Improved Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation System
Abstract
:1. Introduction
- (1)
- The PMSMs have the same pole pairs.
- (2)
- The permeability of the back iron is infinite.
- (3)
- The magnetic field is unsaturated.
- (4)
- The influence of external environment on PMSM parameters is not considered.
2. SMC Design for the PMSM
2.1. Dynamical Modeling of PMSMs
2.2. SMC Design for the PMSM
2.3. Reachability Analysis
2.4. Stability Analysis
3. Simulation and Experiment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qian, J.B.; Yuan, R.B.; Bao, L.P.; Yang, X. Design and optimization of Lorentz motors in a precision active isolator. Int. J. Appl. Electromagn. Mech. 2017, 55, 329–341. [Google Scholar] [CrossRef]
- Kivanc, O.C.; Ozturk, S.B. Sensorless PMSM Drive Based on Stator Feedforward Voltage Estimation Improved with MRAS Multiparameter Estimation. IEEE/ASME Trans. Mechatron. 2018, 23, 1326–1337. [Google Scholar] [CrossRef]
- Zhang, X.; Foo, G.H.B. A constant switching frequency-based direct torque control method for interior permanent-magnet synchronous motor drives. IEEE/ASME Trans. Mechatron. 2016, 21, 1445–1456. [Google Scholar] [CrossRef]
- Sant, A.V.; Rajagopal, K.R. PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions. IEEE Trans. Magn. 2009, 45, 4672–4675. [Google Scholar] [CrossRef]
- Park, O.S.; Park, J.W.; Bae, C.B.; Kim, J.M. A dead time compensation algorithm of independent multi-phase PMSM with three-dimensional space vector control. J. Power Electron. 2013, 13, 77–85. [Google Scholar] [CrossRef]
- Liu, J.; Li, H.W.; Deng, Y.T. Torque Ripple Minimization of PMSM Based on Robust ILC Via Adaptive Sliding Mode Control. IEEE Trans. Power Eletron. 2018, 33, 3655–3671. [Google Scholar] [CrossRef]
- Fakam, M.; Hecquet, M.; Lanfranchi, V.; Randria, A. Design and magnetic noise reduction of the surface permanent magnet synchronous machine using complex air-gap permeance. IEEE Trans. Magn. 2015, 51, 1–9. [Google Scholar] [CrossRef]
- Lin, F.; Zuo, S.G.; Deng, W.Z.; Wu, S.L. Reduction of vibration and acoustic noise in permanent magnet synchronous motor by optimizing magnetic forces. J. Sound Vib. 2018, 429, 193–205. [Google Scholar] [CrossRef]
- Bartolini, G.; Ferrara, A.; Usai, E.; Utkin, V.I. On Multi-Input Chattering-Free Second-Order Sliding Mode Control. IEEE Trans. Autom. Control 2000, 45, 1711–1717. [Google Scholar] [CrossRef]
- Nakao, N.; Akatsu, K. Suppressing pulsating torques: Torque ripple control for synchronous motors. IEEE Ind. Appl. Mag. 2014, 20, 33–44. [Google Scholar] [CrossRef]
- Cai, J.J.; Lu, Q.F.; Huang, X.Y.; Ye, Y.Y. Thrust Ripple of a Permanent Magnet LSM with Step Skewed Magnets. IEEE Trans. Magn. 2012, 48, 4666–4669. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Liu, Y. Analysis of Air-Gap Field Modulation and Magnetic Gearing Effect in Fractional-Slot Concentrated-Winding Permanent-Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2018, 65, 3688–3698. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Luo, Y.; Pi, Y.G. PMSM sensorless control with separate control strategies and smooth switch from low speed to high speed. ISA Trans. 2015, 58, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Song, F.Z.; Liu, Y.; Xu, J.X.; Yang, X.; He, P.; Yang, Z. Iterative Learning Identification and Compensation of Space-Periodic Disturbance in PMLSM Systems with Time Delay. IEEE Trans. Ind. Electron. 2018, 65, 7579–7589. [Google Scholar] [CrossRef]
- Qian, R.R.; Luo, M.Z.; Sun, P. Improved nonlinear sliding mode control based on load disturbance observer for permanent magnet synchronous motor servo system. Adv. Mech. Eng. 2016, 8, 1–12. [Google Scholar] [CrossRef]
- Lin, Z.; Pachter, M.; Banda, S. Toward improvement of tracking performance nonlinear feedback for linear system. Int. J. Control 1998, 70, 1–11. [Google Scholar] [CrossRef]
- Mehta, H.; Joshi, V.; Thakar, U.; Kuber, M.; Kurulkar, P. Speed control of PMSM with hall sensors using DSP TMS320f2812. In Proceedings of the IEEE 11th International Conference on Power Electronics and Drive Systems, Sydney, Australia, 9–12 June 2015; pp. 295–300. [Google Scholar]
- Qi, L.; Shi, H. Adaptive position tracking control of permanent magnet synchronous motor based on RBF fast terminal sliding mode control. Neurocomputing 2013, 115, 23–30. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, Y.; Mu, C. Novel composite sliding mode control for PMSM drive system based on disturbance observer. IEEE Trans. Appl. Supercond. 2016, 26, 1–5. [Google Scholar] [CrossRef]
- Li, S.H.; Zhou, M.; Yu, X. Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans. Ind. Inform. 2013, 9, 1879–1891. [Google Scholar] [CrossRef]
- EI-Sousy, F.F.M. Robust adaptive wavelet-neural-network sliding mode speed control for a DSP-based PMSM drive system. J. Power Electron. 2010, 10, 505–517. [Google Scholar] [CrossRef]
- Jung, J.W.; Leu, V.Q.; Dang, D.Q.; Choi, H.H.; Kim, T.H. Sliding mode control of SPMSM drivers-An online gain tuning approach with unknown system parameters. J. Power Electron. 2014, 14, 980–988. [Google Scholar] [CrossRef]
- Caponigro, M.; Ghezzi, R.; Piccoli, B. Regularization of chattering phenomena via bounded variation controls. IEEE Trans. Autom. Control 2018, 63, 2046–2060. [Google Scholar] [CrossRef]
- Su, S.; Wang, H.; Zhang, H.; Liang, Y.; Xiong, W. Reducing Chattering Using Adaptive Exponential Reaching Law. In Proceedings of the Sixth International Conference on Natural Computation (ICNC 2010), Yantai, China, 10–12 August 2010. [Google Scholar]
- Fu, J.; Wang, L.M.; Du, Y.L.; Jun, Z. A Robust Sliding Mode Control for Nonlinear System with Adjustable Chattering Phenomenon. In Proceedings of the 14th International Workshop on Variable Structure Systems (VSS), Nanjing, China, 1–4 June 2016. [Google Scholar]
- Li, S.H.; Zong, K.; Liu, H.X. A composite speed controller based on a second order model of pmsm system. Trans. Inst. Meas. Control 2011, 33, 522–541. [Google Scholar]
- Saeed, M.H.; Ali, J.K.; Mohammad, F. Chattering free fuzzy sliding mode controllers for robot manipulators. In Proceedings of the UKACC International Conference on Control, Coventry, UK, 7–10 September 2010. [Google Scholar]
- Xiong, J.; Fan, S.; He, L.; Zhang, K. A repetitive control scheme for harmonic suppression of circulating current in modular multilevel converters. IEEE Trans. Power Electron. 2015, 30, 471–481. [Google Scholar]
- Yu, P.; Wu, M.; She, J.; Lei, Q. Robust Repetitive Control and Disturbance Rejection Based on Two-Dimensional Model and Equivalent-Input-Disturbance Approach. Asian J. Control 2016, 18, 2325–2335. [Google Scholar] [CrossRef]
- Crudele, M.; Kurfess, T. Implementation of a fast tool servo with repetitive control for diamond turning. Mechatronics 2003, 13, 243–257. [Google Scholar] [CrossRef]
- Zwerger, T.; Mercorelli, P. Combining an Internal SMC with an External MTPA Control Loop for an Interior PMSM. In Proceedings of the 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), Miedzyzdroje, Poland, 27–30 August 2018; pp. 674–679. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Ji, C.; Pan, N.; Wu, J. Improved Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation System. Appl. Sci. 2018, 8, 2491. https://doi.org/10.3390/app8122491
Qian J, Ji C, Pan N, Wu J. Improved Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation System. Applied Sciences. 2018; 8(12):2491. https://doi.org/10.3390/app8122491
Chicago/Turabian StyleQian, Junbing, Chuankun Ji, Nan Pan, and Jing Wu. 2018. "Improved Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation System" Applied Sciences 8, no. 12: 2491. https://doi.org/10.3390/app8122491
APA StyleQian, J., Ji, C., Pan, N., & Wu, J. (2018). Improved Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation System. Applied Sciences, 8(12), 2491. https://doi.org/10.3390/app8122491