A Review of Photothermal Detection Techniques for Gas Sensing Applications
Abstract
1. Introduction
2. First Experimental Verification of PTS Gas Sensors
2.1. Optical Heterodyne Gas Spectrometer
2.2. Homodyne Hydrazine Detector with Folded Jamin Interferometer
3. Fiber-Based Photothermal Gas Sensors
3.1. Fiber-Based Heterodyne Detection of PTS Signals
3.2. Spatial Gas Sample Localization in an Fiber-Based PTS Sensor
3.3. PTS Signal Enhancement using Multipass Cells
3.4. PTS in Hollow-Core Fibers
3.5. Pulsed PTS in Hollow-Core Fibers
4. Intra-Cavity PTS Gas Sensors
4.1. PTS in an Intracavity He-Ne Laser Configuration
4.2. All-Fiber Intracavity PT Gas Sensor
4.3. Intracavity PT Detection in a Mode-Locked Laser Configuration
5. Fabry-Perot-Based PTS Gas Sensors
5.1. Fabry-Perot PT Gas Sensor with 2f Modulation
5.2. Balanced Detection Fabry-Perot PT Gas Sensor
6. Conclusions
Funding
Conflicts of Interest
References
- Boccara, A.C.; Fournier, D.; Jackson, W.; Amer, N.M. Sensitive photothermal deflection technique for measuring absorption in optically thin media. Opt. Lett. 1980, 5, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, H.; Akbar, J.; Korte, D.; Ramírez-Miquet, E.E.; Marín, E.; Niemela, J.; Ebrahimpour, Z.; Mannatunga, K.; Franko, M. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation. Talanta 2018, 183, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Bialkowski, S. Photothermal Spectroscopy Methods for Chemical Analysis; John Wiley & Sons: New York, NY, USA, 1996; Volume 134. [Google Scholar]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar] [CrossRef] [PubMed]
- Harren, F.J.M.; Mandon, J.; Cristescu, S.M. Photoacoustic spectroscopy in trace gas monitoring. Encyclopedia of Analytical Chemistry: Applications. Theory Instrum. 2006. [Google Scholar] [CrossRef]
- Sigrist, M.W. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary). Rev. Sci. Instrum. 2003, 74, 486–490. [Google Scholar] [CrossRef]
- Roller, C.; Namjou, K.; Jeffers, J.D.; Camp, M.; Mock, A.; McCann, P.J.; Grego, J. Nitric oxide breath testing by tunable-diode laser absorption spectroscopy: Application in monitoring respiratory inflammation. Appl. Opt. 2002, 41, 6018–6029. [Google Scholar] [CrossRef] [PubMed]
- Werle, P.O.; Mücke, R.; Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B 1993, 57, 131–139. [Google Scholar] [CrossRef]
- Cassidy, D.T.; Reid, J. Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 1982, 21, 1185–1190. [Google Scholar] [CrossRef]
- Bialkowski, S.E.; Chartier, A. Diffraction effects in single-and two-laser photothermal lens spectroscopy. Appl. Opt. 1997, 36, 6711–6721. [Google Scholar] [CrossRef]
- Bialkowski, S.E. Photothermal lens aberration effects in two laser thermal lens spectrophotometry. Appl. Opt. 1985, 24, 2792–2796. [Google Scholar] [CrossRef]
- Korte, D.; Cabrera, H.; Toro, J.; Grima, P.; Leal, C.; Villabona, A.; Franko, M. Optimized frequency dependent photothermal beam deflection spectroscopy. Laser Phys. Lett. 2016, 13, 125701. [Google Scholar] [CrossRef][Green Version]
- Jackson, W.B.; Amer, N.M.; Boccara, A.C.; Fournier, D. Photothermal deflection spectroscopy and detection. Appl. Opt. 1981, 20, 1333–1344. [Google Scholar] [CrossRef] [PubMed]
- Supplee, J.M.; Whittaker, E.A.; Lenth, W. Theoretical description of frequency modulation and wavelength modulation spectroscopy. Appl. Opt. 1994, 33, 6294–6302. [Google Scholar] [CrossRef] [PubMed]
- Schilt, S.; Thevenaz, L.; Robert, P. Wavelength modulation spectroscopy: Combined frequency and intensity laser modulation. Appl. Opt. 2003, 42, 6728–6738. [Google Scholar] [CrossRef] [PubMed]
- Krzempek, K.; Dudzik, G.; Abramski, K. Photothermal spectroscopy of CO2 in an intracavity mode-locked fiber laser configuration. Opt. Express 2018, 26, 28861–28871. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y. Review of recent advances in QEPAS-based trace gas sensing. Appl. Sci. 2018, 8, 1822. [Google Scholar] [CrossRef]
- Davis, C.C.; Petuchowski, S.J. Phase fluctuation optical heterodyne spectroscopy of gases. Appl. Opt. 1981, 20, 2539–2554. [Google Scholar] [CrossRef]
- Wysocki, G.; Weidmann, D. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser. Opt. Express 2010, 18, 26123–26140. [Google Scholar] [CrossRef]
- Stone, J. Thermooptical technique for the measurement of absorption loss spectrum in liquids. Appl. Opt. 1973, 12, 1828–1830. [Google Scholar] [CrossRef]
- Murty, M.V.R.K. Some modifications of the Jamin interferometer useful in optical testing. Appl. Opt. 1964, 3, 535–538. [Google Scholar] [CrossRef]
- Owens, M.A.; Davis, C.C.; Dickerson, R.R. A photothermal interferometer for gas-phase ammonia detection. Anal. Chem. 1999, 71, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Altmann, J.; Baumgart, R.; Weitkamp, C. Two-mirror multipass absorption cell. Appl. Opt. 1981, 20, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Krzempek, K.; Dudzik, G.; Abramski, K.; Wysocki, G.; Jaworski, P.; Nikodem, M. Heterodyne interferometric signal retrieval in photoacoustic spectroscopy. Opt. Express 2018, 26, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Giles, C.R.; Desurvire, E. Modeling erbium-doped fiber amplifiers. J. Lightwave Technol. 1991, 9, 271–283. [Google Scholar] [CrossRef]
- Gibilisco, S. Teach Yourself Electricity and Electronics; McGraw-Hill Professional: New York, NY, USA, 2002; p. 477. ISBN 978-0-07-137730-0. [Google Scholar]
- Murvay, P.S.; Silea, I. A survey on gas leak detection and localization techniques. J. Loss Prev. Process Ind. 2012, 25, 966–973. [Google Scholar] [CrossRef]
- Chraim, F.; Erol, Y.B.; Pister, K. Wireless gas leak detection and localization. IEEE Trans. Ind. Inf. 2015, 12, 768–779. [Google Scholar] [CrossRef]
- Sivathanu, Y. Natural Gas Leak Detection in Pipelines; Technology Status Report; En’Urga Inc.: West Lafayette, IN, USA, 2003. [Google Scholar]
- Detto, M.; Verfaillie, J.; Anderson, F.; Xu, L.; Baldocchi, D. Comparing laser-based open-and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agric. For. Meteorol. 2011, 151, 1312–1324. [Google Scholar] [CrossRef]
- Grant, W.B.; Kagann, R.H.; McClenny, W.A. Optical remote measurement of toxic gases. J. Air Waste Manag. Assoc. 1992, 42, 18–30. [Google Scholar] [CrossRef]
- Krzempek, K.; Hudzikowski, A.; Głuszek, A.; Dudzik, G.; Abramski, K.; Wysocki, G.; Nikodem, M. Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection. Appl. Phys. B 2018, 124, 74. [Google Scholar] [CrossRef]
- Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum cascade laser. Science 1994, 264, 553–556. [Google Scholar] [CrossRef]
- Parry, J.P.; Griffiths, B.C.; Gayraud, N.; McNaghten, E.D.; Parkes, A.M.; MacPherson, W.N.; Hand, D.P. Towards practical gas sensing with micro-structured fibres. Meas. Sci. Technol. 2009, 20, 075301. [Google Scholar] [CrossRef]
- Smolka, S.; Barth, M.; Benson, O. Highly efficient fluorescence sensing with hollow core photonic crystal fibers. Opt. Express 2007, 15, 12783–12791. [Google Scholar] [CrossRef] [PubMed]
- Cubillas, A.M.; Silva-Lopez, M.; Lazaro, J.M.; Conde, O.M.; Petrovich, M.N.; Lopez-Higuera, J.M. Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Opt. Express 2007, 15, 17570–17576. [Google Scholar] [CrossRef] [PubMed]
- Charlton, C.; Temelkuran, B.; Dellemann, G.; Mizaikoff, B. Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides. Appl. Phys. Lett. 2005, 86, 194102. [Google Scholar] [CrossRef]
- Wynne, R.M.; Barabadi, B.; Creedon, K.J.; Ortega, A. Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor. J. Lightwave Technol. 2009, 27, 1590–1596. [Google Scholar] [CrossRef]
- Yang, F.; Jin, W.; Cao, Y.; Ho, H.L.; Wang, Y. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Opt. Express 2014, 22, 24894–24907. [Google Scholar] [CrossRef] [PubMed]
- Nikodem, M.; Krzempek, K.; Dudzik, G.; Abramski, K. Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm. Opt. Express 2018, 26, 21843–21848. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Cao, Y.; Yang, F.; Ho, H.L. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 2015, 6, 6767. [Google Scholar] [CrossRef]
- Rosenthal, A.; Kellnberger, S.; Sergiadis, G.; Ntziachristos, V. Wideband fiber-interferometer stabilization with variable phase. IEEE Photonics Technol. Lett. 2012, 24, 1499–1501. [Google Scholar] [CrossRef]
- Smith, C.M.; Venkataraman, N.; Gallagher, M.T.; Müller, D.; West, J.A.; Borrelli, N.F.; Koch, K.W. Low-loss hollow-core silica/air photonic bandgap fibre. Nature 2003, 424, 657. [Google Scholar] [CrossRef]
- Roberts, P.J.; Couny, F.; Sabert, H.; Mangan, B.J.; Williams, D.P.; Farr, L.; Russell, P.S.J. Ultimate low loss of hollow-core photonic crystal fibres. Opt. Express 2005, 13, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Jin, W.; Yang, F.; Ma, J.; Wang, C.; Ho, H.L.; Liu, Y. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre. Sci. Rep. 2016, 6, 39410. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, L.; Mehuys, D. High power superluminescent diode source. Electron. Lett. 1994, 30, 1682–1684. [Google Scholar] [CrossRef]
- Bristow, A.D.; Rotenberg, N.; Van Driel, H.M. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett. 2007, 90, 191104. [Google Scholar] [CrossRef]
- Nikodem, M.; Gomółka, G.; Klimczak, M.; Pysz, D.; Buczyński, R. Laser absorption spectroscopy at 2 µm inside revolver-type anti-resonant hollow core fiber. Opt. Express 2019, 27, 14998–15006. [Google Scholar] [CrossRef] [PubMed]
- Belardi, W.; Knight, J.C. Hollow antiresonant fibers with low bending loss. Opt. Express 2014, 22, 10091–10096. [Google Scholar] [CrossRef] [PubMed]
- Belardi, W.; Knight, J.C. Hollow antiresonant fibers with reduced attenuation. Opt. Lett. 2014, 39, 1853–1856. [Google Scholar] [CrossRef] [PubMed]
- Belardi, W. Design and properties of hollow antiresonant fibers for the visible and near infrared spectral range. J. Lightwave Technol. 2015, 33, 4497–4503. [Google Scholar] [CrossRef]
- Hasan, M.I.; Akhmediev, N.; Chang, W. Mid-infrared supercontinuum generation in supercritical xenon-filled hollow-core negative curvature fibers. Opt. Lett. 2016, 41, 5122–5125. [Google Scholar] [CrossRef]
- Wang, Z.; Belardi, W.; Yu, F.; Wadsworth, W.J.; Knight, J.C. Efficient diode-pumped mid-infrared emission from acetylene-filled hollow-core fiber. Opt. Express 2014, 22, 21872–21878. [Google Scholar] [CrossRef]
- Sollapur, R.; Kartashov, D.; Zürch, M.; Hoffmann, A.; Grigorova, T.; Sauer, G.; Chemnitz, M. Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers. Light: Sci. Appl. 2017, 6, e17124. [Google Scholar] [CrossRef] [PubMed]
- Fung, K.H.; Lin, H.B. Trace gas detection by laser intracavity photothermal spectroscopy. Appl. Opt. 1986, 25, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jin, W.; Lin, Y.; Yang, F.; Ho, H.L. All-fiber gas sensor with intracavity photothermal spectroscopy. Opt. Lett. 2018, 43, 1566–1569. [Google Scholar] [CrossRef] [PubMed]
- Keller, U.; Weingarten, K.J.; Kartner, F.X.; Kopf, D.; Braun, B.; Jung, I.D.; Der Au, J.A. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435–453. [Google Scholar] [CrossRef]
- Reider, G.A. Photonics; Springer: New York, NY, USA, 2016. [Google Scholar]
- Waclawek, J.P.; Bauer, V.C.; Moser, H.; Lendl, B. 2f-wavelength modulation Fabry-Perot photothermal interferometry. Opt. Express 2016, 24, 28958–28967. [Google Scholar] [CrossRef] [PubMed]
- Waclawek, J.P.; Kristament, C.; Moser, H.; Lendl, B. Balanced-detection interferometric cavity-assisted photothermal spectroscopy. Opt. Express 2019, 27, 12183–12195. [Google Scholar] [CrossRef]
Configuration | Detected Gas | Pump Laser Type; Wavelength | Pump Laser Power | NEC | Reference |
---|---|---|---|---|---|
Bulk-optics based HeNe Mach-Zehnder interferometer | CH3OH | CO2 laser, 9.64 μm | 20 W | 3 ppbv | [18] |
Unfolded Jamin HeNe interferometer | NH3 | CO2 laser, 9.22 μm | 7 W | 250 pptv | [22] |
Open-path fiber-based Mach-Zehnder interferometer | CO2 | Amplified DFB diode, 1573 nm | 300 mW | 400 ppmv | [24] |
Fiber-based multipass-assisted Mach-Zehnder interferometer | CH4 | QCL, 7.2 μm | 50 mW | 10 ppmv | [32] |
HC-PCF-based Mach-Zehnder interferometer | C2H2 | Amplified DFB diode, 1530.37 nm | 25 mW | 2 ppbv | [41] |
HC-PCF-based pulsed PT sensor with Sagnac loop interferometer | C2H2 | Amplified DFB diode, 1530.37 nm | 22.2 mW | 3.3 ppmv | [45] |
Intracavity PT sensor based on a HeNe laser | SF6 | CO2, 10,560 nm | 0.8 W | 3 ppbv | [55] |
PT sensor with intracavity pump signal enhancement | C2H2 | DFB diode, 1530.37 nm | 20 mW | 0.176 ppm | [56] |
PT gas sensor in a intracavity mode-locked fiber laser configuration | CO2 | Amplified DFB diode, 2003 nm | 100 mW | 311 ppmv | [16] |
Fabry-Perot interferometer-based PT gas sensor | SO2 | QCL, 7246 nm | 173 mW | 1.1 ppmv | [59] |
Balanced detection Fabry-Perot interferometer-based PT gas sensor | SO2 | QCL, 7246 nm | 174 mW | 5 ppbv | [60] |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzempek, K. A Review of Photothermal Detection Techniques for Gas Sensing Applications. Appl. Sci. 2019, 9, 2826. https://doi.org/10.3390/app9142826
Krzempek K. A Review of Photothermal Detection Techniques for Gas Sensing Applications. Applied Sciences. 2019; 9(14):2826. https://doi.org/10.3390/app9142826
Chicago/Turabian StyleKrzempek, Karol. 2019. "A Review of Photothermal Detection Techniques for Gas Sensing Applications" Applied Sciences 9, no. 14: 2826. https://doi.org/10.3390/app9142826
APA StyleKrzempek, K. (2019). A Review of Photothermal Detection Techniques for Gas Sensing Applications. Applied Sciences, 9(14), 2826. https://doi.org/10.3390/app9142826