A Novel Wavelet-Based Algorithm for Detection of QRS Complex
1
Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
2
Heart Center, Cheng Hsin General Hospital, Taipei 112, Taiwan
3
Faculty of Medicine, School of Medicine, National Yang Ming University, Taipei 112, Taiwan
*
Author to whom correspondence should be addressed.
Appl. Sci. 2019, 9(10), 2142; https://doi.org/10.3390/app9102142
Received: 22 April 2019 / Revised: 16 May 2019 / Accepted: 23 May 2019 / Published: 26 May 2019
(This article belongs to the Special Issue Applied Sciences Based on and Related to Computer and Control)
Accurate QRS detection is an important first step for almost all automatic electrocardiogram (ECG) analyzing systems. However, QRS detection is difficult, not only because of the wide variety of ECG waveforms but also because of the interferences caused by various types of noise. This study proposes an improved QRS complex detection algorithm based on a four-level biorthogonal spline wavelet transform. A noise evaluation method is proposed to quantify the noise amount and to select a lower-noise wavelet detail signal instead of removing high-frequency components in the preprocessing stage. The QRS peaks can be detected by the extremum pairs in the selected wavelet detail signal and the proposed decision rules. The results show the high accuracy of the proposed algorithm, which achieves a 0.25% detection error rate, 99.84% sensitivity, and 99.92% positive prediction value, evaluated using the MIT-BIT arrhythmia database. The proposed algorithm improves the accuracy of QRS detection in comparison with several wavelet-based and non-wavelet-based approaches.
View Full-Text
▼
Show Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
MDPI and ACS Style
Lin, C.-C.; Chang, H.-Y.; Huang, Y.-H.; Yeh, C.-Y. A Novel Wavelet-Based Algorithm for Detection of QRS Complex. Appl. Sci. 2019, 9, 2142.
Show more citation formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.