A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities
Abstract
1. Introduction
2. Harvester System Overview
3. Analytical Modeling
4. Simulation Results and Discussions
5. Experimental Results and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, D.; Tudor, M.J.; Beeby, S.P. Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Meas. Sci. Technol. 2010, 21, 022001. [Google Scholar] [CrossRef]
- Tang, L.; Yang, Y.; Soh, C.K. Toward Broadband Vibration-based Energy harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 1867–1897. [Google Scholar] [CrossRef]
- Xue, H.; Hu, Y.; Wang, Q.M. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans. Ultrason. Ferroelect. Freq. Control 2008, 55, 2104–2108. [Google Scholar]
- Erturk, A.; Renno, J.M.; Inman, D.J. Modeling of Piezoelectric Energy harvesting from an L shaped beam mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 2009, 20, 529–544. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, J. Connected vibrating Piezoelectric Bimorph beams as a wide-band piezoelectric power harvester. J. Intell. Mater. Syst. Struct. 2009, 20, 569–574. [Google Scholar] [CrossRef]
- Wu, H.; Tang, L.; Yang, Y.; Soh, C.K. A novel two-degrees-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 2013, 24, 357–368. [Google Scholar] [CrossRef]
- Qi, S.; Shuttleworth, R.; Oyadiji, S.O.; Wright, J. Design of multiresonant beam for broadband piezoelectric energy harvesting. Smart Mater. Struct. 2010, 19, 094009. [Google Scholar] [CrossRef]
- Li, P.; Liu, Y.; Wang, Y.; Luo, C.; Li, G.; Hu, J.; Liu, W.; Zhang, W. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure. AIP Adv. 2015, 5, 047151. [Google Scholar] [CrossRef]
- Niri, D.E.; Salamone, S. A passively tunable mechanism for a dual bimorph energy harvester with variable tip stiffness and axial load. Smart Mater. Struct. 2012, 21, 125025. [Google Scholar] [CrossRef]
- Zhu, Y.; Zu, J.; Su, W. Broadband energy harvesting through piezoelectric beam subjected to dynamic compressive loading. Smart Mater. Struct. 2013, 22, 045007. [Google Scholar] [CrossRef]
- Peters, C.; Maurath, D.; Schock, W.; Mezger, F.; Manoli, Y. A closed-loop wide-range tunable mechanical resonator for energy harvesting systems. J. Micromech. Microeng. 2009, 19, 094004. [Google Scholar] [CrossRef]
- Hoffmann, D.; Willmann, A.; Hehn, T.; Folkmer, B.; Manoli, Y. A self-adaptive energy harvesting system. Smart Mater. Struct. 2016, 25, 035013. [Google Scholar] [CrossRef]
- Dong, L.; Prasad, M.G.; Fisher, F.T. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting. Smart Mater. Struct. 2016, 25, 065019. [Google Scholar] [CrossRef]
- Sang, M.C.; Dayou, J.; Liew, W.Y. Increasing the Output from Piezoelectric Energy Harvester Using Width-Split Method with Verification. Int. J. Precis. Eng. Man. 2013, 14, 2149–2155. [Google Scholar] [CrossRef]
- Dayou, J.; Kim, J.; Im, J.; Zhai, L.; How, A.T.; Liew, W.Y. The effects of width reduction on the damping of a cantilever beam and its application in increasing the harvesting power of piezoelectric energy harvester. Smart Mater. Struct. 2015, 24, 045006. [Google Scholar] [CrossRef]
- Reddy, R.A.; Umapathy, M.; Ezhilarasi, D.; Uma, G. Improved energy harvesting from vibration by introducing cavity in a cantilever beam. J. Vib. Control 2014, 22, 3057–3066. [Google Scholar] [CrossRef]
- Reddy, R.A.; Umapathy, M.; Ezhilarasi, D.; Uma, G. Cantilever Beam with Trapezoidal Cavity for Improved Energy Harvesting. Int. J. Precis. Eng. Manuf. 2015, 16, 1875–1881. [Google Scholar] [CrossRef]
- Reddy, R.A.; Umapathy, M.; Ezhilarasi, D.; Uma, G. Modelling and Experimental investigations on stepped beam with cavity for energy harvesting. Smart Struct. Syst. 2015, 16, 623–640. [Google Scholar] [CrossRef]
- Raju, S.S.; Umapathy, M.; Uma, G. Cantilever piezoelectric energy harvester with multiple cavities. Smart Mater. Struct. 2015, 24, 115023. [Google Scholar] [CrossRef]
- Usharani, R.; Uma, G.; Umapathy, M. Design of High Output Broadband Piezoelectric Energy Harvester with Double Tapered Cavity Beam. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 343–351. [Google Scholar] [CrossRef]
- Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.B. A new broadband energy harvester using propped cantilever beam with variable overhang. Smart Struct. Syst. 2017, 19, 567–576. [Google Scholar] [CrossRef]
- Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.B. A new piezoelectric-patched cantilever beam with a step section for high performance of energy harvesting. Sens. Actuators A 2017, 265, 47–61. [Google Scholar]
- Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.B. Design of high output broadband piezoelectric energy harvester. J. Mech. Sci. Technol. 2017, 31, 3131–3142. [Google Scholar] [CrossRef]
- Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.B. A new piezoelectric energy harvester using two beams with tapered cavity for high power and wide broadband. Int. J. Mech. Sci. 2018, 142–143, 224–234. [Google Scholar]
- Yeo, G.H.; Ma, X.; Rahn, C.; Trolier-McKinstry, S. Efficient Piezoelectric Energy Harvesters Utilizing (001) Textured Bimorph PZT Films on Flexible Metal Foils. Adv. Funct. Mater. 2016, 26, 5940–5946. [Google Scholar] [CrossRef]
- Jeong, K.C.; Baek, C.; Kingon, A.I.; Park, K.; Kim, S.H. Lead-Free Perovskite Nanowire-Employed Piezopolymer for Highly Efficient Flexible Nanocomposite Energy Harvester. Small 2018, 14, 1704022. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Qin, Y. Theoretical study of enhancing the piezoelectric nanogenerator’s output power by optimizing the external force’s shape. APL Mater. 2017, 5, 074101. [Google Scholar] [CrossRef]
- Dechant, E.; Fedulov, F.; Fetisov, L.Y.; Shamonin, M. Bandwidth widening of piezoelectric cantilever beam arrays by mass-tip tuning for low-frequency vibration energy harvesting. Appl. Sci. 2017, 7, 1324. [Google Scholar] [CrossRef]
- Abramovich, H.; Har-nes, I. Analysis and Experimental Validation of a Piezoelectric Harvester with Enhanced Frequency Bandwidth. Materials 2018, 11, 1243. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.S.; Suresh, K.; Kumar, U.V.; Uma, G.; Umapathy, M. Resonance based DC current sensor. Measurement 2012, 45, 369–374. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, N. Optimal design of a piezoelectric coupled beam for power harvesting. Smart Mater. Struct. 2012, 21, 085013. [Google Scholar] [CrossRef]
- Chen, N.S.; Wang, G.J.; Chien, M.C. Analytical modeling of piezoelectric vibration-induced micro power generator. Mechatronics 2006, 16, 379–387. [Google Scholar] [CrossRef]
- Salehi-Khojin, A.; Bashash, S.; Jalili, N. Modeling and experimental vibration analysis of nanomechanical cantilever active probes. J. Micromech. Microeng. 2008, 18, 085008. [Google Scholar] [CrossRef]
- Erturk, A. Electromechanical Modelling of Piezoelectric Energy Harvesters. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2009. [Google Scholar]
Sections | Length (mm) | Width (mm) | Thickness (mm) | |||
---|---|---|---|---|---|---|
Symbol | Value | Symbol | Value | Symbol | Value | |
I | L1 | 10 | b1 | 40 | t1 | 10 |
II | L2–L1 | 76.5 | b2 | 25 | t2 | 6 |
III | L3–L2 | 50 | b3 | 40 | t3 | 10 |
IV | L4–L3 | 76.5 | b4 | 25 | t4 | 6 |
V | L5–L4 | 50 | b5 | 40 | t5 | 50 |
VI | L6–L5 | 10 | b6 | 12.5 | t6 | 2 |
VII | L7–L6 | 76.5 | b7 | 12.5 | t7 | 2 |
VIII | L8–L7 | 113.5 | b8 | 12.5 | t8 | 2 |
Symbol | Description | Value | Units |
---|---|---|---|
Eb | Young’s modulus of the beam | 71 | GPa |
ρb | Density of the beam | 2700 | Kg m−3 |
Symbol | Description | Value | Units |
---|---|---|---|
lp | Length of patch 1 and 2 | 76.5 | mm |
b2, b4 | Width of patch 1 and 2 | 25 | mm |
b7 | Width of patch 3 | 12.5 | mm |
tp | Thickness of patch 1, 2 and 3 | 0.5 | mm |
Ep | Young’s modulus | 47.62 | GPa |
ρp | Density | 7500 | Kg m−3 |
d31 | Piezoelectric charge coefficient | −265 | pCN−1 |
Proposed Harvester | First Mode | Second Mode | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
F1 (Hz) | Voc (V) | Rlopt (KΩ) | VR (V) | P (mW) | F2 (Hz) | Voc (V) | Rlopt (KΩ) | VR (V) | P (mW) | |
with step and cavity | 21.02 | 61.55 | 181 | 34.46 | 6.6 | 35.58 | 48.85 | 122 | 27.69 | 6.13 |
with step and without cavity | 21.83 | 55.66 | 174 | 31.18 | 5.56 | 35.77 | 48.63 | 116 | 27.74 | 6.15 |
Conventional Cantilever based harvester | 21.02 | 4.00 | 72.13 | 2.16 | 0.058 | 129.58 | 0.45 | 11.7 | 0.29 | 0.0044 |
Parameter | First Mode | Second Mode | ||||
---|---|---|---|---|---|---|
Analytical | Experimental | % Error | Analytical | Experimental | % Error | |
Frequency (Hz) | 21.02 | 20.42 | 2.85 | 35.58 | 34.74 | 2.35 |
Voc (V) | 61.55 | 60.1 | 2.36 | 48.85 | 47.6 | 2.57 |
VR (V) | 34.46 | 35.54 | 3.13 | 27.69 | 26.18 | 5.47 |
P (mW) | 6.6 | 6.65 | 0.76 | 6.13 | 6.23 | 1.63 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usharani, R.; Uma, G.; Umapathy, M.; Choi, S.-B. A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities. Appl. Sci. 2018, 8, 2091. https://doi.org/10.3390/app8112091
Usharani R, Uma G, Umapathy M, Choi S-B. A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities. Applied Sciences. 2018; 8(11):2091. https://doi.org/10.3390/app8112091
Chicago/Turabian StyleUsharani, Ramalingam, Gandhi Uma, Mangalanathan Umapathy, and Seung-Bok Choi. 2018. "A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities" Applied Sciences 8, no. 11: 2091. https://doi.org/10.3390/app8112091
APA StyleUsharani, R., Uma, G., Umapathy, M., & Choi, S.-B. (2018). A Novel Piezoelectric Energy Harvester Using a Multi-Stepped Beam with Rectangular Cavities. Applied Sciences, 8(11), 2091. https://doi.org/10.3390/app8112091