A Heuristic Method for the Reduction of the Outage Rate of High-Voltage Substations Due to Atmospheric Overvoltages
Abstract
:1. Introduction
2. Protection of High-Voltage Substations against Lightning Surges
3. Calculation of the Outage Rate
- RP,ph, the shielding penetration rate of the connected line within the limit distance,
- P(Icr,SF), the probability that corresponds to the current that causes a line insulation flashover at negative polarity,
- P(Im,SF), the lightning current probability that corresponds to the maximum shielding current.
- Rp,gw, the rate of lightning strokes to the overhead ground wires of the connected transmission line within the limit distance (strikes/year) [22], and
4. System Under Examination
- r, the radius of the tower base (m), and
- h, the height of the tower (m).
- D, the length of the insulator string (m), and
- t, the elapsed time after lightning stroke (μs).
- R(I), the grounding resistance,
- Ro, the low current of grounding resistance,
- Ig, the limiting current to initiate sufficient soil ionization, and
- ρ, the soil resistivity.
5. The Impact of Various Factors on the Lightning Performance of High-Voltage Substations
6. Heuristic Method for the Upgrade of the Lightning Performance of High-Voltage Substation
- Step 1:
- data input (number of towers, span length, type of tower, geometrical characteristics of towers, BIL, conductors’ cross section of the transmission line, TFR of each tower, cable length, conductors’ cross section of the cable, electrical characteristics of power transformer, electrical characteristics of surge arresters, installation position of surge arresters, characteristics of lightning current).
- Step 2:
- calculation of R according to the procedures presented in Section 3.
- Step 3:
- if R < 0.005 then end, else go to the Step 4.
- Step 4:
- set IT equal to zero and recalculate R.
- Step 5:
- if R < 0.005 then end, else go to the Step 6.
- Step 6:
- Set the grounding resistance of the towers (except from the first tower near the substation) equal to 80% of its initial value and recalculate R.
- Step 7:
- if R < 0.005 then end, else go to the Step 8.
- Step 8:
- Set the cable length equal to 200% of its initial value in the case that 300 m < ET 400 m or equal to 165% of its initial value in the case that 400 < ET 600 or equal to 135% of its initial value in the case that 600 m < ET 1000 m and recalculate R or equal to 117% of its initial value in the case that 1000 m < ET 1500 m and recalculate R or equal to 108% of its initial value in the case that 1500 m < ET 2000 m and recalculate R.
- Step 9:
- Calculation of R, then end.
7. Discussion
8. Conclusions
Author Contributions
Conflicts of Interest
References
- Laughton, M.A.; Warne, D.J. Electrical Engineer’s Reference Book, 16th ed.; Elsevier Science: Great Britain, UK, 2003. [Google Scholar]
- Nagarsheth, R.; Singh, S. Study of gas insulated substation and its comparison with air insulated substation. Electr. Power Energy Syst. 2014, 55, 481–485. [Google Scholar] [CrossRef]
- Weck, K.H. Lightning performance of substations. In Proceedings of the CIGRE, SC 33, Rio de Janeiro, Brazil, 12–17 July 1981. [Google Scholar]
- Grigsby, L.L. Electric Power Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- McDonald, J. Electric Power Substations Engineering, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Franc, B.; Filipovic-Grcic, B.; Milardic, V. Lightning overvoltage performance of 110 kV air-insulated substation. Electr. Power Syst. Res. 2016, 138, 78–84. [Google Scholar] [CrossRef]
- Kessel, A.; Atlason, V.; Bak, C.L.; Lund, J. Lightning simulation of a combined overhead line/cable connected. In Proceedings of the 29th International Conference on Lightning Protection, Uppsala, Sweden, 23–26 June 2008. paper 6a-6-1. [Google Scholar]
- Bak, C.L.; Einarsdottir, K.E.; Andresson, E.; Wiechowski, W. Overvoltage Protection of Large Power Transformers—A Real-Life Study Case. IEEE Trans. Power Deliv. 2008, 23, 657–666. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Mirzaie, M.; Barforoshi, T. Impact of surge arrester number and placement on reliability and lightning overvoltage level in high voltage substations. Electr. Power Energy Syst. 2015, 65, 146–158. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, D.H.; Lee, S.R.; Yang, B.M.; Jang, G. The insulation coordination and surge arrester design for HTS cable system in Icheon substation. Physica 2013, 484, 223–228. [Google Scholar] [CrossRef]
- Trainba, Μ.; Christodoulou, C.A.; Vita, V.; Ekonomou, L. Lightning overvoltage and protection of power substations. WSEAS Trans. Power Syst. 2017, 12, 107–114. [Google Scholar]
- Christodoulou, C.A.; Vita, V.; Ekonomou, L. Studies for the more effective protection of MV/LV substations against lightning overvoltages. Int. J. Circuits Electron. 2017, 2, 11–15. [Google Scholar]
- Brignone, M.; Delfino, F.; Procopio, R.; Rossi, M.; Rachidi, F. Evaluation of Power System Lightning Performance, Part I: Model and Numerical Solution Using the PSCAD-EMTDC Platform. IEEE Trans. Electromagn. Compat. 2017, 59, 137–145. [Google Scholar] [CrossRef]
- IEEE Std. 998-1996: IEEE Guide for Direct Lightning Stroke Shielding of Substations; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1996.
- Christodoulou, C.A.; Ekonomou, L.; Fotis, G.P.; Gonos, I.F.; Stathopulos, I.A. Assessment of surge arrester failure rate and application studies in Hellenic high voltage transmission lines. Electr. Power Syst. Res. 2010, 80, 176–183. [Google Scholar] [CrossRef]
- Anderson, G.J. Transmission Line Reference Book—345 kV and Above, 2nd ed.; Electrical Power Research Institute: Palo Alto, CA, USA, 1982. [Google Scholar]
- IEEE Working Group. A Simplified method for estimating lightning performance of transmission lines. IEEE Trans. Power Appar. Syst. 1985, 104, 919–932. [Google Scholar]
- CIGRE Working Group 33.01. Guide to Procedures for Estimating the Lightning Performance of Transmission Lines; Technical Bulletin 63; CIGRE: Paris, France, 1991. [Google Scholar]
- Hileman, A.R. The Incoming Surge and Open Breaker Protection, Insulation Coordination for Power Systems; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: New York, NY, USA, 1999. [Google Scholar]
- Haginomori, E.; Koshiduka, T.; Arai, J.; Ikeda, H. Power System Transient Analysis, Theory and Practice Using Simulation Programs (ATP-EMTP); John Wiley & Sons, Ltd.: Chichester, UK, 2016. [Google Scholar]
- Ryan, H.M. High-Voltage Engineering and Testing, 3rd ed.; IET Power and Energy Series 66; IET: Stevenage, UK, 2013. [Google Scholar]
- International Electrotechnical Commission (IEC). IEC 60071-2: Insulation Coordination Part 2: Application Guide; IEC: Geneva, Switzerland, 1996. [Google Scholar]
- IEEE Standards Board. IEEE Std. 1243: IEEE Guide for Improving the Lightning Performance of Transmission Lines; The Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1997. [Google Scholar]
- Nucci, C.A. A survey on CIGRE and IEEE procedures for the estimation of the lightning performance of overhead transmission and distribution lines. In Proceedings of the X International Symposium on Lightning Protection, Curitiba, Brazil, 9–13 November 2009; pp. 151–165. [Google Scholar]
- Imece, A.F.; Durbak, D.W.; Elahi, H. IEEE Task Force: Modeling guidelines for fast front transients. IEEE Trans. Power Deliv. 1996, 11, 493–506. [Google Scholar]
- Anderson, R.B.; Eriksson, A.J. Lightning parameters for engineering application. Electra 1980, 69, 65–102. [Google Scholar]
- Dommel, H. Digital Computer Solution of Electromagnetic Transients in Single and Multiple Networks. IEEE Trans. Power Appar. Syst. 1969, 88, 388–399. [Google Scholar] [CrossRef]
- Darveniza, M.; Popolansky, F.; Whitehead, E.R. Lightning protection of UHV lines. Electra 1975, 41, 39–69. [Google Scholar]
- IEEE Working Group. Estimating lightning performance of transmission lines II—Updates to analytical models. IEEE Trans. Power Deliv. 1993, 8, 1254–1267. [Google Scholar]
- Pinceti, P.; Gianνettoni, M. A simplified model for zinc oxide surge arresters. IEEE Trans. Power Deliv. 1999, 4, 393–398. [Google Scholar] [CrossRef]
- Christodoulou, C.A.; Vita, V.; Ekonomou, L.; Chatzarakis, G.E.; Stathopulos, I.A. Application of Powell’s optimization method to surge arrester circuit models’ parameters. Energy 2010, 35, 3375–3380. [Google Scholar] [CrossRef]
Surge Arresters | ||
Uc | 86 kV | |
Ur | 108 kV | |
Ures | 5 kA | 242 kV |
10 kA | 254 kV | |
20 kA | 280 kV | |
40 kA | 313 kV | |
Energy capability | Class 3 | |
Conductors of the Transmission Line | ||
Type | ACSR | |
Cross section | 636 MCM | |
Nominal current | 795 A | |
Cable | ||
Insulation | XLPE | |
External layer | PVC | |
Conductor cross-section | 800 mm2 | |
Nominal current | 840 | |
BIL | 750 kV |
Cable Length (ET) | No Arresters | Distance between Position I and T | |
---|---|---|---|
0 m | 20 m | ||
0.2 km | 0.04718 | 0.00042 | 0.00154 |
1 km | 0.03504 | 0.00035 | 0.00107 |
2 km | 0.03126 | 0.00028 | 0.00102 |
Cable Length (ET) | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.2 km | 1 km | 2 km | |||||||
Distance between Position I and T | |||||||||
TFR | No Arresters | 0 m | 20 m | No Arresters | 0 m | 20 m | No Arresters | 0 m | 20 m |
1 Ω | 0.0054 | 0.00061 | 0.00214 | 0.00411 | 0.00041 | 0.00154 | 0.00915 | 0.00044 | 0.00161 |
5 Ω | 0.0165 | 0.00188 | 0.00589 | 0.01653 | 0.00124 | 0.00892 | 0.01647 | 0.00131 | 0.00446 |
10 Ω | 0.0250 | 0.00294 | 0.09732 | 0.02204 | 0.00206 | 0.01380 | 0.02196 | 0.00218 | 0.00841 |
20 Ω | 0.0429 | 0.00548 | 0.01905 | 0.03847 | 0.00372 | 0.02584 | 0.03836 | 0.00393 | 0.01591 |
30 Ω | 0.0586 | 0.00704 | 0.02341 | 0.04398 | 0.00495 | 0.03294 | 0.04285 | 0.00524 | 0.01945 |
Cable Length (ET) | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.2 km | 1 km | 2 km | |||||||
Distance between Position I and T | |||||||||
TFR | No Arresters | 0 m | 20 m | No Arresters | 0 m | 20 m | No Arresters | 0 m | 20 m |
1 Ω | 0.0524 | 0.00103 | 0.00368 | 0.03911 | 0.00076 | 0.00308 | 0.04014 | 0.00071 | 0.00264 |
5 Ω | 0.0635 | 0.00230 | 0.00743 | 0.05153 | 0.00158 | 0.01047 | 0.04746 | 0.00158 | 0.00548 |
10 Ω | 0.0720 | 0.00336 | 0.09886 | 0.05704 | 0.00241 | 0.01534 | 0.05295 | 0.00246 | 0.00944 |
20 Ω | 0.0899 | 0.00590 | 0.02059 | 0.07347 | 0.00406 | 0.02738 | 0.06935 | 0.00420 | 0.01693 |
30 Ω | 0.1056 | 0.00746 | 0.02495 | 0.07898 | 0.00530 | 0.03448 | 0.07384 | 0.00551 | 0.02047 |
TFR | Cable Length (ET) | ||
---|---|---|---|
0.2 km | 1 km | 2 km | |
1 Ω | 0.00103 | 0.00076 | 0.00071 |
5 Ω | 0.00230 | 0.00158 | 0.00158 |
10 Ω | 0.00336 | 0.00241 | 0.00246 |
20 Ω | 0.00590 | 0.00406 | 0.00420 |
30 Ω | 0.00746 | 0.00530 | 0.00551 |
Case | IT (m) | TFR (Ω) | ET (m) | R | Case | IT (m) | TFR (Ω) | ET (m) | R | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | before | 0 | 25 | 1000 | 0.0052 | 5 | before | 0 | 25 | 2000 | 0.0057 |
after | 0 | 20 | 1000 | 0.0040 | after | 0 | 20 | 2000 | 0.0042 | ||
2 | before | 45 | 17 | 300 | 0.0310 | 6 | before | 45 | 32 | 500 | 0.0590 |
after | 0 | 13.6 | 600 | 0.0044 | after | 0 | 20.5 | 675 | 0.0041 | ||
3 | before | 45 | 25 | 300 | 0.0470 | 7 | before | 15 | 21 | 800 | 0.0140 |
after | 0 | 20 | 600 | 0.0048 | after | 0 | 16.8 | 800 | 0.0034 | ||
4 | before | 0 | 20 | 300 | 0.0055 | 8 | before | 0 | 35 | 400 | 0.0081 |
after | 0 | 16 | 300 | 0.0045 | after | 0 | 20 | 540 | 0.0048 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, C.A.; Vita, V.; Voglitsis, D.; Milushev, G.; Ekonomou, L. A Heuristic Method for the Reduction of the Outage Rate of High-Voltage Substations Due to Atmospheric Overvoltages. Appl. Sci. 2018, 8, 273. https://doi.org/10.3390/app8020273
Christodoulou CA, Vita V, Voglitsis D, Milushev G, Ekonomou L. A Heuristic Method for the Reduction of the Outage Rate of High-Voltage Substations Due to Atmospheric Overvoltages. Applied Sciences. 2018; 8(2):273. https://doi.org/10.3390/app8020273
Chicago/Turabian StyleChristodoulou, Christos A., Vasiliki Vita, Dionysios Voglitsis, George Milushev, and Lambros Ekonomou. 2018. "A Heuristic Method for the Reduction of the Outage Rate of High-Voltage Substations Due to Atmospheric Overvoltages" Applied Sciences 8, no. 2: 273. https://doi.org/10.3390/app8020273
APA StyleChristodoulou, C. A., Vita, V., Voglitsis, D., Milushev, G., & Ekonomou, L. (2018). A Heuristic Method for the Reduction of the Outage Rate of High-Voltage Substations Due to Atmospheric Overvoltages. Applied Sciences, 8(2), 273. https://doi.org/10.3390/app8020273