Effect of Doping Microcapsules on Typical Electrical Performances of Self-Healing Polyethylene Insulating Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation
2.1.1. Preparation of the Microcapsule for Insulating Material
2.1.2. Preparation of the Novel Self-Healing Polyethylene Insulating Composite
2.2. Methods
2.2.1. Verification of Self-Healing Performance
2.2.2. Characterization
3. Results and Discussion
3.1. Self-Healing Performance
3.1.1. Repair Effect of Mechanical Damage and Breakdown Strength
3.1.2. Repair Effect of Electrical Damage
3.2. Analysis of Typical Performances
3.2.1. Crystallization Characteristics
3.2.2. Resistance Characteristic
3.2.3. Dielectric Properties
3.2.4. Space Charge Characteristics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Hia, I.L.; Chan, E.S.; Chai, S.P.; Pasbakhsh, P. A novel repeated self-healing epoxy composite with alginate multicore microcapsules. J. Mater. Chem. A 2018, 6, 8470–8478. [Google Scholar]
- Thakur, V.K.; Kessler, M.R. Self-healing polymer nanocomposite materials: A review. Polymer 2015, 69, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Pourrahimi, A.M.; Olsson, R.T.; Hedenqvist, M.S. The Role of Interfaces in Polyethylene/Metal-Oxide Nanocomposites for Ultrahigh-Voltage Insulating Materials. Adv. Mater. 2017, 30, 1703624. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, J.; Xu, H.; Zhang, Z. Study on Dielectric properties of LDPE/TiO2 nanocomposites under heat aging. Electr. Power Eng. Technol. 2019, 38, 146–150. [Google Scholar]
- Andersson, M.G.; Hynynen, J.; Andersson, M.R.; Englund, V.; Hagstrand, P.; Gkourmpis, T.; Müller, C. Highly Insulating Polyethylene Blends for High-Voltage Direct-Current Power Cables. ACS Macro Lett. 2017, 6, 78–82. [Google Scholar] [CrossRef]
- Borisova, M.E.; Osina, Y.K. The influence of thermal aging on absorption phenomena in cross-linked polyethylene cable insulation. Tech. Phys. Lett. 2017, 43, 136–138. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Li, Y.; Zhang, P.; Rui, H. Growth and partial discharge characteristics of electrical tree in XLPE under AC-DC composite voltage. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2282–2290. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xiong, J.; Li, G.; Lu, G. Partial Discharge Characteristics of 10 kV XLPE Cable Joints Under Oscillating Voltage. High Volt. Eng. 2015, 41, 1068–1074. [Google Scholar]
- Li, Z.; Hui, B.; Xu, Y.; Pi, H.; Chen, Z. Trend of Partial Discharge Behavior for 10 kV Cable Joint with Typical Defects. Electr. Wire Cable 2015, 5, 5–10. [Google Scholar]
- Liao, Y.; Hui, B.; Xia, R.; Xu, Y. Partial Discharge Characteristics Analysis of Typical Defects for 110 kV Cable and Joint. Insul. Mater. 2014, 47, 60–67. [Google Scholar]
- Yang, M.; Zhou, K.; Wu, K.; Tao, W.; Yang, D. A New Rejuvenation Technology Based on Formation of Nano-SiO2 Composite Fillers for Water Tree Aged XLPE Cables. Trans. China Electrotech. Soc. 2015, 30, 481–487. [Google Scholar]
- Wei, G.; Tang, J.; Wen, X.; Lin, J. Decay and Detection of Partial Discharge Signals in High-voltage Cross-linked Polyethylene Power Cable. High Volt. Eng. 2011, 37, 1377–1383. [Google Scholar]
- Huang, M.; Zhou, K.; Yang, D.; Yang, M. Effect of On-Line Rejuvenation on Water Tree Propagation in XLPE Cables. Trans. China Electrotech. Soc. 2016, 31, 176–182. [Google Scholar]
- Wei, G.; Tang, J.; Zhang, X.; Lin, J. Gray intensity image feature extraction of partial discharge in high-voltage cross-linked polyethylene power cable joint. Int. Trans. Electr. Energy Syst. 2014, 24, 215–226. [Google Scholar] [CrossRef]
- Khaliq, W.; Ehsan, M.B. Crack healing in concrete using various bio influenced self-healing techniques. Constr. Build. Mater. 2016, 102, 349–357. [Google Scholar] [CrossRef]
- Zhang, X.C.; Ji, H.W.; Qiao, Z.X. Residual stress in self-healing microcapsule-loaded epoxy. Mater. Lett. 2014, 137, 9–12. [Google Scholar] [CrossRef]
- Bekas, D.G.; Tsirka, K.; Baltzis, D.; Paipetis, A.S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part. B Eng. 2016, 87, 92–119. [Google Scholar] [CrossRef]
- Murphy, E.B.; Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 2010, 35, 223–251. [Google Scholar] [CrossRef]
- Kang, J.; Tok, J.B.H.; Bao, Z. Self-Healing Soft Electronics. Nat. Electron. 2019, 2, 144–150. [Google Scholar] [CrossRef]
- Li, W.; Dong, B.; Yang, Z.; Xu, J.; Chen, Q.; Li, H.; Xing, F.; Jiang, Z. Recent Advances in Intrinsic Self-Healing Cementitious Materials. Adv. Mater. 2018, 30, 1705679. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Lee, M.W.; Yarin, A.L.; Yoon, S.S. A Review on Corrosion-Protective Extrinsic Self-Healing: Comparison of Microcapsule-Based Systems and Those Based on Core-Shell Vascular Networks. Chem. Eng. J. 2018, 344, 206–220. [Google Scholar] [CrossRef]
- Ellingford, C.; Zhang, R.; Wemyss, A.M.; Bowen, C.; McNally, T.; Figiel, Ł.; Wan, C. Intrinsic Tuning of Poly (styrene–butadiene–styrene)-Based Self-Healing Dielectric Elastomer Actuators with Enhanced Electromechanical Properties. ACS Appl. Mater. Interfaces 2018, 10, 38438–38448. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.L.; Chortos, A.; Pfattner, R.; Lissel, F.; Chiu, Y.C.; Feig, V. Stretchable Self-healing Polymeric Dielectrics Crosslinked Through Metal-Ligand Coordination. J. Am. Chem. Soc. 2016, 138, 6020–6027. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.Y.; Lee, A.S.; Baek, K.Y.; Lee, H.; Hwang, S.S. Thermally reversible self-healing polysilsesquioxane structure-property relationships based on Diels-Alder chemistry. Polymer 2016, 108, 58–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Ellingford, C.; Zhang, R.; Roscow, J.; Hopkins, M.; Keogh, P.; Wan, C. Electrical and Mechanical Self-Healing in High-Performance Dielectric Elastomer Actuator Materials. Adv. Funct. Mater. 2019, 28, 1808431. [Google Scholar] [CrossRef]
- Madsen, F.B.; Yu, L.; Skov, A.L. Self-Healing, High-Permittivity Silicone Dielectric Elastomer. ACS Macro Lett. 2016, 5, 1196–1200. [Google Scholar] [CrossRef] [Green Version]
- Guimard, N.K.; Oehlenschlaeger, K.K.; Zhou, J.; Hilf, S.; Schmidt, F.G.; Barner-Kowollik, C. Current Trends in the Field of Self-Healing Materials. Macromol. Chem. Phys. 2012, 213, 131–143. [Google Scholar] [CrossRef]
- Harrington, M.J.; Masic, A.; Holten-Andersen, N.; Waite, J.H.; Fratzl, P. Iron-clad Fibers: A Metal-based Biological Strategy for Hard Flexible Coating. Science 2010, 328, 216–220. [Google Scholar] [CrossRef]
- Chen, X.; Dam, M.A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S.R. A thermally remendable crosslinked polymeric material. Science 2002, 295, 1698–1702. [Google Scholar] [CrossRef]
- Brown, E.N.; White, S.R.; Sottos, N.R. Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing. Compos. Sci. Technol. 2005, 65, 2474–2480. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Wen, H.; Chen, X.; Xiao, S. Study on Microcapsules for Self-healing System of Insulating Epoxy Resins. Proc. CSEE 2018, 38, 2808–2814. [Google Scholar]
- Lesaint, C.; Risinggard, V.; Hølto, J.; Saeternes, H.H.; Hestad, O.; Hvidsten, S. Self-healing high voltage electrical insulation materials. Proceedings of 2014 IEEE Electrical Insulation Conference (EIC), Philadelphia, PA, USA, 8–11 June 2014. [Google Scholar]
- Yang, Y.; He, J.; Li, Q.; Gao, L.; Hu, J.; Zeng, R.; Qin, J.; Wang, S.; Wang, Q. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat. Nanotechnol. 2019, 14, 151. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Zhang, Z.; Zhang, Y. Thermal Properties of Microcapsule / Low Density Polyethylene Self-Healing Insulating Composite. Trans. China Electrotech. Soc. under review.
- Wang, Y.; Wamg, C.; Zhang, Z.; Xiao, K. Effect of Nanoparticles on the Morphology, Thermal, and Electrical Properties of Low-Density Polyethylene after Thermal Aging. Nanomaterials 2017, 7, 320. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Min, D.; Li, S. Understanding the conduction and breakdown properties of polyethylene nanodielectrics: Effect of deep traps. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 564–572. [Google Scholar] [CrossRef]
- Boukezzi, L.; Bessissa, L.; Boubakeur, A.; Mahi, D. Neural networks and fuzzy logic approaches to predict mechanical properties of XLPE insulation cables under thermal aging. Neural Comput. Appl. 2017, 28, 3557–3570. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, G.; Dong, C. Review on the Breakdown Characteristics and Discharge Behaviors at the Micro & Nano Scale. Trans. China Electrotech. Soc. 2017, 32, 13–23. [Google Scholar]
- Rohde, B.J.; Le, K.M.; Krishnamoorti, R.; Robertson, M.L. Thermoset Blends of an Epoxy Resin and Polydicyclopentadiene. Macromolecules 2016, 49, 8960–8970. [Google Scholar] [CrossRef]
- Chen, X.; Murdany, D.; Liu, D.; Chen, X.; Murdany, D.; Liu, D.; Andersson, M.; Gubanski, S.M.; Gedde, U.W. AC and DC pre-stressed electrical trees in LDPE and its alu minum oxide nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1506–1514. [Google Scholar] [CrossRef]
- Hu, L.; Yang, X.; Huo, X.; Liao, Y. Chemical component analysis of electrical treeing in polyethylene by micro-infrared spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 738–747. [Google Scholar] [CrossRef]
- Yang, R.; Liang, W.U.; Niu, S.; Jianzhong, M.A. Thermal-oxidative aging kinetics of montmorillonite/polypropylene nanocomposites. Acta Mater. Compos. Sin. 2010, 27, 70–75. [Google Scholar]
- Privalko, E.G.; Pedosenko, A.V.; Privalko, V.P.; Walter, R.; Friedrich, K. Composition-dependent properties of Polyethylene Kaolin composites. I. Degree of crystallinity and melting behavior of polyethylene. J. Appl. Polym. Sci. 1999, 73, 1267–1271. [Google Scholar] [CrossRef]
- Cha, H.; Wu, A.; Kim, M.K.; Saigusa, K.; Liu, A.; Miljkovic, N. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation. Nano Lett. 2017, 17, 7544–7551. [Google Scholar] [CrossRef] [PubMed]
- Pallon, L.K.H.; Hoang, A.T.; Pourrahimi, A.M.; Hedenqvist, M.S.; Nilsson, F.; Gubanski, S.; Gedde, U.W.; Olsson, R.T. The impact of MgO nanoparticle interface in ultra-insulating polyethylene nanocomposites for high voltage DC cables. J. Mater. Chem. A 2016, 4, 8590–8601. [Google Scholar] [CrossRef]
- Zhang, P.; Cao, D.; Cui, S. Resistivity-temperature behavior and morphology of low density polyethylene/graphite powder/graphene composites. Polym. Compos. 2014, 35, 1453–1459. [Google Scholar] [CrossRef]
- Li, J.; Zhao, X.; Yin, G.; Li, S.; Zhao, J.; Ouyang, B. The effect of accelerated water tree ageing on the properties of XLPE cable insulation. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 1562–1569. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Li, X.; Wu, G.; Wang, Q.; Bao, M. Investigation on Relaxation Properties of Deep Bulk Trap in CaCu3Ti4O12 ceramics. J. Inorg. Mater. 2012, 27, 1185–1190. [Google Scholar] [CrossRef]
- Dang, B.; He, J.; Hu, J.; Zhou, Y. Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline-amorphous interfaces effect in blends. Polym. Int. 2016, 65, 371–379. [Google Scholar] [CrossRef]
- Tanaka, Y.; Chen, G.; Zhao, Y. Effect of additives on morphology and space charge accumulation in low density polyethylene. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 148–154. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, P.; Chen, Z.; Ouyang, B.; Zheng, X. Review on Progress of HVDC Cables Insulation Materials. High Volt. Eng. 2017, 43, 3490–3503. [Google Scholar]
Basic Performances of Composite | Concentrations of Microcapsule in Composite | ||||
---|---|---|---|---|---|
0 wt.% | 0.5 wt.% | 1 wt.% | 5 wt.% | 10 wt.% | |
Repair efficiency for scratches about 100 μm wide | 0% | ≥56.3% | ≥82.4% | ≥85.1% | ≥90.0% |
Thermal decomposition temperature | 442.9 °C | 445.1 °C | 456.7 °C | 438.0 °C | 432.0 °C |
Tensile strength | 11.62 MPa | 11.58 MPa | 11.14 MPa | 9.11 MPa | 3.61 MPa |
Samples | Tp (°C) | ΔTp (°C) | ΔHm (J/g) | Xc (%) |
---|---|---|---|---|
Pure LDPE with original process | 124.71 | 7.77 | 123.1 | 41.93 |
Pure LDPE with modified process | 124.57 | 5.75 | 119.6 | 40.74 |
Microcapsule/LDPE composite | 124.82 | 5.46 | 129.1 | 44.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Y.; Zhang, Z.; Zhang, Y. Effect of Doping Microcapsules on Typical Electrical Performances of Self-Healing Polyethylene Insulating Composite. Appl. Sci. 2019, 9, 3039. https://doi.org/10.3390/app9153039
Wang Y, Li Y, Zhang Z, Zhang Y. Effect of Doping Microcapsules on Typical Electrical Performances of Self-Healing Polyethylene Insulating Composite. Applied Sciences. 2019; 9(15):3039. https://doi.org/10.3390/app9153039
Chicago/Turabian StyleWang, Youyuan, Yudong Li, Zhanxi Zhang, and Yanfang Zhang. 2019. "Effect of Doping Microcapsules on Typical Electrical Performances of Self-Healing Polyethylene Insulating Composite" Applied Sciences 9, no. 15: 3039. https://doi.org/10.3390/app9153039
APA StyleWang, Y., Li, Y., Zhang, Z., & Zhang, Y. (2019). Effect of Doping Microcapsules on Typical Electrical Performances of Self-Healing Polyethylene Insulating Composite. Applied Sciences, 9(15), 3039. https://doi.org/10.3390/app9153039