A Multi-Objective Scheduling Optimization Model for a Multi-Energy Complementary System Considering Different Operation Strategies
Abstract
:1. Introduction
- An uncertainty analysis and simulation method are proposed to generate a typical distribution scenario for the uncertainty factors of MECS operation based on the Wasserstein method, and the K-distance and the K-medoids algorithms. The method includes three steps, namely, the discretization of the continuous probability distribution functions, the generation of the initial simulation scenarios, and the selection of the most representative scenarios.
- A multi-objective scheduling model and solution algorithm are proposed by considering different ESD operation modes under three objective functions, namely, the maximum operation revenue, the minimum abandoned energy cost, and the minimum output fluctuations. Then, the multi-objective model is weighted into the single objective mode by the rough set theory based on the payoff table.
- A complementary evaluation index system is given to evaluate the optimal degree for the whole MECS operation, including the load tracking degree, the HS secondary peaking capacity, and TPP units of coal consumption. The optimal capacity ratios of ESD:WPP and ESD:PV are calculated by a sensitivity analysis to provide reliable decision-making support.
2. MECS Structure Description
3. Uncertainty Analysis and Simulation
3.1. Uncertainty Analysis
3.2. Uncertainty Model
3.3. Uncertainty Simulation
4. Multi-Objective Scheduling Optimization Model
4.1. Multi-Objective Scheduling Model
4.1.1. Objective Functions
4.1.2. Constraint Conditions
4.2. Multi-Objective Model Solution
4.2.1. Payoff Table
4.2.2. Weight Calculation
4.2.3. Weighted Single Objective
5. Complementarity Evaluation Indexes
6. Simulation Analysis
6.1. Basic Data
6.2. Simulation Results
6.2.1. Weighting Calculation
6.2.2. Scheduling Results
6.3. Results Analysis
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Q.X.; Liao, H.; Hao, Y. Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces. Energy 2018, 150, 527–543. [Google Scholar] [CrossRef]
- Liu, H.L.; Andresen, G.B.; Greiner, M. Cost-optimal design of a simplified highly renewable Chinese electricity network. Energy 2018, 147, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Mu, Y.Q.; Cai, W.J.; Evans, S.; Wang, C.; David, R.-H. Employment impacts of renewable energy policies in China: A decomposition analysis based on a CGE modeling framework. Appl. Energy 2018, 210, 256–267. [Google Scholar] [CrossRef]
- Song, D.; Keith, W.H.; Dang, Y.G. Forecasting China’s electricity consumption using a new grey prediction model. Energy 2018, 149, 314–328. [Google Scholar]
- Song, J.J.; Wang, J.Z.; Lu, H.Y. A novel combined model based on advanced optimization algorithm forshort-term wind speed forecasting. Appl. Energy 2018, 215, 643–658. [Google Scholar] [CrossRef]
- Mojtaba, D.; Mustafa, J.R.; Ahmad, Z.C. Short-term power output forecasting of hourly operation in power plant based on climate factors and effects of wind direction and wind speed. Energy 2018, 148, 775–788. [Google Scholar]
- Shaikh, M.R.; Randall, S.; Erik, H.; Grant, A.K. The levelized costs of electricity generation by the CDM power projects. Energy 2018, 148, 235–246. [Google Scholar]
- Kim, J.W.; Noh, Y.L.; Chang, D.J. Storage system for distributed-energy generation using liquid air combined with liquefied natural gas. Appl. Energy 2018, 212, 1417–1432. [Google Scholar] [CrossRef]
- Atherton, J.; Sharma, R.; Salgado, J. Techno-economic analysis of energy storage systems for application in wind farms. Energy 2017, 135, 540–552. [Google Scholar] [CrossRef]
- Tan, Z.F.; Wang, G.; Ju, L.W.; Tan, Q.K.; Yang, W.H. Application of CVaR risk aversion approach in the dynamical scheduling optimization model for virtual power plant connected with wind-photovoltaic-energy storage system with uncertainties and demand response. Energy 2017, 124, 198–213. [Google Scholar] [CrossRef]
- Morteza, S.; Mohammad-Kazem, S.E.E.; Mahmoud-Reza, H. An interactive cooperation model for neighboring virtual power plants. Appl. Energy 2017, 200, 273–289. [Google Scholar]
- Derrouazin, A.; Aillerie, M.; Mekkakia-Maaza, N.; Charles, J.P. Multi input-output fuzzy logic smart controller for a residential hybrid solar-wind-storage energy system. Energy Convers. Manag. 2017, 148, 238–250. [Google Scholar] [CrossRef]
- Zhang, H.F.; Yue, D.; Xie, X.P.; Dou, C.X.; Sun, F. Gradient decent based multi-objective cultural differential evolution for short-term hydrothermal optimal scheduling of economic emission with integrating wind power and photovoltaic power. Energy 2017, 122, 748–766. [Google Scholar] [CrossRef]
- Hassan, F. Novel standalone hybrid solar/wind/fuel cell power generation system for remote areas. Sol. Energy 2017, 146, 30–43. [Google Scholar]
- Mason, I.G. Comparative impacts of wind and photovoltaic generation on energy storage for small islanded electricity systems. Renew. Energy 2015, 80, 793–805. [Google Scholar] [CrossRef]
- Ghada, B.; Lotfi, K. A dynamic power management strategy of a grid connected hybrid generation system using wind, photovoltaic and Flywheel Energy Storage System in residential applications. Energy 2014, 71, 148–159. [Google Scholar]
- Iman, G.M.; Mostafa, N.; Farhad, F.; Mohsen, S.; Saeid, M. Risk-averse profit-based optimal operation strategy of a combined wind farm–cascade hydro system in an electricity market. Renew. Energy 2013, 55, 252–259. [Google Scholar]
- Okan, A.; Oya, E.K. Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks. Energy 2013, 60, 116–124. [Google Scholar] [Green Version]
- Kaabeche, A.; Belhamel, M.; Ibtiouen, R. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 2011, 36, 1214–1222. [Google Scholar] [CrossRef]
- Aboelsood, Z.; Hossam, A.G.; Ahmed, E. Optimal planning of combined heat and power systems within microgrids. Energy 2015, 93 Pt 1, 235–244. [Google Scholar]
- Heidelberger, P.; Norton, A.; Robinson, J.T. Parallel quicksort using fetch-and-add. IEEE Trans. Comput. 1990, 39, 133–138. [Google Scholar] [CrossRef]
- Fu, X.Q.; Guo, Q.L.; Sun, H.B.; Pan, Z.; Xiong, W.; Wang, L. Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric. Energy 2017, 135, 153–170. [Google Scholar] [CrossRef]
- Al-Shammari, E.T.; Shamshirband, S.; Petković, D.; Zalnezhad, E.; Yee, P.L.; Taher, R.S.; Ćojbašić, Ž. Comparative study of clustering methods for wake effect analysis in wind farm. Energy 2016, 95, 573–579. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, W.L.; Yang, L. A wind power/photovoltaic typical scenario set generation algorithm based on wasserstein distance metric and revised K-medoids cluster. Proc. CSEE 2015, 35, 2654–2661. [Google Scholar]
- Ju, L.W.; Tan, Z.F.; Li, H.H.; Tan, Q.K.; Yu, X.B.; Song, X.H. Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China. Energy 2016, 111, 322–340. [Google Scholar] [CrossRef]
- Deng, C.; Ju, L.W.; Liu, J.Y.; Tan, Z.F. Stochastic Scheduling Multi-Objective Optimization Model for Hydro-Thermal Power Systems Based on Fuzzy CVaR Theory. Power Syst. Technol. 2016, 40, 1447–1457. [Google Scholar]
- Liu, G.L. Rough set theory based on two universal sets and its applications. Knowl.-Based Syst. 2010, 23, 110–115. [Google Scholar] [CrossRef]
- Adhvaryyu, P.K.; Chattopadhyay, P.K.; Bhattacharya, A. Dynamic optimal power flow of combined heat and power system with Valve-point effect using Krill Herd algorithm. Energy 2017, 127, 756–767. [Google Scholar] [CrossRef]
- Available online: http://www.tanpaifang.com/tanzhibiao/201601/2350250.html (accessed on 27 February 2016).
Functions | … | |||
---|---|---|---|---|
… | ||||
… | … | … | … | … |
… |
Unit | Power Output/MW | Climbing Output/MW | a/tce | b/(tce/MW·h) | c/(10−6 tce/(MW·h)2) | Start–Shutdown | Power Loss Rate | |||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Upwards | Downwards | Time/h | Cost/tce | |||||
TPP1 | 250 | 600 | 280 | −280 | 11.7 | 0.27 | 6.44 | 8 | 25.6 | 0.049 |
TPP2 | 120 | 300 | 120 | −120 | 8.88 | 0.293 | 1.12 | 7 | 22.3 | 0.54 |
TPP3 | 100 | 250 | 100 | −100 | 5.26 | 0.31 | 37.38 | 4 | 12.3 | 0.057 |
TPP4 | 50 | 100 | 50 | −50 | 4.65 | 0.32 | 45.86 | 2 | 4.3 | 0.061 |
Functions | Optimum Economic Efficiency (OEE) Mode | Longest Life Cycle (LLC) Mode | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | |||||||||
F1/104 ¥ | F2/104 ¥ | F3/MW·h | F1/104 ¥ | F2/104 ¥ | F3/MW·h | F1/104 ¥ | F2/104 ¥ | F3/MW·h | F1/104 ¥ | F2/104 ¥ | F3/MW·h | |
F1 | 152.76 | 85.15 | 30.43 | 170.21 | 93.59 | 46.74 | 151.88 | 95.08 | 27.23 | 167.73 | 114.71 | 35.48 |
F2 | 146.43 | 83.86 | 32.15 | 163.16 | 92.17 | 49.86 | 145.59 | 93.64 | 28.35 | 160.78 | 112.97 | 37.56 |
F3 | 140.28 | 88.48 | 26.87 | 156.30 | 97.25 | 42.18 | 139.47 | 98.80 | 24.16 | 154.03 | 119.19 | 31.85 |
Mode | Power Output/MW·h | Abandoned Energy/MW·h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TPP1 | TPP2 | TPP3 | TPP4 | WPP | PV | HS | ESD | WPP | PV | HS | ||
Summer | OEE | 15,000 | 3288 | 550 | 0 | 6837 | 2474 | 12,322 | ±1305 | 749.20 | 274.90 | 0 |
LLC | 15,000 | 3164 | 693 | 200 | 6793 | 2419 | 12,271 | ±1100 | 899.04 | 329.88 | 50.85 | |
Winter | OEE | 15,000 | 5000 | 400 | 0 | 12,654 | 2044 | 5658 | ±1853 | 1336.9 | 227.1 | 0 |
LLC | 15,000 | 5368 | 400 | 0 | 12,387 | 1999 | 5658 | ±1200 | 1604.28 | 272.52 | 0 |
Scene | Objective Function | Pollutant Emissions/Tonne | Complementarity Indexes | Load Demand/MW | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1/104 ¥ | F2/104 ¥ | F3/MW | CO2 | SO2 | NOx | LTD/% | SPC/MW·h | Coal Consumption/(g/kW·h) | Peak | Valley | ||
OEE mode | Summer | 146.49 | 85.83 | 29.67 | 3794 | 92 | 87 | 57 | 33.64 | 310.05 | 1795 | 1485 |
Winter | 163.22 | 94.34 | 46.33 | 3883 | 94 | 90 | 32 | 44.12 | 312.60 | 1765 | 1415 | |
LLC mode | Summer | 145.65 | 95.84 | 26.33 | 4158 | 101 | 95 | 52 | 26.86 | 315.91 | 1808 | 1450 |
Winter | 160.85 | 115.62 | 35.33 | 4233 | 103 | 97 | 40 | 34.22 | 316.85 | 1788 | 1408 | |
Without ESD | Summer | 142.18 | 115.54 | 30.15 | 4181 | 101 | 96 | 48 | 18.59 | 324.80 | 1820 | 1430 |
Winter | 158.45 | 128.29 | 36.85 | 4381 | 106 | 101 | 30 | 26.17 | 329.90 | 1794 | 1398 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, L.; Li, P.; Tan, Q.; Wang, L.; Tan, Z.; Wang, W.; Qu, J. A Multi-Objective Scheduling Optimization Model for a Multi-Energy Complementary System Considering Different Operation Strategies. Appl. Sci. 2018, 8, 2293. https://doi.org/10.3390/app8112293
Ju L, Li P, Tan Q, Wang L, Tan Z, Wang W, Qu J. A Multi-Objective Scheduling Optimization Model for a Multi-Energy Complementary System Considering Different Operation Strategies. Applied Sciences. 2018; 8(11):2293. https://doi.org/10.3390/app8112293
Chicago/Turabian StyleJu, Liwei, Peng Li, Qinliang Tan, Lili Wang, Zhongfu Tan, Wei Wang, and Jingyan Qu. 2018. "A Multi-Objective Scheduling Optimization Model for a Multi-Energy Complementary System Considering Different Operation Strategies" Applied Sciences 8, no. 11: 2293. https://doi.org/10.3390/app8112293
APA StyleJu, L., Li, P., Tan, Q., Wang, L., Tan, Z., Wang, W., & Qu, J. (2018). A Multi-Objective Scheduling Optimization Model for a Multi-Energy Complementary System Considering Different Operation Strategies. Applied Sciences, 8(11), 2293. https://doi.org/10.3390/app8112293