# A Self-Consistent Physical Model of the Bubbles in a Gas Solid Two-Phase Flow

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Model

#### 2.1. PR Equation and the Heat Capacity Ratio of Bubbles

#### 2.2. Gas Velocity Equation in the Gas-Solid Two-Phase Flow System

#### 2.3. Bubble Size and Velocity Equation

## 3. Results and Discussion

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Kadanoff Leo, P. Built upon sand: Theoretical ideas inspired by granular flows. Rev. Mod. Phys.
**1999**, 71, 435. [Google Scholar] [CrossRef] - Zhao, Y.M.; Duan, C.L.; Wu, L.L.; Zhang, H.J.; He, J.F.; He, Y.Q. The Separation mechanism and application of a tapered diameter Separation Bed. Int. J. Environ. Sci. Technol.
**2012**, 9, 719–728. [Google Scholar] [CrossRef] - Yuan, Z.L.; Zhu, L.P.; Geng, F.; Peng, Z.B. Gas-Solid Two Phase Flow and Numerical Simulation; Southeast University Press: Nanjing, China, 2012. [Google Scholar]
- Glasser, B.J.; Sundaresan, S.; Kevrekidis, I.G. From Bubbles to Clusters in Fluidized Beds. Phys. Rev. Lett.
**1998**, 81, 1849. [Google Scholar] [CrossRef] - Martyushev, L.M.; Celezneff, V. Nonequilibrium Thermodynamics and Scale Invariance. Entropy
**2017**, 19, 126. [Google Scholar] [CrossRef] - Harrision, D.; Leung, L.S. Bubble Formation at an Orifice in a Fluidized Bed. Nature
**1961**, 190, 433–434. [Google Scholar] [CrossRef] - Pak, H.K.; Behringer, R.P. Bubbling in vertically vibrated granular materials. Nature
**1994**, 371, 231–233. [Google Scholar] [CrossRef] - Xiong, Q.; Lia, B.; Zhou, G.; Fang, X.; Xu, J.; Wang, J.; He, X.; Wang, X.; Wang, L.; Ge, W.; et al. Large-scale DNS of gas–solid flows on Mole-8.5. Chem. Eng. Sci.
**2012**, 71, 422–430. [Google Scholar] [CrossRef] - Van Lare, C.E.J.; Piepers, H.W.; Sehoonderbeek, J.N.; Schoonderbeek, J.N.; Thoenes, D. Investigation on bubble characteristics in a gas fluidized bed. Chem. Eng. Sci.
**1997**, 52, 829–841. [Google Scholar] [CrossRef] - Ichiki, K.; Hayakawa, H. Dynamical simulation of fluidized beds: Hydrodynamically interacting granular particles. Phys. Rev. E
**1995**, 52, 658. [Google Scholar] [CrossRef] - Farshi, A.; Javaherizaden, H.; Hamzavi Abedi, M.A. An investigation of the effect of bubble diameter on the performance of gas-solid fluidized bed reactor and two-phase modeling of bubbling fluidized bed reactor in melamine production. Pet. Coal
**2008**, 50, 11–22. [Google Scholar] - Valverde, J.M.; Castellanos, A.; Mills, P.; Quintanilla, M.A.S. Effect of particle size and interparticle force on the fluidization behavior of gas-fluidized beds. Phys. Rev. E
**2003**, 67, 051305. [Google Scholar] [CrossRef] [PubMed] - Müller, C.R.; Davidson, J.F.; Dennis, J.S.; Fennell, P.S.; Gladden, L.F.; Hayhurst, A.N.; Mantle, M.D.; Rees, A.C.; Sederman, A.J. Real-Time Measurement of Bubbling Phenomena in a Three-Dimensional Gas-Fluidized Bed Using Ultrafast Magnetic Resonance Imaging. Phys. Rev. Lett.
**2006**, 96, 154504. [Google Scholar] - Homsy, G.M. Nonlinear Waves and the Origin of Bubbles in Fluidized Beds. Appl. Sci. Res.
**1998**, 58, 251–274. [Google Scholar] [CrossRef] - Tafreshi, Z.M.; Kingsley, O.G.; Adesoji, A.A. A two-phase model for variable-density fluidized bed reactors with generalized nonlinear kinetics. Can. J. Chem. Eng.
**2000**, 78, 815–826. [Google Scholar] [CrossRef] - Komatsu, T.S.; Hayakawa, H. Nonlinear waves in fluidized beds. Phys. Lett. A
**1993**, 183, 56–62. [Google Scholar] [CrossRef] - Choi, J.H.; Son, J.E.; Kim, S.D. Bubble size and frequency in gas fluidized beds. J. Chem. Eng. Jpn.
**1988**, 21, 171–178. [Google Scholar] [CrossRef] - Al-Zahrani, A.A.; Daous, M.A. Bed expansion and average bubble rise velocity in a gas-solid fluidized bed. Powder Technol.
**1996**, 87, 255–257. [Google Scholar] [CrossRef] - Best, J.P. The formation of toroidal bubbles upon the collapse of transient cavities. J. Fluid Mech.
**1993**, 251, 79–107. [Google Scholar] [CrossRef] - Tian, J.X.; Jiang, H.; Guic, Y.X.; Mulerod, A. Equation of state for hard-sphere fluids offering accurate virial coefficients. Phys. Chem. Chem. Phys.
**2009**, 11, 11213–11218. [Google Scholar] [CrossRef] [PubMed] - Martín, C.; Jørgen, M. Development and application of a three-parameter RK–PR equation of state. Fluid Phase Equilibria
**2005**, 232, 74–89. [Google Scholar] - Gasem, K.A.M.; Gao, W.; Pan, Z.; Robinson, R.L., Jr. A modified temperature dependence for the Peng–Robinson equation of state. Fluid Phase Equilibria
**2001**, 181, 113–125. [Google Scholar] [CrossRef] - Vandermeulen, J.; Leliaert, J.; Dupre, L.; Van Waeyenberge, B. Field-driven chiral bubble dynamics analysed by a semi-analytical approach. J. Phys. D
**2017**, 50. [Google Scholar] [CrossRef] - Wei, L.P.; Lu, Y.J. Bubble dynamic wave velocity in fluidized bed. Chem. Eng. Sci.
**2016**, 147, 21–29. [Google Scholar] [CrossRef] - Syamlal, M.; O’Brien, T.J. Fluid dynamic simulation of O
_{3}decomposition in a bubbling fluidized bed. AICHE J.**2003**, 49, 2793–2801. [Google Scholar] [CrossRef] - Sau, D.C.; Mohanty, S.; Biswal, K.C. Prediction of critical fluidization velocity and maximum bed pressure drop for binary mixture of regular particles in gas–solid tapered fluidized beds. Chem. Eng. Process.
**2008**, 47, 2114–2120. [Google Scholar] [CrossRef] - Zhang, C.X.; Qian, W.Z.; Wei, F. Instability of uniform fluidization. Chem. Eng. Sci.
**2017**, 173, 187–195. [Google Scholar] [CrossRef] - Darton, R.C.; Lanauze, R.D.; Davidson, J.F.; Harrison, D. Bubble Growth due to Coalescence in Fluidized Beds. Trans. Inst. Chem. Eng.
**1977**, 55, 274–280. [Google Scholar] - Zhang, C.X.; Li, P.L.; Lei, C.; Qian, W.Z.; Wei, F. Experimental study of non-uniform bubble growth in deep fluidized beds. Chem. Eng. Sci.
**2018**, 176, 515–523. [Google Scholar] [CrossRef] - Chen, L.M.; Yang, X.G.; Li, G.; Yang, J.; Wen, C.H.; Li, X.; Snape, C. Dynamic modelling of fluidisation in gas-solid bubbling fluidised beds. Powder Technol.
**2017**, 322, 461–470. [Google Scholar] [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dong, H.; He, J.; Duan, C.; Zhao, Y.
A Self-Consistent Physical Model of the Bubbles in a Gas Solid Two-Phase Flow. *Appl. Sci.* **2018**, *8*, 360.
https://doi.org/10.3390/app8030360

**AMA Style**

Dong H, He J, Duan C, Zhao Y.
A Self-Consistent Physical Model of the Bubbles in a Gas Solid Two-Phase Flow. *Applied Sciences*. 2018; 8(3):360.
https://doi.org/10.3390/app8030360

**Chicago/Turabian Style**

Dong, Haiming, Jingfeng He, Chenlong Duan, and Yuemin Zhao.
2018. "A Self-Consistent Physical Model of the Bubbles in a Gas Solid Two-Phase Flow" *Applied Sciences* 8, no. 3: 360.
https://doi.org/10.3390/app8030360