Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils
Abstract
1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jentzsch, P.V.; Ciobotă, V. Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils. Flavour Fragr. J. 2014, 29, 287–295. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr. 2010, 91, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, W.J. Unsaturated Fatty Acids, Desaturases, and Human Health. J. Med. Food 2014, 17, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Vessby, B.; Uusitupa, M.; Hermansen, K.; Riccardi, G.; Rivellese, A.A.; Tapsell, L.C.; Nälsén, C.; Berglund, L.; Louheranta, A.; Rasmussen, B.M.; et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU study. Diabetologia 2001, 44, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Kien, C.L.; Bunn, J.Y.; Tompkins, C.L.; Dumas, J.A.; Crain, K.I.; Ebenstein, D.B.; Koves, T.R.; Muoio, D.M. Substituting dietary monounsaturated fat for saturated fat is associated with increased daily physical activity and resting energy expenditure and with changes in mood. Am. J. Clin. Nutr. 2013, 97, 689–697. [Google Scholar] [CrossRef]
- Bayle, M.S.; Gonzalez-Requejo, A.; Pelaez, M.J.; Morales, M.T.; Asensio-Anton, J.; Anton-Pacheco, E. A ross-sectional study of dietary habits and lipid profiles. The Rivas-Vaciamadrid study. Eur. J. Pediatr. 2008, 167, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C. The role of dietary n-6 fatty acids in the prevention of cardiovascular disease. J. Cardiovasc. Med. 2007, 8, S42–S45. [Google Scholar] [CrossRef] [PubMed]
- Pala, V.; Krogh, V.; Muti, P.; Chajes, V.; Riboli, E.; Micheli, A.; Saadatian, M.; Sieri, S.; Berrino, F. Erythrocyte Membrane Fatty Acids and Subsequent Breast Cancer: A Prospective Italian Study. J. Natl. Cancer Inst. 2001, 93, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Li, Y.; Guo, H.; Xu, J.; Chen, Z.; Zhang, J.; Wang, Y. Identification of waste cooking oil and vegetable oil via Raman spectroscopy. J. Raman Spectrosc. 2016, 47, 860–864. [Google Scholar] [CrossRef]
- Li, Y.; Fang, T.; Zhu, S.; Huang, F.; Chen, Z.; Wang, Y. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy and chemometrics. Spectrochim. Acta A 2018, 189, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Jentzsch, P.V.; Gualpa, F.; Ramos, L.A.; Ciobotă, V. Adulteration of clove oil: Detection using a handheld Raman spectrometer. Flavour Frag. J. 2018, 33, 184–190. [Google Scholar] [CrossRef]
- Alvarenga, B.R.; Xavier, F.A.N.; Soares, F.L.F.; Carneiro, R.L. Thermal Stability Assessment of Vegetable Oils by Raman Spectroscopy and Chemometrics. Food Anal. Methods 2018, 11, 1969–1976. [Google Scholar] [CrossRef]
- Fan, Y.; Li, S.; Xu, D.-P. Raman spectra of oleic acid and linoleic acid. Spectrosc. Spect. Anal. 2013, 33, 3240–3243. [Google Scholar]
- Graham, S.F.; Haughey, S.A.; Ervin, R.M.; Cancouët, E.; Bell, S.; Elliott, C.T. The application of near-infrared (NIR) and Raman spectroscopy to detect adulteration of oil used in animal feed production. Food Chem. 2012, 132, 1614–1619. [Google Scholar] [CrossRef] [PubMed]
- El-Abassy, R.M.; Donfack, P.; Materny, A. Rapid Determination of Free Fatty Acid in Extra Virgin Olive Oil by Raman Spectroscopy and Multivariate Analysis. J. Am. Oil Chem. Soc. 2009, 86, 507–511. [Google Scholar] [CrossRef]
- Osawa, C.C.; Gonçalves, L.A.G.; Ragazzi, S. Correlation between free fatty acids of vegetable oils evaluated by rapid tests and by the official method. J. Food Compos. Anal. 2007, 20, 523–528. [Google Scholar] [CrossRef]
- Baeten, V.; Dardenne, P.; Aparicio, R. Interpretation of Fourier Transform Raman Spectra of the Unsaponifiable Matter in a Selection of Edible Oils. J. Agric. Food Chem. 2001, 49, 5098–5107. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sanchidrián, C.; Ruiz, J.R. Use of Raman spectroscopy for analyzing edible vegetable oils. Appl. Spectrosc. Rev. 2016, 51, 417–430. [Google Scholar] [CrossRef]
- Dymińska, L.; Calik, M.; Albegar, A.M.M.; Zając, A.; Kostyń, K.; Lorenc, J.; Hanuza, J. Quantitative determination of the iodine values of unsaturated plant oils using infrared and Raman spectroscopy methods. Int. J. Food Prop. 2017, 20, 2003–2015. [Google Scholar]
- Czarnecki, M.A.; Liu, Y.; Ozaki, Y.; Suzuki, M.; Iwahashi, M. Potential of Fourier transform near-infrared spectroscopy in studies if dissociation of fatty acids in the liquid phase. Appl. Spectrosc. 1993, 47, 2162–2168. [Google Scholar] [CrossRef]
- Sadeghi-Jorabchi, H.; Wilson, R.H.; Belton, P.S.; Edwards-Webb, J.D.; Coxon, D.T. Quantitative analysis of oils and fats by Frourier transform Raman spectroscopy. Spectrochim. Acta A 1991, 47A, 1449–1458. [Google Scholar] [CrossRef]
- Kong, M.H.; Wu, D.X.; Chen, X.B. Qualitative and Quantitative Studies on Artemisinin with Raman Spectroscopy. Spectrosc. Spect. Anal. 2017, 37, 778–782. [Google Scholar]
- Zarei, A.; Klumbach, S.; Keppler, H. The Relative Raman Scattering Cross Sections of H2O and D2O, with Implications for In Situ Studies of Isotope Fractionation. Acs Earth Space Chem. 2018, 2, 925–934. [Google Scholar] [CrossRef]
- Chen, X.B.; Hien, N.T.M.; Han, K.; Nam, J.Y.; Huyen, N.T.; Shin, S.I.; Wang, X.; Cheong, S.W.; Lee, D.; Noh, T.W.; et al. Study of spin-ordering and spin-reorientation transitions in hexagonal manganties through Raman spectroscopy. Sci. Rep. 2015, 5, 13366. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.-H.; Choi, J.-Y.; Kim, H.-T.; Chen, X.-B. Raman spectroscopy studies of spin-wave in V2O3thin films. J. Phys. D Appl. Phys. 2016, 49, 465304. [Google Scholar]
- Noda, I. Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and other Types of Spectroscopy. Appl. Spectrosc. 1993, 47, 1329–1336. [Google Scholar] [CrossRef]
- Noda, I.; Ozaki, Y. Two-Dimentional Correlation Spectroscopy; Applications in Vibrational Spectroscopy; John Wiley & Sons Inc.: New York, NY, USA, 2004. [Google Scholar]
- Jung, Y.M.; Noda, I. New approaches to generalized two-dimensional correlation spectroscopy and its applications. Appl. Spectrosc. Rev. 2006, 41, 515–547. [Google Scholar] [CrossRef]
- Shinzawa, H.; Awa, K.; Noda, I.; Ozaki, Y. Pressure-induced variation of cellulose tablet studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy in conjunction with projection pretreatment. Vib. Spectrosc. 2013, 65, 28–35. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, T.M.H.; Chen, X.-B.; Yang, I.-S.; Park, Y.; Jung, Y.M. 2D correlation analysis of the magnetic excitations in Raman spectra of HoMnO3. J. Mol. Struct. 2014, 1069, 280–283. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Nguyen, T.H.; Chen, X.-B.; Park, Y.; Jung, Y.M.; Lee, D.; Noh, T.; Cheong, S.-W.; Yang, I.-S. Correlation between magnon and magnetic symmetries of hexagonal RMnO3 (R = Er, Ho, Lu). J. Mol. Struct. 2016, 1124, 103–109. [Google Scholar] [CrossRef]
- Pi, F.; Shinzawa, H.; Czarnecki, M.A.; Iwahashi, M.; Suzuki, M.; Ozaki, Y. Self-assembling of oleic acid (cis-9-octadecenoic acid) and linoleic acid (cis-9, cis-12-octadecadienoic acid) in ethanol studied by time-dependent attenuated total reflectance (ATR) infrared (IR) and two-dimensional (2D) correlation spectroscopy. J. Mol. Struct. 2010, 974, 40–45. [Google Scholar] [CrossRef]
Sample | MUFA (%) | PUFA (%) | Saturated Fatty Acid (%) |
---|---|---|---|
A | 26 | 61 | 13 |
B | 30 | 56 | 14 |
C | 32 | 53 | 15 |
D | 44 | 38 | 18 |
E | 75 | 10 | 15 |
F | 78 | 7 | 15 |
G | 79 | 6 | 15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Hou, H.-Y.; Huyen, N.T.; Yang, I.-S.; Chen, X.-B. Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils. Appl. Sci. 2019, 9, 2807. https://doi.org/10.3390/app9142807
Qiu J, Hou H-Y, Huyen NT, Yang I-S, Chen X-B. Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils. Applied Sciences. 2019; 9(14):2807. https://doi.org/10.3390/app9142807
Chicago/Turabian StyleQiu, Jin, Hua-Yi Hou, Nguyen Thi Huyen, In-Sang Yang, and Xiang-Bai Chen. 2019. "Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils" Applied Sciences 9, no. 14: 2807. https://doi.org/10.3390/app9142807
APA StyleQiu, J., Hou, H.-Y., Huyen, N. T., Yang, I.-S., & Chen, X.-B. (2019). Raman Spectroscopy and 2DCOS Analysis of Unsaturated Fatty Acid in Edible Vegetable Oils. Applied Sciences, 9(14), 2807. https://doi.org/10.3390/app9142807