Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations
Abstract
:1. Introduction
2. Sample Structures and Experimental Procedures
3. Results and Discussions
3.1. Band Gap of InGaN
3.2. XRD Results
3.3. PL Results
3.4. TR-FWM Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wierer, J.J.; Li, Q.; Koleske, D.D.; Lee, S.R.; Wang, G.T. III-nitride core-shell nanowire arrayed solar cells. Nanotechnology 2012, 23, 194007. [Google Scholar] [CrossRef]
- Bhuiyan, A.G.; Sugita, K.; Hashimoto, A.; Yamamoto, A. InGaN solar cells: Present state of the art and important challenges. IEEE J. Photovolt. 2012, 2, 276–293. [Google Scholar] [CrossRef]
- Dahal, R.; Li, J.; Aryal, K.; Lin, J.Y.; Jiang, H.X. InGaN/GaN multiple quantum well concentrator solar cells. Appl. Phys. Lett. 2010, 97, 73115. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Kondo, S.; Yamamoto, S.; Nakao, T.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Amano, H. Concentrating Properties of Nitride-Based Solar Cells Using Different Electrodes. Jpn. J. Appl. Phys. 2013, 52, 08JH02. [Google Scholar] [CrossRef]
- Lien, D.H.; Hsiao, Y.H.; Yang, S.G.; Tsai, M.L.; Wei, T.C.; Lee, S.C.; He, J.H. Harsh photovoltaics using InGaN/GaN multiple quantum well schemes. Nano Energy 2015, 11, 104–109. [Google Scholar] [CrossRef]
- Jung, B.O.; Bae, S.Y.; Kim, S.Y.; Lee, S.; Lee, J.Y.; Lee, D.S.; Kato, Y.; Honda, Y.; Amano, H. Highly ordered catalyst-free InGaN/GaN core–shell architecture arrays with expanded active area region. Nano Energy 2015, 11, 294–303. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W.; Yu, K.M.; Shan, W.; Ager, J.W.; Haller, E.E.; Lu, H.; Schaff, W.J.; Metzger, W.K.; Kurtz, S. Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 2003, 94, 6477–6482. [Google Scholar] [CrossRef]
- Meneghesso, G.; Verzellesi, G.; Danesin, F.; Rampazzo, F.; Zanon, F.; Tazzoli, A.; Meneghini, M.; Zanoni, E. Reliability of GaN high-electron-mobility transistors: State of the art and perspectives. IEEE Trans. Device Mater. Reliab. 2008, 8, 332–343. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Xiao, H.; Yang, C.; Ran, J.; Wang, C.; Hou, Q.; Li, J. Simulation of In0.65Ga0.35N single-junction solar cell. J. Phys. D Appl. Phys. 2007, 40, 7335–7338. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Xiao, H.; Yang, C.; Ran, J.; Wang, C.; Hou, Q.; Li, J.; Wang, Z. Theoretical design and performance of InxGa1−xN two-junction solar cells. J. Phys. D Appl. Phys. 2008, 41, 245104. [Google Scholar] [CrossRef]
- Hsu, L.; Walukiewicz, W. Modeling of InGaN/Si tandem solar cells. J. Appl. Phys. 2008, 104, 024507. [Google Scholar] [CrossRef]
- Jani, O.; Ferguson, I.; Honsberg, C.; Kurtz, S. Design and characterization of Ga N/In Ga N solar cells. Appl. Phys. Lett. 2007, 91, 132117. [Google Scholar] [CrossRef]
- Young, N.G.; Farrell, R.M.; Hu, Y.L.; Terao, Y.; Iza, M.; Keller, S.; Denbaars, S.P.; Nakamura, S.; Speck, J.S. High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates. Appl. Phys. Lett. 2013, 103, 173903. [Google Scholar] [CrossRef]
- Young, N.G.; Perl, E.E.; Farrell, R.M.; Iza, M.; Keller, S.; Bowers, J.E.; Nakamura, S.; Denbaars, S.P.; Speck, J.S. High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration. Appl. Phys. Lett. 2014, 104, 163902. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Fujii, T.; Sugiyama, T.; Iida, D.; Isobe, Y.; Fujiyama, Y.; Morita, Y.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; et al. GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate. Appl. Phys. Express 2011, 4, 21001. [Google Scholar] [CrossRef]
- Lai, K.Y.; Lin, G.J.; Lai, Y.L.; Chen, Y.F.; He, J.H. Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells. Appl. Phys. Lett. 2010, 96, 81103. [Google Scholar] [CrossRef]
- Valdueza-felip, S.; Mukhtarova, A.; Pan, Q.; Altamura, G.; Grenet, L.; Durand, C.; Eymery, J.; Monroy, E.; Bougerol, C.; Peyrade, D.; et al. Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells. Jpn. J. Appl. Phys. 2013, 52, 08JH05. [Google Scholar] [CrossRef]
- Watanabe, N.; Mitsuhara, M.; Yokoyama, H.; Liang, J.; Shigekawa, N. Influence of InGaN/GaN multiple quantum well structure on photovoltaic characteristics of solar cell. Jpn. J. Appl. Phys. 2014, 53, 112301. [Google Scholar] [CrossRef]
- Mukhtarova, A.; Valdueza-Felip, S.; Redaelli, L.; Durand, C.; Bougerol, C.; Monroy, E.; Eymery, J. Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness. Appl. Phys. Lett. 2016, 108, 161907. [Google Scholar] [CrossRef]
- Okamoto, K.; Kaneta, A.; Inoue, K.; Kawakami, Y.; Terazima, M.; Shinomiya, G.; Mukai, T.; Fujita, S. Carrier dynamics in InGaN/GaN SQW structure probed by the transient grating method with subpicosecond pulsed laser. Phys. Status Solidi 2001, 228, 81–84. [Google Scholar] [CrossRef]
- Aleksiejunas, R.; Sudžius, M.; Gudelis, V.; Malinauskas, T.; Jarašiunas, K.; Fareed, Q.; Gaska, R.; Shur, M.S.; Zhang, J.; Yang, J.; et al. Carrier transport and recombination in InGaN/GaN heterostructures, studied by optical four-wave mixing technique. Phys. Status Solidi 2003, 7, 2686–2690. [Google Scholar] [CrossRef]
- Jarasiunas, K.; Aleksiejunas, R.; Malinauskas, T.; Miasojedovas, S.; Jursenas, S.; Zukauskas, A.; Gaska, R.; Zhang, J.; Shur, M.S.; Yang, J.W.; et al. Carrier diffusion and recombination in highly excited InGaN/GaN heterostructures. Phys. Status Solidi 2005, 202, 820–823. [Google Scholar] [CrossRef]
- Wang, H.C.; Yu, X.Y.; Chueh, Y.L.; Malinauskas, T.; Jarasiunas, K.; Feng, S.W. Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample. Opt. Express 2011, 19, 18893–18902. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Tang, T.Y.; Yang, C.C.; Malinauskas, T.; Jarasiunas, K. Carrier dynamics in coalescence overgrowth of GaN nanocolumns. Thin Solid Films 2010, 519, 863–867. [Google Scholar] [CrossRef]
- Wang, H.C.; Feng, S.W.; Malinauskas, T.; Jarasiunas, K.; Ting, C.C.; Liu, S.; Tsai, C.Y. Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate. Thin Solid Films 2010, 518, 7291–7294. [Google Scholar] [CrossRef]
- Malinauskas, T.; Aleksiejunas, R.; Jarašiunas, K.; Beaumont, B.; Gibart, P.; Kakanakova-Georgieva, A.; Janzen, E.; Gogova, D.; Monemar, B.; Heuken, M. All-optical characterization of carrier lifetimes and diffusion lengths in MOCVD-, ELO-, and HVPE-grown GaN. J. Cryst. Growth 2007, 300, 223–227. [Google Scholar] [CrossRef]
- Jarasiunas, K.; Aleksiejunas, R.; Malinauskas, T.; Gudelis, V.; Tamulevicius, T.; Tamulevicius, S.; Guobiene, A.; Usikov, A.; Dmitriev, V.; Gerritsen, H.J. Implementation of diffractive optical element in FWM scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers. Rev. Sci. Inst. 2007, 78, 033901. [Google Scholar] [CrossRef]
- Syvajarvi, M.; Yakimova, R. Wide Band Gap Materials and New Developments; Research Signpost: Linköping, Sweden, 2007. [Google Scholar]
- Wu, J.; Walukiewicz, W. Band gaps of InN and group III nitride alloys. Superlattices Microstruct. 2003, 34, 63–75. [Google Scholar] [CrossRef]
- Matsuoka, T.; Okamoto, H.; Nakao, M.; Harima, H.; Kurimoto, E. Optical bandgap energy of wurtzite InN. Appl. Phys. Lett. 2002, 81, 1246–1248. [Google Scholar] [CrossRef]
- Ryu, M.; Kuokstis, E.; Chen, C.; Yang, J.; Simin, G.; Khan, M.; Sim, G.; Yu, P. Indium-incorporation-induced transformation of optical, photoluminescence and lasing properties of InGaN epilayers. Solid State Commun. 2003, 126, 329–332. [Google Scholar] [CrossRef]
- White, M.E.; O’Donnell, K.P.; Martin, R.W.; Pereira, S.; Deatcher, C.J.; Watson, I.M. Photoluminescence excitation spectroscopy of InGaN epilayers. Mater. Sci. Eng. 2002, 93, 147–149. [Google Scholar] [CrossRef]
- Perlin, P.; Kisielowski, C. InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy. Appl. Phys. Lett. 1998, 73, 2778. [Google Scholar] [CrossRef]
- Luca, M.D.; Pettinari, G.; Ciatto, G.; Amidani, L.; Filippone, F.; Polimeni, A.; Fonda, E.; Boscherini, F.; Bonapasta, A.A.; Giubertoni, D.; et al. Identification of four-hydrogen complexes in In-rich InxGa1−xN (x>0.4) alloys using photoluminescence, x-ray absorption, and density functional theory. Phys. Rev. B 2012, 86, 201202. [Google Scholar] [CrossRef]
- Halsall, M.P.; Nicholls, J.E.; Davies, J.J.; Cockayne, B.; Wright, P.J. CdS/CdSe intrinsic stark superlattices. J. Appl. Phys. 1992, 71, 907–915. [Google Scholar] [CrossRef]
- Bechstedt, F.; Furthmüller, J.; Ferhat, M.; Teles, L.K.; Scolfaro, L.M.R.; Leite, J.R.; Davydov, V.Y.; Ambacher, O.; Goldhahn, R. Energy gap and optical properties of InxGa1–xN. Phys. Status Solidi 2003, 195, 628–633. [Google Scholar] [CrossRef]
- Vaitkus, S.; Jarasiunas, K.; Gaubas, E.; Jonikas, L.; Pranaitis, R.; Subacius, L. The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon. IEEE J. Quantum Electr. 1986, 22, 1298–1305. [Google Scholar] [CrossRef]
- Cho, Y.H.; Gainer, G.H.; Fischer, A.J.; Song, J.J.; Keller, S.; Mishra, U.K.; DenBarrs, S.P. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 1998, 73, 1370–1372. [Google Scholar] [CrossRef]
- Eliseev, P.G.; Perlin, P.; Lee, J.; Osinski, M. “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources. Appl. Phys. Lett. 1997, 71, 569–571. [Google Scholar] [CrossRef]
- Wang, H.C.; Lu, Y.C.; Teng, C.C.; Chen, Y.S.; Yang, C.C.; Ma, K.J.; Pan, C.C.; Chyi, J.I. Ultrafast Carrier Dynamics in an InGaN Thin Film. J. Appl. Phys. 2005, 97, 033704. [Google Scholar] [CrossRef]
InGaN | Eg (eV) |
---|---|
In0.27Ga0.73N | 2.389 |
In0.48Ga0.52N | 1.747 |
In0.19Ga0.81N | 2.667 |
In0.47Ga0.53N | 1.775 |
In0.2Ga0.8N | 2.631 |
In0.15Ga0.85N | 2.813 |
Sample | SI 27 | CSI 27 | PIN27 | PIN 15 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(cm2/s, ns, ps) | (cm2/s, ns, ps) | (cm2/s, ns, ps) | (cm2/s, ns, ps) | ||||||||||
I0 (mJ/cm2) | Da | τR | τG | Da | τR | τG | Da | τR | τG | Da | τR | τG | |
8.8 | 1.73 | 1.48 | 360 | 1.83 | 1.59 | 367 | 2.73 | 0.15 | 26 | 2.56 | 0.45 | 228 | |
4.0 | 1.60 | 1.35 | 223 | 1.74 | 1.33 | 305 | - | 2.32 | 0.42 | 184 | |||
2.3 | 1.23 | 1.22 | 161 | 1.53 | 1.25 | 263 | 2.08 | 0.31 | 168 | ||||
1.5 | - | 1.28 | 1.05 | 130 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.T.; Nguyen, H.T.; Feng, S.-W.; Wang, H.-C.; Chou, H.-L. Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations. Appl. Sci. 2019, 9, 2279. https://doi.org/10.3390/app9112279
Ye ZT, Nguyen HT, Feng S-W, Wang H-C, Chou H-L. Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations. Applied Sciences. 2019; 9(11):2279. https://doi.org/10.3390/app9112279
Chicago/Turabian StyleYe, Zhi Ting, Hong Thai Nguyen, Shih-Wei Feng, Hsiang-Chen Wang, and Hwei-Ling Chou. 2019. "Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations" Applied Sciences 9, no. 11: 2279. https://doi.org/10.3390/app9112279
APA StyleYe, Z. T., Nguyen, H. T., Feng, S.-W., Wang, H.-C., & Chou, H.-L. (2019). Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations. Applied Sciences, 9(11), 2279. https://doi.org/10.3390/app9112279