Self-Compacting Concrete Reinforced with Twisted-Bundle Macro-Synthetic Fiber
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Slump-Flow Test
2.2.2. Compressive Strength, Tensile Strength, and Modulus of Elasticity
2.2.3. Flexural Strength and Residual Flexural Strength
3. Experimental Results and Discussion
3.1. Slump-Flow Test
3.2. Compressive Strength, Tensile Strength, and Modulus of Elasticity
3.3. Flexural Strength and Residual Flexural Strength
4. Theoretical Approach and Discussion
4.1. Material Behavior
4.2. Constitutive Law and Bending Moment Prediction
4.3. Comparison of the Theoretical and Experimental Moment Capacity
5. Conclusions
- The inclusion of fibers up to 6 kg/m3 did not affect the flowabilty of the self-compacting concrete. The mixture containing 8 kg/m3 presented reduced flowability and would require further mixture design improvements in order to achieve the desirable self-compacting properties for precast applications;
- The mixture with a dosage of 6 kg/m3 exhibited the highest compressive and tensile strength. However, when flexural and post-cracking performances were assessed, the mixture with 8 kg/m3 revealed improved flexural performance compared to lower fiber dosages, evidencing the contribution of higher fiber contents in the post-cracking composite performance;
- Based on the post-cracking behavior, a modified stress-crack opening constitutive law was proposed, including fiber dosage as a model parameter. This model predicts the moment capacity of FRC beams by using the split tensile strength of FRC and a coefficient correlated to fiber content/dosage. The model also corroborates the conclusion that the highest fiber content of 8 kg/m3 results in a higher moment carrying capacity.
- The model is an initial approach on the development of a theoretical model to predict the ultimate flexural strength of synthetic fiber-reinforced SCC based on split tensile strength only, without relying on notch beam flexural test and is capable of predicting the flexural strength of FRC beam.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sivakumar, A.; Santhanam, M. Mechanical properties of high strength concrete reinforced with metallic and non-metallic fibres. Cem. Concr. Compos. 2007, 29, 603–608. [Google Scholar] [CrossRef]
- Pons, G.; Mouret, M.; Alcantara, M.; Granju, J.L. Mechanical behaviour of self-compacting concrete with hybrid fibre reinforcement. Mater. Struct. 2007, 40, 201–210. [Google Scholar] [CrossRef]
- Buratti, N.; Mazzotti, C.; Savoia, M. Post-cracking behaviour of steel and macro-synthetic fibre–reinforced concretes. Constr. Build. Mater. 2011, 25, 2713–2722. [Google Scholar] [CrossRef]
- Balendran, R.V.; Zhou, F.P.; Nadeem, A.; Leung, A.Y.T. Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Build. Environ. 2002, 37, 1361–1367. [Google Scholar] [CrossRef]
- Banthia, N.; Nandakumar, N. Crack growth resistance of hybrid fiber reinforced cement composites. Cem. Concr. Compos. 2003, 25, 3–9. [Google Scholar] [CrossRef]
- Staff, B.S.I.; Institution, B.S. Test Method for Metallic Fibre Concrete. Measuring the Flexural Tensile Strength (Limit of Proportionality (LOP), Residual); BSI Standards: London, UK, 2005; BS EN 14651:2005+A1:2007. [Google Scholar]
- Society, C. Guidance for the Design Of Steel-fibre-reinforced Concrete; Technical Report 63; Concrete Society: Camberley, UK, 2007. [Google Scholar]
- Japan Society of Civil Engineers. Method of Tests for Flexural Strength and Flexural Toughness of Steel Fiber Reinforced Concrete; Japan Society of Civil Engineers: Tokyo, Japan, 1984. [Google Scholar]
- ASTM International. Standard Specification for Steel Fibers for Fiber-Reinforced Concrete; ASTM International: West Conshohocken, PA, USA, 2016; ASTM A820/A820M. [Google Scholar]
- Okamura, H.; Ouchi, M. Self-compacting concrete. J. Adv. Concr. Technol. 2003, 1, 5–15. [Google Scholar] [CrossRef]
- Goodier, C.I. Development of self-compacting concrete. Loughb. Univ. Inst. Repos. 2003, 156, 405–414. [Google Scholar] [CrossRef]
- Domone, P.L. Self-compacting concrete: An analysis of 11 years of case studies. Cem. Concr. Compos. 2006, 28, 197–208. [Google Scholar] [CrossRef]
- Foraboschi, P. Versatility of steel in correcting construction deficiencies and in seismic retrofitting of RC buildings. J. Build. Eng. 2016, 8, 107–122. [Google Scholar] [CrossRef]
- Song, P.S.; Hwang, S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr. Build. Mater. 2004, 18, 669–673. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Moriconi, G. Durable fiber reinforced self-compacting concrete. Cem. Concr. Res. 2004, 34, 249–254. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, S.; Zhang, Y.; Thomas, A. The investigation on the workability of fibre cocktail reinforced self-compacting high performance concrete. Constr. Build. Mater. 2008, 22, 1462–1470. [Google Scholar] [CrossRef] [Green Version]
- Gencel, O.; Brostow, W.; Datashvili, T.; Thedford, M. Workability and mechanical performance of steel fiber-reinforced self-compacting concrete with fly ash. Compos. Interfaces 2011, 18, 169–184. [Google Scholar] [CrossRef]
- Pająk, M.; Ponikiewski, T. Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Constr. Build. Mater. 2013, 47, 397–408. [Google Scholar] [CrossRef]
- Sahmaran, M.; Yaman, I.O. Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash. Constr. Build. Mater. 2007, 21, 150–156. [Google Scholar] [CrossRef]
- Sahmaran, M.; Yurtseven, A.; Yaman, I.O. Workability of hybrid fiber reinforced self-compacting concrete. Build. Environ. 2005, 40, 1672–1677. [Google Scholar] [CrossRef]
- Barros, J.; Pereira, E.; Santos, S. Lightweight panels of steel fiber-reinforced self-compacting concrete. J. Mater. Civ. Eng. 2007, 19, 295–304. [Google Scholar] [CrossRef]
- Gencel, O.; Ozel, C.; Brostow, W.; Martínez-Barrera, G. Mechanical properties of self-compacting concrete reinforced with polypropylene fibres. Mater. Res. Innov. 2011, 15, 216–225. [Google Scholar] [CrossRef]
- Alberti, M.G.; Enfedaque, A.; Gálvez, J.C. On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete. Constr. Build. Mater. 2014, 55, 274–288. [Google Scholar] [CrossRef]
- Hasan-Nattaj, F.; Nematzadeh, M. The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica. Constr. Build. Mater. 2017, 137, 557–572. [Google Scholar] [CrossRef]
- Arafa, M.H.; Alqedra, M.A.; Almassri, H.G. Effect of forta-ferro fibers on fresh and mechanical properties of ultra high performance self compacting concrete. Int. J. Eng. Tech. Res. 2013, 1, 43–47. [Google Scholar]
- Balaguru, R.N.P.; Mehendra, P. Flexural Toughness of Steel Fiber Reinforced Concrete. Mater. J. 1992, 89, 541–546. [Google Scholar]
- Hillerborg, A. Analysis of fracture by means of the fictitious crack model, particularly for fibre reinforced concrete. Int. J. Cem. Compos. 1980, 2, 177–184. [Google Scholar]
- Hillerborg, A.; Modéer, M.; Petersson, P.E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 1976, 6, 773–781. [Google Scholar] [CrossRef]
- Methods of Testing Concrete Determination of Properties Related to the Consistency of Concrete—Slump Flow, T500 and J-Ring Test; Australian Standards: Sydney, Australia, 2015; A. 1012.3.5.
- Yin, S.; Tuladhar, R.; Riella, J.; Chung, D.; Collister, T.; Combe, M.; Sivakugan, N. Comparative evaluation of virgin and recycled polypropylene fibre reinforced concrete. Constr. Build. Mater. 2016, 114, 134–141. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shi, F.; Combe, M.; Collister, T.; Sivakugan, N. Use of macro plastic fibres in concrete: A review. Constr. Build. Mater. 2015, 93, 180–188. [Google Scholar] [CrossRef]
- Richardson, A.; Coventry, K. Dovetailed and hybrid synthetic fibre concrete—Impact, toughness and strength performance. Constr. Build. Mater. 2015, 78, 439–449. [Google Scholar] [CrossRef]
- Paulo, F.; Veludo, J.; Rodrigues, H.; Almeida, N.; Baptista, J. Self-compacting fiber reinforced concrete for precast industry. Int. J. Struct. Civ. Eng. Res. 2017, 7, 189–193. [Google Scholar]
- New Model Code Fib Special Activity Group; Taerwe, L.; Matthys, S. Fib Model Code for Concrete Structures 2010; Ernst & Sohn, Wiley: Berlin, Germany, 2013. [Google Scholar]
- Li, V.C.; Stang, H.; Krenchel, H. Micromechanics of crack bridging in fibre-reinforced concrete. Mater. Struct. 1993, 26, 486–494. [Google Scholar] [CrossRef]
- Jenq, Y.S.; Shah, S.P. Crack propagation in fiber reinforced concrete. J. Struct. Eng. 1986, 112, 19–34. [Google Scholar] [CrossRef]
- Di Prisco, M.; Colombo, M.; Dozio, D. Fibre-reinforced concrete in fib Model Code 2010: Principles, models and test validation. Struct. Concr. 2013, 14, 342–361. [Google Scholar] [CrossRef]
Fiber Length (mm) | Tensile Strength (MPa) | Fiber Form | Specific Gravity | Acid/Alkali Resistance | Absorption |
---|---|---|---|---|---|
54 | 570–660 | Blend of twisted bundle of monofilament and fibrillated network | 0.91 | Excellent | Nil |
Batch Designation | Fiber Mass Dosage (kg/m3) | Fiber Volume Dosage (%) |
---|---|---|
FF4 | 4 kg/m3 | 0.44% |
FF6 | 6 kg/m3 | 0.66% |
FF8 | 8 kg/m3 | 0.88% |
Batch Description | FF4 | FF6 | FF8 |
---|---|---|---|
Flow test | 570 | 650 | 440 |
Diameter (mm) |
Batch Designation | Compressive Strength, fcm (MPa) | Split Tensile Strength, fct.sp (MPa) | Modulus of Elasticity, Ec (MPa) |
---|---|---|---|
FF4 | 69.5 [0.91] | 3.89 [0.10] | 34,153 [3535.6] |
FF6 | 69.6 [1.39] | 5.00 [0.41] | 32,687 [818.9] |
FF8 | 52.7 [0.90] | 2.28 [0.58] | 28,968 [3491.4] |
Batch | FL | F1 | F2 | F3 | F4 | fL | fR1 | fR2 | fR3 | fR4 |
---|---|---|---|---|---|---|---|---|---|---|
(kN) | (MPa) | |||||||||
FF4 | 16.13 | 5.58 | 5.65 | 5.38 | 4.60 | 5.16 | 1.78 | 1.81 | 1.72 | 1.47 |
FF6 | 18.26 | 5.65 | 7.38 | 6.80 | 5.61 | 5.84 | 1.81 | 2.36 | 2.18 | 1.80 |
FF8 | 15.32 | 9.45 | 11.28 | 10.66 | 9.00 | 4.90 | 3.02 | 3.61 | 3.41 | 2.88 |
Batch | fLk | fR1k (MPa) | fR3k | fR1k/fLk | fR3k/fR1k |
---|---|---|---|---|---|
FF4 | 4.88 | 1.42 | 1.44 | 0.29 | 1.01 |
FF6 | 5.50 | 1.27 | 1.33 | 0.23 | 1.05 |
FF8 | 4.51 | 2.49 | 2.83 | 0.55 | 1.14 |
Batch | rL | r1 | r2 | r3 | r4 |
---|---|---|---|---|---|
FF4 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
FF6 | 1.13 | 1.01 | 1.31 | 1.26 | 1.22 |
FF8 | 0.95 | 1.69 | 2.00 | 1.98 | 1.96 |
Mixture | FF4 | FF6 | FF8 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 | S1 | S2 | S3 | S4 |
fR1/fL | 0.31 | 0.34 | 0.38 | 0.36 | 0.43 | 0.31 | 0.21 | 0.27 | 0.6 | 0.58 | 0.63 | 0.66 |
Av [Std] | 0.35 [0.03] | 0.31 [0.09] | 0.62 [0.03] | |||||||||
Av + Std | 0.38 | 0.40 | 0.65 |
Mixture | Samples | (kN) | (kN.m) | (kN.m) | (kN.m) | ||
---|---|---|---|---|---|---|---|
FF4 | S1 | 16.12 | 2.02 | 0.65 | 3.12 | 1.73 | 1.16 |
S2 | 16.32 | 2.04 | 0.72 | 2.85 | 1.17 | ||
S3 | 17.44 | 2.18 | 0.9 | 2.43 | 1.25 | ||
S4 | 15.59 | 1.95 | 0.6 | 3.23 | 1.12 | ||
FF6 | S1 | 18.28 | 2.29 | 1.08 | 2.12 | 2.34 | 0.97 |
S2 | 18.75 | 2.34 | 0.82 | 2.85 | 0.99 | ||
S3 | 18.48 | 2.31 | 0.82 | 2.83 | 0.99 | ||
S4 | 17.52 | 2.19 | 0.69 | 3.18 | 0.93 | ||
FF8 | S1 | 15.64 | 1.96 | 1.38 | 1.42 | 1.74 | 1.12 |
S2 | 14.94 | 1.87 | 1.23 | 1.52 | 1.07 | ||
S3 | 14.68 | 1.84 | 1.26 | 1.45 | 1.06 | ||
S4 | 16.00 | 2.00 | 1.47 | 1.36 | 1.15 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliari Garcez, E.; Ikramul Kabir, M.; MacLeod, A.; Subhani, M.; Ghabraie, K. Self-Compacting Concrete Reinforced with Twisted-Bundle Macro-Synthetic Fiber. Appl. Sci. 2019, 9, 2543. https://doi.org/10.3390/app9122543
Oliari Garcez E, Ikramul Kabir M, MacLeod A, Subhani M, Ghabraie K. Self-Compacting Concrete Reinforced with Twisted-Bundle Macro-Synthetic Fiber. Applied Sciences. 2019; 9(12):2543. https://doi.org/10.3390/app9122543
Chicago/Turabian StyleOliari Garcez, Estela, Muhammad Ikramul Kabir, Alastair MacLeod, Mahbube Subhani, and Kazem Ghabraie. 2019. "Self-Compacting Concrete Reinforced with Twisted-Bundle Macro-Synthetic Fiber" Applied Sciences 9, no. 12: 2543. https://doi.org/10.3390/app9122543
APA StyleOliari Garcez, E., Ikramul Kabir, M., MacLeod, A., Subhani, M., & Ghabraie, K. (2019). Self-Compacting Concrete Reinforced with Twisted-Bundle Macro-Synthetic Fiber. Applied Sciences, 9(12), 2543. https://doi.org/10.3390/app9122543