|---|---|
3.5 GHz | 4.1/4.95 dBi | 2.39/3.69 dBi | - | - |
4.9 GHz | 3.12/8.58 dBi | 3.4/5.85 dBi | - | - |
6.52 GHz | 3.94/3.46 dBi | - | 4.8/1.51 dBi | - |
7.65 GHz | 6.27/7.19 dBi | - | 4.36/2.62 dBi | - |
9.5 GHz | 6.7/6.53 dBi | - | - | 4.54/2.15 dBi |
Ref. | Dimensions [mm × mm × mm] | Number of NB Antennas | Communication in the Entire UWB Band | Method of Isolation | Minimum Isolation |
---|---|---|---|---|---|
16 | 70 × 50 × 1.6 | 5 | Yes | Separated ground | 20 dB |
17 | 68 × 54 × 0.79 | 1 | No | Separated ground | 18 dB |
18 | 50 × 45.5 × 1.6 | 1 | No | Separated ground | 20 dB |
19 | 30 × 30 × 1.6 | 2 | No | Pattern diversity | 20 dB |
20 | 40 × 36 × 1.6 | 4 | Yes | Pattern diversity & separated ground | 16 dB |
21 | 26 × 60 ×0.508 | 1 | No | Separated ground | 10 dB |
22 | 75.5 × 58.35 × 0.762 | 1 | No | Separated ground | 10 dB |
This work | 42 × 50 × 0.8 | 3 | Yes | Orthogonal characteristic mode | 17.3 dB |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
O, Y.; Jin, Y.; Choi, J. A Compact Four-Port Coplanar Antenna Based on an Excitation Switching Reconfigurable Mechanism for Cognitive Radio Applications. Appl. Sci. 2019, 9, 3157. https://doi.org/10.3390/app9153157
O Y, Jin Y, Choi J. A Compact Four-Port Coplanar Antenna Based on an Excitation Switching Reconfigurable Mechanism for Cognitive Radio Applications. Applied Sciences. 2019; 9(15):3157. https://doi.org/10.3390/app9153157
Chicago/Turabian StyleO, Yeonjeong, Yunnan Jin, and Jaehoon Choi. 2019. "A Compact Four-Port Coplanar Antenna Based on an Excitation Switching Reconfigurable Mechanism for Cognitive Radio Applications" Applied Sciences 9, no. 15: 3157. https://doi.org/10.3390/app9153157
APA StyleO, Y., Jin, Y., & Choi, J. (2019). A Compact Four-Port Coplanar Antenna Based on an Excitation Switching Reconfigurable Mechanism for Cognitive Radio Applications. Applied Sciences, 9(15), 3157. https://doi.org/10.3390/app9153157