Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations
Abstract
1. Introduction
2. Sample Structures and Experimental Procedures
3. Results and Discussions
3.1. Band Gap of InGaN
3.2. XRD Results
3.3. PL Results
3.4. TR-FWM Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wierer, J.J.; Li, Q.; Koleske, D.D.; Lee, S.R.; Wang, G.T. III-nitride core-shell nanowire arrayed solar cells. Nanotechnology 2012, 23, 194007. [Google Scholar] [CrossRef]
- Bhuiyan, A.G.; Sugita, K.; Hashimoto, A.; Yamamoto, A. InGaN solar cells: Present state of the art and important challenges. IEEE J. Photovolt. 2012, 2, 276–293. [Google Scholar] [CrossRef]
- Dahal, R.; Li, J.; Aryal, K.; Lin, J.Y.; Jiang, H.X. InGaN/GaN multiple quantum well concentrator solar cells. Appl. Phys. Lett. 2010, 97, 73115. [Google Scholar] [CrossRef]
- Mori, M.; Kondo, S.; Yamamoto, S.; Nakao, T.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; Akasaki, I.; Amano, H. Concentrating Properties of Nitride-Based Solar Cells Using Different Electrodes. Jpn. J. Appl. Phys. 2013, 52, 08JH02. [Google Scholar] [CrossRef]
- Lien, D.H.; Hsiao, Y.H.; Yang, S.G.; Tsai, M.L.; Wei, T.C.; Lee, S.C.; He, J.H. Harsh photovoltaics using InGaN/GaN multiple quantum well schemes. Nano Energy 2015, 11, 104–109. [Google Scholar] [CrossRef]
- Jung, B.O.; Bae, S.Y.; Kim, S.Y.; Lee, S.; Lee, J.Y.; Lee, D.S.; Kato, Y.; Honda, Y.; Amano, H. Highly ordered catalyst-free InGaN/GaN core–shell architecture arrays with expanded active area region. Nano Energy 2015, 11, 294–303. [Google Scholar] [CrossRef]
- Wu, J.; Walukiewicz, W.; Yu, K.M.; Shan, W.; Ager, J.W.; Haller, E.E.; Lu, H.; Schaff, W.J.; Metzger, W.K.; Kurtz, S. Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system. J. Appl. Phys. 2003, 94, 6477–6482. [Google Scholar] [CrossRef]
- Meneghesso, G.; Verzellesi, G.; Danesin, F.; Rampazzo, F.; Zanon, F.; Tazzoli, A.; Meneghini, M.; Zanoni, E. Reliability of GaN high-electron-mobility transistors: State of the art and perspectives. IEEE Trans. Device Mater. Reliab. 2008, 8, 332–343. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Xiao, H.; Yang, C.; Ran, J.; Wang, C.; Hou, Q.; Li, J. Simulation of In0.65Ga0.35N single-junction solar cell. J. Phys. D Appl. Phys. 2007, 40, 7335–7338. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Xiao, H.; Yang, C.; Ran, J.; Wang, C.; Hou, Q.; Li, J.; Wang, Z. Theoretical design and performance of InxGa1−xN two-junction solar cells. J. Phys. D Appl. Phys. 2008, 41, 245104. [Google Scholar] [CrossRef]
- Hsu, L.; Walukiewicz, W. Modeling of InGaN/Si tandem solar cells. J. Appl. Phys. 2008, 104, 024507. [Google Scholar] [CrossRef]
- Jani, O.; Ferguson, I.; Honsberg, C.; Kurtz, S. Design and characterization of Ga N/In Ga N solar cells. Appl. Phys. Lett. 2007, 91, 132117. [Google Scholar] [CrossRef]
- Young, N.G.; Farrell, R.M.; Hu, Y.L.; Terao, Y.; Iza, M.; Keller, S.; Denbaars, S.P.; Nakamura, S.; Speck, J.S. High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates. Appl. Phys. Lett. 2013, 103, 173903. [Google Scholar] [CrossRef]
- Young, N.G.; Perl, E.E.; Farrell, R.M.; Iza, M.; Keller, S.; Bowers, J.E.; Nakamura, S.; Denbaars, S.P.; Speck, J.S. High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration. Appl. Phys. Lett. 2014, 104, 163902. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Fujii, T.; Sugiyama, T.; Iida, D.; Isobe, Y.; Fujiyama, Y.; Morita, Y.; Iwaya, M.; Takeuchi, T.; Kamiyama, S.; et al. GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate. Appl. Phys. Express 2011, 4, 21001. [Google Scholar] [CrossRef]
- Lai, K.Y.; Lin, G.J.; Lai, Y.L.; Chen, Y.F.; He, J.H. Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells. Appl. Phys. Lett. 2010, 96, 81103. [Google Scholar] [CrossRef]
- Valdueza-felip, S.; Mukhtarova, A.; Pan, Q.; Altamura, G.; Grenet, L.; Durand, C.; Eymery, J.; Monroy, E.; Bougerol, C.; Peyrade, D.; et al. Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells. Jpn. J. Appl. Phys. 2013, 52, 08JH05. [Google Scholar] [CrossRef]
- Watanabe, N.; Mitsuhara, M.; Yokoyama, H.; Liang, J.; Shigekawa, N. Influence of InGaN/GaN multiple quantum well structure on photovoltaic characteristics of solar cell. Jpn. J. Appl. Phys. 2014, 53, 112301. [Google Scholar] [CrossRef]
- Mukhtarova, A.; Valdueza-Felip, S.; Redaelli, L.; Durand, C.; Bougerol, C.; Monroy, E.; Eymery, J. Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness. Appl. Phys. Lett. 2016, 108, 161907. [Google Scholar] [CrossRef]
- Okamoto, K.; Kaneta, A.; Inoue, K.; Kawakami, Y.; Terazima, M.; Shinomiya, G.; Mukai, T.; Fujita, S. Carrier dynamics in InGaN/GaN SQW structure probed by the transient grating method with subpicosecond pulsed laser. Phys. Status Solidi 2001, 228, 81–84. [Google Scholar] [CrossRef]
- Aleksiejunas, R.; Sudžius, M.; Gudelis, V.; Malinauskas, T.; Jarašiunas, K.; Fareed, Q.; Gaska, R.; Shur, M.S.; Zhang, J.; Yang, J.; et al. Carrier transport and recombination in InGaN/GaN heterostructures, studied by optical four-wave mixing technique. Phys. Status Solidi 2003, 7, 2686–2690. [Google Scholar] [CrossRef]
- Jarasiunas, K.; Aleksiejunas, R.; Malinauskas, T.; Miasojedovas, S.; Jursenas, S.; Zukauskas, A.; Gaska, R.; Zhang, J.; Shur, M.S.; Yang, J.W.; et al. Carrier diffusion and recombination in highly excited InGaN/GaN heterostructures. Phys. Status Solidi 2005, 202, 820–823. [Google Scholar] [CrossRef]
- Wang, H.C.; Yu, X.Y.; Chueh, Y.L.; Malinauskas, T.; Jarasiunas, K.; Feng, S.W. Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample. Opt. Express 2011, 19, 18893–18902. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Tang, T.Y.; Yang, C.C.; Malinauskas, T.; Jarasiunas, K. Carrier dynamics in coalescence overgrowth of GaN nanocolumns. Thin Solid Films 2010, 519, 863–867. [Google Scholar] [CrossRef]
- Wang, H.C.; Feng, S.W.; Malinauskas, T.; Jarasiunas, K.; Ting, C.C.; Liu, S.; Tsai, C.Y. Carrier dynamics in InGaN/GaN multiple quantum wells based on different polishing processes of sapphire substrate. Thin Solid Films 2010, 518, 7291–7294. [Google Scholar] [CrossRef]
- Malinauskas, T.; Aleksiejunas, R.; Jarašiunas, K.; Beaumont, B.; Gibart, P.; Kakanakova-Georgieva, A.; Janzen, E.; Gogova, D.; Monemar, B.; Heuken, M. All-optical characterization of carrier lifetimes and diffusion lengths in MOCVD-, ELO-, and HVPE-grown GaN. J. Cryst. Growth 2007, 300, 223–227. [Google Scholar] [CrossRef]
- Jarasiunas, K.; Aleksiejunas, R.; Malinauskas, T.; Gudelis, V.; Tamulevicius, T.; Tamulevicius, S.; Guobiene, A.; Usikov, A.; Dmitriev, V.; Gerritsen, H.J. Implementation of diffractive optical element in FWM scheme for ex situ characterization of hydride vapor phase epitaxy-grown GaN layers. Rev. Sci. Inst. 2007, 78, 033901. [Google Scholar] [CrossRef]
- Syvajarvi, M.; Yakimova, R. Wide Band Gap Materials and New Developments; Research Signpost: Linköping, Sweden, 2007. [Google Scholar]
- Wu, J.; Walukiewicz, W. Band gaps of InN and group III nitride alloys. Superlattices Microstruct. 2003, 34, 63–75. [Google Scholar] [CrossRef]
- Matsuoka, T.; Okamoto, H.; Nakao, M.; Harima, H.; Kurimoto, E. Optical bandgap energy of wurtzite InN. Appl. Phys. Lett. 2002, 81, 1246–1248. [Google Scholar] [CrossRef]
- Ryu, M.; Kuokstis, E.; Chen, C.; Yang, J.; Simin, G.; Khan, M.; Sim, G.; Yu, P. Indium-incorporation-induced transformation of optical, photoluminescence and lasing properties of InGaN epilayers. Solid State Commun. 2003, 126, 329–332. [Google Scholar] [CrossRef]
- White, M.E.; O’Donnell, K.P.; Martin, R.W.; Pereira, S.; Deatcher, C.J.; Watson, I.M. Photoluminescence excitation spectroscopy of InGaN epilayers. Mater. Sci. Eng. 2002, 93, 147–149. [Google Scholar] [CrossRef]
- Perlin, P.; Kisielowski, C. InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy. Appl. Phys. Lett. 1998, 73, 2778. [Google Scholar] [CrossRef]
- Luca, M.D.; Pettinari, G.; Ciatto, G.; Amidani, L.; Filippone, F.; Polimeni, A.; Fonda, E.; Boscherini, F.; Bonapasta, A.A.; Giubertoni, D.; et al. Identification of four-hydrogen complexes in In-rich InxGa1−xN (x>0.4) alloys using photoluminescence, x-ray absorption, and density functional theory. Phys. Rev. B 2012, 86, 201202. [Google Scholar] [CrossRef]
- Halsall, M.P.; Nicholls, J.E.; Davies, J.J.; Cockayne, B.; Wright, P.J. CdS/CdSe intrinsic stark superlattices. J. Appl. Phys. 1992, 71, 907–915. [Google Scholar] [CrossRef]
- Bechstedt, F.; Furthmüller, J.; Ferhat, M.; Teles, L.K.; Scolfaro, L.M.R.; Leite, J.R.; Davydov, V.Y.; Ambacher, O.; Goldhahn, R. Energy gap and optical properties of InxGa1–xN. Phys. Status Solidi 2003, 195, 628–633. [Google Scholar] [CrossRef]
- Vaitkus, S.; Jarasiunas, K.; Gaubas, E.; Jonikas, L.; Pranaitis, R.; Subacius, L. The diffraction of light by transient gratings in crystalline, ion-implanted, and amorphous silicon. IEEE J. Quantum Electr. 1986, 22, 1298–1305. [Google Scholar] [CrossRef]
- Cho, Y.H.; Gainer, G.H.; Fischer, A.J.; Song, J.J.; Keller, S.; Mishra, U.K.; DenBarrs, S.P. “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 1998, 73, 1370–1372. [Google Scholar] [CrossRef]
- Eliseev, P.G.; Perlin, P.; Lee, J.; Osinski, M. “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources. Appl. Phys. Lett. 1997, 71, 569–571. [Google Scholar] [CrossRef]
- Wang, H.C.; Lu, Y.C.; Teng, C.C.; Chen, Y.S.; Yang, C.C.; Ma, K.J.; Pan, C.C.; Chyi, J.I. Ultrafast Carrier Dynamics in an InGaN Thin Film. J. Appl. Phys. 2005, 97, 033704. [Google Scholar] [CrossRef]
InGaN | Eg (eV) |
---|---|
In0.27Ga0.73N | 2.389 |
In0.48Ga0.52N | 1.747 |
In0.19Ga0.81N | 2.667 |
In0.47Ga0.53N | 1.775 |
In0.2Ga0.8N | 2.631 |
In0.15Ga0.85N | 2.813 |
Sample | SI 27 | CSI 27 | PIN27 | PIN 15 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(cm2/s, ns, ps) | (cm2/s, ns, ps) | (cm2/s, ns, ps) | (cm2/s, ns, ps) | ||||||||||
I0 (mJ/cm2) | Da | τR | τG | Da | τR | τG | Da | τR | τG | Da | τR | τG | |
8.8 | 1.73 | 1.48 | 360 | 1.83 | 1.59 | 367 | 2.73 | 0.15 | 26 | 2.56 | 0.45 | 228 | |
4.0 | 1.60 | 1.35 | 223 | 1.74 | 1.33 | 305 | - | 2.32 | 0.42 | 184 | |||
2.3 | 1.23 | 1.22 | 161 | 1.53 | 1.25 | 263 | 2.08 | 0.31 | 168 | ||||
1.5 | - | 1.28 | 1.05 | 130 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.T.; Nguyen, H.T.; Feng, S.-W.; Wang, H.-C.; Chou, H.-L. Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations. Appl. Sci. 2019, 9, 2279. https://doi.org/10.3390/app9112279
Ye ZT, Nguyen HT, Feng S-W, Wang H-C, Chou H-L. Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations. Applied Sciences. 2019; 9(11):2279. https://doi.org/10.3390/app9112279
Chicago/Turabian StyleYe, Zhi Ting, Hong Thai Nguyen, Shih-Wei Feng, Hsiang-Chen Wang, and Hwei-Ling Chou. 2019. "Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations" Applied Sciences 9, no. 11: 2279. https://doi.org/10.3390/app9112279
APA StyleYe, Z. T., Nguyen, H. T., Feng, S.-W., Wang, H.-C., & Chou, H.-L. (2019). Carrier Dynamics in InGaN/GaN on the Basis of Different In Concentrations. Applied Sciences, 9(11), 2279. https://doi.org/10.3390/app9112279