Modeling and Analysis of High-Power Ti:sapphire Laser Amplifiers–A Review
Abstract
:1. Introduction
2. Amplification Model
2.1. Depletion and Pulse Shape Change
2.2. Amplification of Chirped Pulses
2.3. Pumping and Spontaneous Emission
2.4. Effects of Transverse Profiles
3. Phase Distortion Analysis
3.1. Atomic Phase Shift (Population Inversion Induced Phase Shift)
3.2. Thermal Birefringence
3.3. Thermal Lens Model
4. Summary and Future Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Koechner, W. Solid-State Laser Engineering, 6th ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Kiriyama, H.; Mori, M.; Nakai, Y.; Shimomura, T.; Tanoue, M.; Akutsu, A.; Okada, H.; Motomura, T.; Kondo, S.; Kanazawa, S.; et al. Generation of high-contrast and high-intensity laser pulses using an OPCPA preamplifier in a double CPA Ti:sapphire laser system. Opt. Commun. 2009, 282, 625–628. [Google Scholar] [CrossRef]
- Sung, J.H.; Lee, H.W.; Yoo, J.Y.; Yoon, J.W.; Lee, C.W.; Yang, J.M.; Son, Y.J.; Jang, Y.H.; Lee, S.K.; Nam, C.H. 4.2 PW, 20 fs Ti:sapphire laser at 0.1 Hz. Opt. Lett. 2017, 42, 2058–2061. [Google Scholar] [CrossRef] [PubMed]
- Soloviev, A.A.; Burdonov, K.F.; Ginzburg, V.N.; Gonoskov, A.A.; Katin, E.V.; Kim, A.V.; Kirsanov, A.V.; Korzhimanov, A.V.; Kostyukov, I.Y.; Lozhkarev, V.V.; et al. Fast electron generation using PW-class PEARL facility. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2011, 653, 35–41. [Google Scholar] [CrossRef]
- Chu, Y.; Gan, Z.; Liang, X.; Yu, L.; Lu, X.; Wang, C.; Wang, X.; Xu, L.; Lu, H.; Yin, D.; et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses. Opt. Lett. 2015, 40, 5011–5014. [Google Scholar] [CrossRef] [PubMed]
- Lureau, F.; Laux, S.; Casagrande, O.; Chalus, O.; Pellegrina, A.; Matras, G.; Radier, C.; Rey, G.; Ricaud, S.; Herriot, S.; et al. Latest results of 10 petawatt laser beamline for ELi nuclear physics infrastructure. SPIE LASE 2016, 9726, 972613–972618. [Google Scholar]
- Divoky, M.; Smrz, M.; Chyla, M.; Sikocinski, P.; Severova, P.; Novak, O.; Huynh, J.; Nagisetty, S.S.; Miura, T.; Pilař, J.; et al. Overview of the HiLASE project: High average power pulsed DPSSL systems for research and industry. High Power Laser Sci. Eng. 2014, 2. [Google Scholar] [CrossRef]
- Danson, C.; Hillier, D.; Hopps, N.; Neely, D. Petawatt class lasers worldwide. High Power Laser Sci. Eng. 2015, 3, 662. [Google Scholar] [CrossRef]
- Papadopoulos, D.N.; Zou, J.P.; Le Blanc, C.; Chériaux, G.; Georges, P.; Druon, F.; Mennerat, G.; Ramirez, P.; Martin, L.; Fréneaux, A.; et al. The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Eng. 2016, 4. [Google Scholar] [CrossRef]
- Kiriyama, H.; Kando, M.; Pirozhkov, A.; Kishimoto, M.; Kon, A.; Nishiuchi, M.; Sakaki, H.; Ogura, K.; Kanasaki, M.; Tanaka, H.; et al. The Current Status of the J-KAREN Laser Upgrade. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Hernandez-Gomez, C.; Blake, S.P.; Chek ov, O.; Clarke, R.J.; Dunne, A.M.; Galimberti, M.; Hancock, S.; Heathcote, R.; Holligan, P.; Lyachev, A.; et al. The Vulcan 10 PW project. J. Phys. Conf. Ser. 2010, 244, 032006. [Google Scholar] [CrossRef]
- Kiriyama, H.; Mori, M.; Pirozhkov, A.S.; Ogura, K.; Sagisaka, A.; Kon, A.; Esirkepov, T.Z.; Hayashi, Y.; Kotaki, H.; Kanasaki, M.; et al. High-Contrast, High-Intensity Petawatt-Class Laser and Applications. IEEE J. Select. Top. Quantum Electron. 2015, 21, 232–249. [Google Scholar] [CrossRef]
- Zhu, P.; Xie, X.; Kang, J.; Yang, Q.; Zhu, H.; Guo, A.; Sun, M.; Gao, Q.; Cui, Z.; Liang, X.; et al. Systematic study of spatiotemporal influences on temporal contrast in the focal region in large-aperture broadband ultrashort petawatt lasers. High Power Laser Sci. Eng. 2018, 6, e8. [Google Scholar] [CrossRef]
- Asavei, T.; Tomut, M.; Bobeica, M.; Aogaki, S.; Cernaianu, M.; Ganciu, M.; Kar, S.; Manda, G.; Mocanu, N.; Neagu, L.; et al. Materials in extreme environments for energy, accelerators and space applicaions at ELI-NP. Rom. Rep. Phys. 2016, 68, S275–S347. [Google Scholar]
- Depresseux, A.; Oliva, E.; Gautier, J.; Tissandier, F.; Nejdl, J.; Kozlova, M.; Maynard, G.; Goddet, J.P.; Tafzi, A.; Lifschitz, A.; et al. Table-top femtosecond soft X-ray laser by collisional ionization gating. Nat. Photonics 2015, 9, 817–821. [Google Scholar] [CrossRef]
- Didenko, N.V.; Konyashchenko, A.V.; Lutsenko, A.P. Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses. Opt. Express 2008, 16, 3178–3190. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.J.; Lee, S.K.; Sung, J.H.; Yoon, J.W.; Jeong, T.M.; Lee, J. Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser. Opt. Express 2012, 20, 10807–10815. [Google Scholar] [CrossRef]
- Frantz, L.M.; Nodvik, J.S. Theory of pulse propagation in a laser amplifier. J. Appl. Phys. 1963, 34, 2346–2349. [Google Scholar] [CrossRef]
- Jeong, J.; Cho, S.; Yu, T.J. Numerical extension of Frantz–Nodvik equation for double-pass amplifiers with pulse overlap. Opt. Express 2017, 25, 3946–3953. [Google Scholar] [CrossRef]
- Hwang, S.J.; Kim, T.; Lee, J.; Yu, T.J. Design of squared-shaped beam homogenizer for petawatt-class Ti:sapphire amplifer. Opt. Express 2017, 25, 9511–9520. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Jeong, J.; Yu, T.J. Jones calculus modeling and analysis of the thermal distortion in a Ti:sapphire laser amplifier. Opt. Express 2016, 24, 14362–14373. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Jeong, J.; Hwang, S.; Yu, T.J. Thermal lens effect model of Ti:sapphire for use in high-power laser amplifiers. Appl. Phys. Express 2018, 11, 092701. [Google Scholar] [CrossRef]
- Hwang, S.J.; Jeong, J.; Cho, S.; Lee, J.; Yu, T.J. Femtosecond Laser Pulse Distortion in Ti:Sapphire Multipass Amplifier by Atomic Phase Shifts. J. Korean Phys. Soc. 2017, 71, 652–656. [Google Scholar] [CrossRef]
- Diels, J.-C.; Rudolph, W. Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, 2nd ed.; Elsevier/Academic Press: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Strickland, D.; Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 1985, 55, 447–449. [Google Scholar] [CrossRef]
- Eggleston, J.M.M.; Frantz, L.M.M.; Injeyan, H. Derivation of the Frantz-Nodvik Equation for Zig-Zag Optical Path, Slab Geometry Laser Amplifiers. IEEE J. Quantum Electron. 1989, 25, 1855–1862. [Google Scholar] [CrossRef]
- Pearce, S.; Ireland, C.L.M.L.M.; Dyer, P.E.E. Simplified analysis of double-pass amplification with pulse overlap and application to Nd:YVO4 laser. Opt. Commun. 2005, 255, 297–303. [Google Scholar] [CrossRef]
- Rapoport, W.R.; Khattak, C.P. Titanium sapphire laser characteristics. Appl. Opt. 1988, 27, 2677. [Google Scholar] [CrossRef] [PubMed]
- Burton, H.; Debardelaben, C.; Amir, W.; Planchon, T.A. Temperature dependence of Ti:Sapphire fluorescence spectra for the design of cryogenic cooled Ti:Sapphire CPA laser. Opt. Express 2017, 25, 6954. [Google Scholar] [CrossRef] [PubMed]
- Webster, A. Useful Mathematical Formulas for Transform Limited Pulses. Available online: http://falsecolour.com/aw/pulses/pulses.pdf (accessed on 18 September 2018).
- The Nobel Prize in Physics 2018. Available online: https://www.nobelprize.org/prizes/physics/2018/summary/ (accessed on 23 October 2018).
- Treacy, E.B. Optical Pulse Compression With Diffraction Gratings. IEEE J. Quantum Electron. 1969, 5, 454–458. [Google Scholar] [CrossRef]
- Martinez, O.E. 3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 μm region. IEEE J. Quantum Electron. 1987, 23, 59–64. [Google Scholar] [CrossRef]
- Offner, A.; Darien, C.U.S. Unit Power Imaging Catoptric Anastigmat. U.S. Patent 3,748,015, 21 June 1971. [Google Scholar]
- Cheriaux, G.; Walker, B.; Dimauro, L.F.; Rousseau, P.; Salin, F.; Chambaret, J.P. Aberration-free stretcher design for ultrashort-pulse amplification. Opt. Lett. 1996, 21, 414. [Google Scholar] [CrossRef]
- Tournois, P. Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Commun. 1997, 140, 245–249. [Google Scholar] [CrossRef]
- Ricci, A.; Jullien, A.; Forget, N.; Crozatier, V.; Tournois, P.; Lopez-Martens, R. Grism compressor for carrier-envelope phase-stable millijoule-energy chirped pulse amplifier lasers featuring bulk material stretcher. Opt. Lett. 2012, 37, 1196–1198. [Google Scholar] [CrossRef] [PubMed]
- Forget, N.; Crozatier, V.; Tournois, P. Transmission Bragg-grating grisms for pulse compression. Appl. Phys. B Lasers Opt. 2012, 109, 121–125. [Google Scholar] [CrossRef]
- Blanchot, N.; Bar, E.; Behar, G.; Bellet, C.; Bigourd, D.; Boubault, F.; Chappuis, C.; Coïc, H.; Damiens-Dupont, C.; Flour, O.; et al. Experimental demonstration of a synthetic aperture compression scheme for multi-Petawatt high-energy lasers. Opt. Express 2010, 18, 10088. [Google Scholar] [CrossRef] [PubMed]
- Mourou, G.; Tajima, T. More Intense, Shorter Pulses. Science 2011, 331, 41–42. [Google Scholar] [CrossRef] [PubMed]
- McCumber, D.E. Theory of Phonon-Terminated Optical Masers. Phys. Rev. 1964, 134, A299–A306. [Google Scholar] [CrossRef]
- Jeong, J.; Cho, S.; Hwang, S.; Yu, T.J. Frequency-Modulated Pulse-Amplification Method for Reducing Pulse Shape Distortion. J. Korean Phys. Soc. 2018, 73, 1637–1643. [Google Scholar] [CrossRef]
- Park, D.; Jeong, J.; Yu, T.J. Optimization of the pulse width and injection time in a double-pass laser amplifier. High Power Laser Sci. Eng. 2018, 6, e60. [Google Scholar] [CrossRef]
- Sung, J.H.; Lee, S.K.; Yu, T.J.; Jeong, T.M.; Lee, J. 0.1 Hz 1.0 PW Ti:sapphire laser. Opt. Lett. 2010, 35, 3021–3023. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.W.; Lee, S.K.; Yu, T.J.; Sung, J.H.; Jeong, T.M.; Lee, J. Improvement of contrast ratio in saturated OPCPA system by using pump pulse shaping and time delay control. Opt. Commun. 2012, 285, 4112–4116. [Google Scholar] [CrossRef]
- Kiriyama, H.; Pirozhkov, A.S.; Nishiuchi, M.; Fukuda, Y.; Ogura, K.; Sagisaka, A.; Miyasaka, Y.; Mori, M.; Sakaki, H.; Dover, N.P.; et al. High-contrast high-intensity repetitive petawatt laser. Opt. Lett. 2018, 43, 2595. [Google Scholar] [CrossRef]
- Gan, Z.; Yu, L.; Li, S.; Wang, C.; Liang, X.; Liu, Y.; Li, W.; Guo, Z.; Fan, Z.; Yuan, X.; et al. 200 J high efficiency Ti:sapphire chirped pulse amplifier pumped by temporal dual-pulse. Opt. Express 2017, 25, 5169. [Google Scholar] [CrossRef] [PubMed]
- Chvykov, V.; Nees, J.; Krushelnick, K. Transverse amplified spontaneous emission: The limiting factor for output energy of ultra-high power lasers. Opt. Commun. 2014, 312, 216–221. [Google Scholar] [CrossRef]
- Chvykov, V.V.; Yanovsky, V.P.; Bahk, S.W.; Kalintchenko, G.; Mourou, G. Suppression of parasitic lasing in multi-pass Ti-sapphire amplifiers. In Conference on Lasers and Electro-Optics; Optical Society of America: Baltimore, MD, USA, 2003; p. CWA34. [Google Scholar]
- Ertel, K.; Hooker, C.; Hawkes, S.J.; Parry, B.T.; Collier, J.L. ASE suppression in a high energy Titanium sapphire amplifier. Opt. Express 2008, 16, 8039. [Google Scholar] [CrossRef] [PubMed]
- Ezra, N.; Arshanapalli, A.; Bednarek, R.; Akaishi, S.; Somani, A.-K. The microsecond 1064 nm Nd:YAG laser as an adjunct to improving surgical scars following Mohs micrographic surgery. J. Cosmet. Laser Ther. 2016, 18, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Siniaeva, M.L.; Siniavsky, M.N.; Pashinin, V.P.; Mamedov, A.A.; Konov, V.I.; Kononenko, V.V. Laser ablation of dental materials using a microsecond Nd:YAG laser. Laser Phys. 2009, 19, 1056–1060. [Google Scholar] [CrossRef]
- Choubey, A.; Jain, R.K.; Ali, S.; Singh, R.; Vishwakarma, S.C.; Agrawal, D.K.; Arya, R.; Kaul, R.; Upadhyaya, B.N.; Oak, S.M. Studies on pulsed Nd:YAG laser cutting of thick stainless steel in dry air and underwater environment for dismantling applications. Opt. Laser Technol. 2015, 71, 6–15. [Google Scholar] [CrossRef]
- Kumar, N.; Mukherjee, M.; Bandyopadhyay, A. Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Opt. Laser Technol. 2017, 88, 24–39. [Google Scholar] [CrossRef]
- Wang, H.; Lin, H.; Wang, C.; Zheng, L.; Hu, X. Laser drilling of structural ceramics—A review. J. Eur. Ceram. Soc. 2017, 37, 1157–1173. [Google Scholar] [CrossRef]
- Keppler, S.; Hornung, M.; Bödefeld, R.; Sävert, A.; Liebetrau, H.; Hein, J.; Kaluza, M.C. Full characterization of the amplified spontaneous emission from a diode-pumped high-power laser system. Opt. Express 2014, 22, 11228. [Google Scholar] [CrossRef]
- Keppler, S.; Sävert, A.; Körner, J.; Hornung, M.; Liebetrau, H.; Hein, J.; Kaluza, M.C. The generation of amplified spontaneous emission in high-power CPA laser systems. Laser Photon. Rev. 2016, 10, 264–277. [Google Scholar] [CrossRef]
- Voelkel, R.; Weible, K.J. Laser beam homogenizing: Limitations and constraints. Proc. SPIE 2010, 7102, 71020J. [Google Scholar] [CrossRef]
- Fuse, K. Flattop beam generation and multibeam processing using aspheric and diffractive optics. J. Laser Micro. Nanoen. 2010, 5, 156–162. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Sung, J.H.; Jeong, T.M.; Lee, S.K.; Yu, T.J.; Choi, I.W.; Lee, J. Analysis of Thermal Aberrations in the Power Amplifiers of a 10-Hz 100-TW Ti:sapphire Laser. J. Korean Phys. Soc. 2009, 55, 495–500. [Google Scholar] [CrossRef]
- Wu, F.; Yu, L.; Lu, J.; Li, W.; Xu, Y.; Leng, Y. Suppression of thermal lens effect in high-pulse-energy Ti:sapphire amplifiers. Opt. Laser Technol. 2017, 87, 94–98. [Google Scholar] [CrossRef]
- Ito, S.; Nagaoka, H.; Miura, T.; Kobayashi, K.; Endo, A.; Torizuka, K. Measurement of thermal lensing in a power amplifier of a terawatt Ti:sapphire laser. Appl. Phys. B Lasers Opt. 2002, 74, 343–347. [Google Scholar] [CrossRef]
- Khodakovskiy, N.; Kalashnikov, M.; Gontier, E.; Falcoz, F.; Paul, P.-M. Degradation of picosecond temporal contrast of Ti:sapphire lasers with coherent pedestals. Opt. Lett. 2016, 41, 4441–4444. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, D.N.; Ramirez, P.; Genevrier, K.; Ranc, L.; Lebas, N.; Pellegrina, A.; Le Blanc, C.; Monot, P.; Martin, L.; Zou, J.P.; et al. High-contrast 10 fs OPCPA-based front end for multi-PW laser chains. Opt. Lett. 2017, 42, 3530. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.; Cho, S.; Hwang, S.; Lee, B.; Yu, T.J. Modeling and Analysis of High-Power Ti:sapphire Laser Amplifiers–A Review. Appl. Sci. 2019, 9, 2396. https://doi.org/10.3390/app9122396
Jeong J, Cho S, Hwang S, Lee B, Yu TJ. Modeling and Analysis of High-Power Ti:sapphire Laser Amplifiers–A Review. Applied Sciences. 2019; 9(12):2396. https://doi.org/10.3390/app9122396
Chicago/Turabian StyleJeong, Jihoon, Seryeyohan Cho, Seungjin Hwang, Bongju Lee, and Tae Jun Yu. 2019. "Modeling and Analysis of High-Power Ti:sapphire Laser Amplifiers–A Review" Applied Sciences 9, no. 12: 2396. https://doi.org/10.3390/app9122396
APA StyleJeong, J., Cho, S., Hwang, S., Lee, B., & Yu, T. J. (2019). Modeling and Analysis of High-Power Ti:sapphire Laser Amplifiers–A Review. Applied Sciences, 9(12), 2396. https://doi.org/10.3390/app9122396