Personalized Online Live Video Streaming Using Softmax-Based Multinomial Classification
Abstract
:1. Introduction
2. Related Work
2.1. Progressive Download Method
2.2. HTTP-Based Adaptive Streaming (HAS) Method
2.3. Scalable Video Coding (SVC)
2.4. DASH
3. System Model and the Proposed Algorithm
3.1. System Model
3.2. Details of the Personalized UAS Method
Algorithm 1 Pseudo code of the UAS method. |
|
4. Experiments
4.1. Settings
4.2. Experimental Results
5. Conclusions and Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, S. Global Entertainment & Media Industry Status and Implications. Available online: http://www.kocca.kr/cop/bbs/view/B0000141/1823163.do?menuNo=200898 (accessed on 30 September 2014).
- Kim, J.; Caire, G.; Molisch, A.F. Quality-Aware Streaming and Scheduling for Device-to-Device Video Delivery. IEEE ACM Trans. Netw. 2016, 24, 2319–2331. [Google Scholar] [CrossRef]
- Yu, H.; Zheng, D.; Zhao, B.Y.; Zheng, W. Understanding user behavior in large-scale video-on-demand systems. In Proceedings of the ACM SIGOPS Operating Systems Review, New York, NY, USA, 1–14 April 2006; pp. 333–344. [Google Scholar]
- Mok, R.K.; Chan, E.W.; Luo, X.; Chang, R.K. Inferring the QoE of HTTP video streaming from user-viewing activities. In Proceedings of the First ACM SIGCOMM Workshop on Measurements up the Stack, Toronto, ON, Canada, 19 August 2011; pp. 31–36. [Google Scholar]
- Yang, F.; Wan, S.; Chang, Y.; Wu, H.R. A novel objective no-reference metric for digital video quality assessment. IEEE Signal Proc. Lett. 2005, 12, 685–688. [Google Scholar] [CrossRef]
- Ghinea, G.; Thomas, J.P. Quality of perception: User quality of service in multimedia presentations. IEEE Trans. Multimed. 2005, 7, 786–789. [Google Scholar] [CrossRef]
- Zhu, P.; Zeng, W.; Li, C. Joint design of source rate control and QoS-aware congestion control for video streaming over the internet. IEEE Trans. Multimed. 2007, 9, 366–376. [Google Scholar]
- Georgopoulos, P.; Elkhatib, Y.; Broadbent, M.; Mu, M.; Race, N. Towards network-wide QoE fairness using openflow-assisted adaptive video streaming. In Proceedings of the 2013 ACM SIGCOMM Workshop on Future Human-Centric Multimedia Networking, Hong Kong, China, 16 August 2013; pp. 15–20. [Google Scholar]
- Mok, R.K.; Chan, E.W.; Chang, R.K. Measuring the quality of experience of HTTP video streaming. In Proceedings of the Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium, Dublin, Ireland, 23–27 May 2011; pp. 485–492. [Google Scholar]
- Nam, H.; Kim, K.H.; Kim, J.Y.; Schulzrinne, H. Towards QoE-aware video streaming using SDN. In Proceedings of the Global Communications Conference (GLOBECOM), Austin, TX, USA, 9–13 December 2014; pp. 1317–1322. [Google Scholar]
- Garcia, M.N.; Dytko, D.; Raake, A. Quality impact due to initial loading, stalling, and video bitrate in progressive download video services. In Proceedings of the IEEE Quality of Multimedia Experience (QoMEX), Berlin, Germany, 8–20 September 2014; pp. 129–134. [Google Scholar]
- Chattopadhyay, S.; Ramaswamy, L.; Bhandarkar, S.M. A framework for encoding and caching of video for quality adaptive progressive download. In Proceedings of the 15th ACM International Conference on Multimedia, Seoul, Korea, 24–29 September 2007; pp. 775–778. [Google Scholar]
- Kim, S.; Yun, D.; Chung, K. Video Quality Adaptation Scheme for Improving QoE in HTTP Adaptive Streaming. In Proceedings of the IEEE International Conference on Information Networking (ICOIN), Kota Kinabalu, Malaysia, 9–11 January 2016; pp. 201–205. [Google Scholar]
- Koo, J.; Yi, J.; Kim, J.; Hoque, M.A.; Choi, S. REQUEST: Seamless Dynamic Adaptive Streaming over HTTP for Multi-Homed Smartphone under Resource Constraints. In Proceedings of the ACM International Conference on Multimedia (ACMMM), Mountain View, CA, USA, 21–25 October 2017. [Google Scholar]
- Cicalo, S.; Changuel, N.; Tralli, V.; Sayadi, B.; Faucheux, F.; Kerboeuf, S. Improving QoE and Fairness in HTTP Adaptive Streaming Over LTE Network. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 2284–2298. [Google Scholar] [CrossRef]
- Schwarz, H.; Marpe, D.; Wiegand, T. Overview of the scalable video coding extension of the H. 264/AVC standard. IEEE Trans. Circuits Syst. Video Technol. 2007, 17, 1103–1120. [Google Scholar] [CrossRef]
- Yoon, C.; Um, T.; Lee, H. Classification of N-Screen Services and its standardization. In Proceedings of the Advanced Communication Technology (ICACT), PyeongChang, Korea, 19–22 February 2012; pp. 597–602. [Google Scholar]
- Kim, J.; Tian, Y.; Mangold, S.; Molisch, A.F. Joint Scalable Coding and Routing for 60 GHz Real-Time Live HD Video Streaming Applications. IEEE Trans. Broadcast. 2013, 59, 500–512. [Google Scholar] [Green Version]
- Wien, M.; Cazoulat, R.; Graffunder, A.; Hutter, A.; Amon, P. Real-Time System for Adaptive Video Streaming Based on SVC. IEEE Trans. Circuits Syst. Video Technol. 2007, 17, 1227–1237. [Google Scholar] [CrossRef]
- Stockhammer, T. Dynamic adaptive streaming over HTTP–: Standards and design principles. In Proceedings of the Second Annual ACM Conference on Multimedia Systems, San Jose, CA, USA, 23–25 February 2011; pp. 133–144. [Google Scholar]
- Lin, R.; He, X.; Wang, S.; Luo, S.; Xiao, Y.; Zhang, X. Estimating End-to-End Available Bandwidth with Noises. IEEE Access 2017, 5, 22584–22589. [Google Scholar] [CrossRef]
- Duan, K.; Keerthi, S.S.; Chu, W.; Shevade, S.K.; Poo, A.N. Multi-category Classification by Soft-Max Combination of Binary Classifiers. Multiple Classifier Systems. MCS 2003. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2709. [Google Scholar]
- Tang, D.; Qin, B.; Liu, T. Learning semantic representations of users and products for document level sentiment classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; pp. 1014–1023. [Google Scholar]
- Chen, H.; Sun, M.; Tu, C.; Lin, Y.; Liu, Z. Neural sentiment classification with user and product attention. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 21 September 2016; pp. 1650–1659. [Google Scholar]
- Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.; Du, D.; Torr, P.H. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1529–1537. [Google Scholar]
- Morris, M.R.; Huang, A.; Paepcke, A.; Winograd, T. Cooperative gestures: Multi-user gestural interactions for co-located groupware. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Gaithersburg, MD, USA, 24 April 2006; pp. 1201–1210. [Google Scholar]
Title | Video ID | Total Length | Loading Time | Quality | Category |
---|---|---|---|---|---|
Along With the Gods | 5Z6XSZcV27Q | 2:00 | 0:48 | 480p | SF |
Love, Rosie | 5zL3YJKygd4 | 2:01 | 0:15 | 480p | Romance |
Relay of Nexen | S91KmOLt-Fg | 1:45 | 0:35 | 480p | Sport |
Golden Shoes | HzNlrpabXw0 | 2:55 | 1:18 | 480p | Documentary |
Familyhood | rvxGpkkjRyw | 1:24 | 0:32 | 480p | Comedy |
Category | SF | Romance | Sport | Documentary | Comedy |
---|---|---|---|---|---|
Chunk #1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
... | ... | ... | ... | ... | ... |
Chunk #10 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Category | SF | Romance | Sport | Documentary | Comedy |
---|---|---|---|---|---|
Chunk #1 | 0.2 | 0 | 0 | 0.3 | 0.1 |
Chunk #2 | 0 | 0 | 0 | 0.1 | 0.2 |
Chunk #3 | 0.3 | 0.3 | 0 | 0.2 | 0.1 |
Chunk #4 | 0 | 0.3 | 0.5 | 0.4 | 0.1 |
Chunk #5 | 0.4 | 0 | 0 | 0 | 0.1 |
Chunk #6 | 0 | 0 | 0 | 0 | 0.1 |
Chunk #7 | 0.1 | 0.3 | 0 | 0 | 0.2 |
Chunk #8 | 0 | 0.1 | 0.5 | 0 | 0.1 |
Category | Chunk Length (s) | Chunk Loading Time (s) |
---|---|---|
SF | 15 | 6 |
Romance | 15 | 1.875 |
Sport | 13.125 | 4.374 |
Documentary | 21.875 | 9.75 |
Comedy | 10.5 | 4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kwon, D.; Kim, J.; Mohaisen, A. Personalized Online Live Video Streaming Using Softmax-Based Multinomial Classification. Appl. Sci. 2019, 9, 2297. https://doi.org/10.3390/app9112297
Kim K, Kwon D, Kim J, Mohaisen A. Personalized Online Live Video Streaming Using Softmax-Based Multinomial Classification. Applied Sciences. 2019; 9(11):2297. https://doi.org/10.3390/app9112297
Chicago/Turabian StyleKim, Kyeongseon, Dohyun Kwon, Joongheon Kim, and Aziz Mohaisen. 2019. "Personalized Online Live Video Streaming Using Softmax-Based Multinomial Classification" Applied Sciences 9, no. 11: 2297. https://doi.org/10.3390/app9112297
APA StyleKim, K., Kwon, D., Kim, J., & Mohaisen, A. (2019). Personalized Online Live Video Streaming Using Softmax-Based Multinomial Classification. Applied Sciences, 9(11), 2297. https://doi.org/10.3390/app9112297